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Abstract: Real-time source localization is crucial for high-end automation and artificial intelligence
(AI) products. However, a low signal-to-noise ratio (SNR) and limited processing time can reduce
localization accuracy. This work proposes a new architecture for a time-domain feedback-based
beamformer that meets real-time processing demands. The main objective of this design is to locate
reflective sources by estimating their direction of arrival (DOA) and signal range. Incorporating
a feedback mechanism in this architecture refines localization precision, a unique aspect of this
approach. We conducted an in-depth analysis to compare the effectiveness of time-domain feedback
beamforming against conventional time-domain methods, highlighting their benefits and limitations.
Our evaluation of the proposed architecture, based on critical performance indicators such as peak-to-
sidelobe ratio, mainlobe width, and directivity factor, demonstrates its ability to improve beamformer
effectiveness significantly.

Keywords: beamforming; time domain processing; source localization; uniform linear array

1. Introduction

Array signal processing has profound applications across radar and sonar systems [1–3],
smart antennas for satellite and cellular communications [4–8], automotive radar [9,10],
the early detection of diseases using medical imaging [11,12], and recently, reconfigurable
intelligent surface (RIS) applications [7,13,14]. This work delves into the critical task of
source localization in noisy environments, employing sensor arrays to pinpoint a signal’s
origin. Source localization is an essential aspect of spatial signal processing. It involves
using sensor arrays to detect and determine the origin of signals in different environments.
This process starts with a reference sensor emitting signals into space while the sensor
array captures reflections from various sources. By analyzing the time delays between the
readings of these sensors, it is possible to estimate the exact location of the source accurately.

Beamforming is a technique used in spatial processing that helps detect a signal coming
from a specific direction while minimizing the influence of noise and interference from
other directions [15]. This technique uses an array of sensors and determines the direction
of the signal by weighing the inputs from each sensor. The goal is to enhance the signal from
the target direction while reducing interferences. When beamforming is implemented on
digital platforms, it requires the discretization of the signal, which introduces quantization
errors and necessitates a higher sampling rate. Because of these factors, research has
focused on frequency domain approaches [14,16,17], which require lower sampling rates
and can benefit from the combined utilization of spectral and spatial data. However,
the time domain is still an important area for development [3,7,12,18,19], particularly for
applications that require low latency [19], such as real-time communication [3,12]. In such
cases, the time-domain approach can reduce computational complexity and execution time,
even with a limited number of sensors.

Sensor arrays are available in different configurations, such as uniform linear [20–22],
circular [23–25], and planar arrays [26,27], each having its benefits and challenges. Uniform
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linear arrays (ULAs) have been a significant area of research due to their simple imple-
mentation and easy analysis. The design of a ULA, including the number of elements
and their spacing, significantly impacts its performance, affecting the sharpness of the
mainlobe and sidelobe levels. Choosing the right weight is crucial for optimizing the
beamformer’s performance. Recent advancements have introduced a unique frequency
domain feedback beamforming architecture [17], which incorporates a feedback loop to
enhance source localization and signal rebroadcasting. Although this approach introduces
additional complexity, it offers better system tuning by integrating an infinite-impulse
response (IIR) filter. This circumvents the challenges associated with temporal processing
while maintaining a low-complexity array.

This paper proposes a new architecture for a time-domain feedback beamformer to
meet real-time processing demands. This architecture aims to locate a reflective source
by estimating its direction of arrival (DOA) and range while incorporating a feedback
mechanism to improve accuracy. In contrast to conventional array processing and typical
beamforming methods, the novelty lies in integrating spatial feedback, resembling temporal
domain IIR filtering in the spatial domain. Assuming the target of interest exhibits reflective
characteristics akin to a mirror, the spatial feedback between the array and the target is
established by retransmitting a synthesized version of the incoming signal back to the
target. We have compared this new architecture against established metrics such as peak-
to-sidelobe ratio, mainlobe width, and directivity factor, demonstrating its potential to
improve the beamformer performance significantly. The contributions of this manuscript
are twofold:

(1) We have developed a new beamforming architecture that includes feedback mech-
anisms. This innovation offers a comprehensive methodology for integrating feedback
mechanisms into beamforming systems. We have presented a theoretical framework and
a closed-form solution for a time-domain feedback-based beamformer. This new archi-
tecture extends the current beamforming applications and provides an efficient way of
implementing feedback mechanisms in beamforming systems.

(2) We have conducted an extensive analysis comparing feedback beamforming in the
time domain with conventional time-domain methodologies, highlighting their operational
strengths and limitations. We aim to present each approach’s distinctive features and their
respective efficacies. Our empirical results emphasize the effectiveness of the proposed
beamforming framework in improving target localization estimation, thus showcasing its
potential usefulness in various real-world scenarios.

The paper is structured as follows: We start in Section 2 by explaining the signal model
for impinging signals on a ULA in the time domain. Next, in Section 3, we delve into the
design of the feedback beamformer and elaborate on the signal model within this innovative
architecture. In Section 4, we propose a methodology to optimize beamformer weights for
the precise estimation of the direction of arrival and signal range. In Section 5, we present
simulation results, demonstrating significant improvements in spatial performance metrics
compared to conventional beamformers. In Section 6, we compare the performances of
time-domain and frequency-domain implementations. Finally, in Section 7, we conclude
with a discussion of the implications of our findings and suggest future research directions.

Notations: Variables are represented in italics, and matrices and vectors are distin-
guished by boldfaced type, with matrices in uppercase and vectors in lowercase. The
superscript T denotes the transpose operation for matrices or vectors. The elements within
vectors and matrices are referenced as follows: vi indicates the ith element within vector v,
and Aij specifies the element located at the ith row and jth column of matrix A.

2. Signal Model

Consider a far-field source signal, s(t), that propagates in an anechoic environment at
the speed of light, c. The signal s(t), which is an impulse or continuous signal, impinges an
object and reflects the sensor array. A ULA beamformer, functioning analogously to an FIR
filter in the time domain, is utilized in the design. The ULA consists of N omnidirectional
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elements with inter-element spacing, δ. The location of the nth sensor is denoted by pn for
n = 0, . . . , N − 1, with p0 representing the reference point relative to a stationary target
positioned at pt. For simplicity, we consider a two-dimensional formulation. The DOA of
the reflected signal, relative to the broadside direction of the array, is denoted as θd. The
distance from the reference sensor to the target is given by d = |p0 − pt|. The configuration
of ULA is depicted in Figure 1.

The signal measured at the nth sensor is given by

xn(t) = gc s(t − τpd − τn) + vn(t) , (1)

where gc is the channel gain, τpd is the prorogation delay from the target to the reference
sensor and back, given by τpd = 2d

c , τn is the time delay between the nth and reference

sensors, which is given by τn = nδ cos(θd)
c , and vn(t) is the noise in the nth sensor.

Figure 1. Uniform linear array.

Following Shannon’s sampling theorem [28], the continuous-time signal can be repre-
sented as

s(t) =
∞

∑
m=−∞

s[m] sinc(t fs − m) (2)

where fs =
1
Ts

is the sampling frequency, Ts is the sampling interval, s[m] = s(mTs) is the

sampled signal, m ∈ Z is the discrete-time index, and sinc(x) = sin(πx)
πx . Substituting (1)

into (2), and under the assumption of a noiseless environment, where vn(t) = 0 for all the
sensors, we have

xn(t) = gc

∞

∑
m=−∞

s[m] sinc
(
(t − τpd − τn) fs − m

)
. (3)

The discrete-time signal measured in the nth sensor can be written as
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xn[m] = xn(mTs)

= gc

∞

∑
m′=−∞

s[m′] sinc
(
(mTs − τpd − τn) fs − m′

)
= gc

∞

∑
l=−∞

s[m − l] sinc
(

l − (τpd + τn) fs

)
. (4)

By following the framework presented in [29] for general analysis and by defining
∆ = τpd fs, we have

xn[m] = gc

∞

∑
l=−∞

s[m − l] sinc(l − ∆ − fsτn)

≈ gc

P+Lh−1

∑
l=−P

s[m − l] sinc(l − ∆ − fsτn) (5)

where the summation is truncated around the mainlobe of the sinc function. The approxi-
mation in (5) holds for P ∈ N and P − ∆ − fsτn ≫ 1. Lh ∈ N is the length of the FIR filter
to be defined later. We can formulate (5) as

xn[m] = gc gT
n (θd, d) s[m] (6)

where s[m] contains L = 2P + Lh successive samples of the signal s[m]:

s[m] =
[
s[m + P] s[m + P − 1] . . . s[m − P − Lh + 1]

]T (7)

and gn(θd, d) is given by

gn(θd, d) =[
sinc(−P − ∆ − fsτn) sinc(−P + 1 − ∆ − fsτn) . . . sinc(P + Lh − 1 − ∆ − fsτn)

]T . (8)

Considering Lh successive time samples of the nth sensor signal, (6) becomes a vector
of length Lh:

xn[m] =
[
xn[m] xn[m − 1] . . . xn[m − Lh + 1]

]T

= gc Gn(θd, d) s[m] (9)

where Gn(θd, d) is a Toeplitz matrix of size Lh × L with

[Gn(θd, d)]ij = sinc(−P − i + j − ∆ − fsτn) (10)

where i = 0, . . . , Lh − 1 and j = 0, . . . , L − 1. By combining the samples from the N sensors,
we get a vector of length NLh:

x[m] =
[
x0[m]T x1[m]T xN−1[m]T

]T (11)

= G(θd, d)s[m]

where G(θd, d) is a matrix of size NLh × L:

G(θd, d) =


G0(θd, d)
G1(θd, d)

...
GN−1(θd, d)

 . (12)
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The signal x[m] is affected by the array’s geometry, represented by τn in each element
of G(θd, d). This is similar to the structure observed in the frequency-domain model.
Therefore, the steering vector is the counterpart to G(θd, d) in the frequency domain. This
shows a direct relationship between time-domain signal processing and its frequency-
domain equivalent through the array geometry. In order to simplify the exposition, we
assume that G(θd, d) is known in advance since it is target-dependent. In practice, the
matrix G can be obtained by iterative solutions such as maximum likelihood (ML) [30].

3. Feedback Beamforming

This section discusses the feedback-based beamformer (FB) architecture used for
spatial signal processing. The FB architecture is similar to an IIR-like filter. It uses a
feedback loop to retransmit the signal sfb(t), which is synthesized from the weighted
aggregation of sensor samples:

sfb(t) =
N−1

∑
k=0

αkxk(t − τpd − τn).

This feedback loop creates a dynamic spatial processing environment, making it a
novel approach for spatial signal processing. The details of this architecture are discussed
in [17]. The architecture combines data collected by sensors and processes it through two
weighted sums called α and β. In the time domain, Lh consecutive time samples are taken
from each of the N sensors. α and β are vectors with dimensions of NLh. These samples
may contain desired signals and unwanted noise or interference from different directions.
The system’s output is denoted as z(t) and is created using a weighted vector called β. The
retransmitted signal combines the source signal and an additional weighted sum using
the vector α. In order to demonstrate the presence of interference in this setup, Figure 2
introduces a noise source, nt, placed at an angle θn relative to the array’s broadside. This
configuration highlights the ability of the FB architecture to handle complicated signal
environments by utilizing spatial feedback loops for improved signal processing.

By extending the signal model in (1) to the FB architecture and considering the noise-
less case, the signal measured at the nth sensor is as follows [17]:

xn(t) = gc

(
s(t − τpd − τn) + sfb(t)

)
= gc

(
s(t − τpd − τn) +

N−1

∑
k=0

αkxk(t − τpd − τn)

)
. (13)

By using Shannon’s sampling theorem, as is the case in (5), the discrete-time signal
can be written as

xn[m] ≈ gc

[
P+Lh−1

∑
l=−P

s[m − l]sinc(l − ∆ − fsτn) +
P+Lh−1

∑
l=−P

N−1

∑
k=0

αT
k xk[m − l]sinc(l − ∆ − fsτn)

]
(14)

where αk is a vector of length Lh that defines the weights for the time samples of the
kth sensor:

αk =
[
αk[0] αk[1] . . . αk[Lh − 1]

]T .

By simplifying the expression above, (14) can be rewritten as

xn[m] = gc

{
P+Lh−1

∑
l=−P

[
sinc(l − ∆ − fsτn)

(
s[m − l] +

N−1

∑
k=0

αT
k xk[m − l]

)]}
. (15)
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Figure 2. Proposed beamformer structure. The goal is to spatially localize the target, Pt, by retrans-
mitting the signal.

Combining both (9) and (15) results in

xn[m] = gcGn(θd, d)
[
s[m] + ilα

Tx[m]
]

(16)

where il is the lth column of the L × L identity matrix, IL, and α is a vector of length NLh,
consisting of the weights for all the samples. By unifying all the sensors together, we obtain

x[m] = gcG(θd, d)
[
s[m] + ilα

Tx[m]
]
. (17)

The above can be simplified to[
1 − gcαTG(θd, d)il

]
x[m] = gcG(θd, d)s[m]. (18)

Thus, the relation between the input signal and the sensors’ samples is given by

x[m] =
gcG(θd, d)s[m]

1 − gcαTG(θd, d)il
. (19)

In principle, any element of the input vector signal s[m] can be considered the desired
signal. Moreover, based on the proposed feedback beamforming architecture, the output of
the beamformer can be represented as z[m] = βTx[m]. Therefore, the relationship between
the input signal and FB output can be expressed as follows:

Hβ,α
∆
=

z
s
=

gcβTG(θd, d)il
1 − gcαTG(θd, d)il

. (20)
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After analyzing both the time-domain response and the frequency-domain response
outlined in [17], it is apparent that they are closely related. The steering vector utilized in the
frequency domain is similar to the construct G(θd, d)il in the time domain. Additionally,
the phase shift component e−jϕ in the frequency domain is comparable to fine-tuning
the interpolation matrix G(θd, d) in the time domain by adjusting the propagation delay
associated with the target’s range estimation. Thus, this adjustment shows the alignment
between time-domain processing and its frequency-domain counterpart by manipulating
the coefficient interpolation matrix.

4. Finding the Optimal Weights

The optimal selection of the beamformer weights is a crucial factor in its performance.
Unfortunately, even slight deviations from optimal weights may significantly impact
beamformer efficacy, a concept that will be further explored in the subsequent sections.
When compared to a conventional beamformer (CB), the unique aspect of the feedback
beamformer is the introduction of spatial feedback through the retransmitted signal. This
retransmission adds a layer of complexity and potential for enhanced performance by
incorporating additional system information, as detailed in [17]. The efficacy of the FB
hinges on the precise estimation of the DOA (θd) and the target’s range (d). There are
several ways to assess the estimations’ accuracy. One potential method of determining
the provided feedback mechanism’s impact is quantifying the system’s supplementary
information. To this end, the Cramér-Rao bound (CRB) was used, leveraging the Fisher
information matrix (FIM). Given that the analysis and development of the beamformer’s
response are conducted within the time domain, we utilized the time-domain FIM to
evaluate the performance potential of the FB system.

The (m, n)th FIM element is given by [31]

[J(ζ)]m,n =

∣∣∣∣∂z(ζ)
∂ζm

∣∣∣∣T R−1(ζ)

∣∣∣∣∂z(ζ)
∂ζn

∣∣∣∣+ 1
2

tr
[

R−1(ζ)
∂R(ζ)
∂ζm

R−1(ζ)
∂R(ζ)

∂ζn

]
(21)

where ζ = [θd, d] represents the vector of the parameters, and tr(·) denotes the trace
operation on a matrix. The variables m, n ∈ 1, 2 specify the estimated parameters, and R(ζ)
represents the N × N noise covariance matrix. By assuming the presence of white noise,
which is statistically independent of the parameter vector ζ, and given that z(t) is scalar,
expression (21) can be simplified as

[J(ζ)]m,n =

∣∣∣∣∂z(ζ)
∂ζm

∣∣∣∣ ∣∣∣∣∂z(ζ)
∂ζn

∣∣∣∣. (22)

The above derivatives yield the following main diagonal elements:

Jθdθd =
f1

[1 − gcαTG(θd, d)il ]
4

Jdd =
f2

[1 − gcαTG(θd, d)il ]
4 (23)

where f1 and f2 are functions of the parameter set α, β, and G(θd, d) and its partial deriva-
tives. A detailed proof of (23) is given in the Appendix A. In order to obtain the optimal
and precise estimate, it is required to maximize the diagonal elements of the FIM, Jθdθd and
Jdd. This maximization is carried out by minimizing the denominator

∣∣1 − gcαTG(θd, d)il
∣∣.

The optimal weight α can be written as

αT
opt =

1
ĝc

iT
l GT(θd, d)

[
G(θd, d)GT(θd, d)

]−1
(24)

where ĝc is the channel gain estimate. For simplicity, the output weight is β = αopt. The
optimal beamformer weights vector contains the exact values for the DOA and the target
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range, which, in practice, are unknown. Thus, the optimal weights, considering both the
DOA estimate θ̂d and the range estimate d̂, are

αT
opt = βT

opt =
1
ĝc

iT
l GT(θ̂d, d̂)

[
G(θ̂d, d̂)GT(θ̂d, d̂)

]−1
. (25)

Substituting (25) into (20) yields the optimal beamformer time response:

Hβopt,αopt =
r iT

l GT(θ̂d, d̂)
[
G(θ̂d, d̂)GT(θ̂d, d̂)

]−1
G(θd, d)il

1 − r iT
l GT(θ̂d, d̂)

[
G(θ̂d, d̂)GT(θ̂d, d̂)

]−1
G(θd, d)il

(26)

where r ≜ gc
ĝc

is the channel gain error (i.e., for accurate gain match r → 1).

5. Beamformer Evaluation

In order to assess the beamformer’s efficacy, it is essential to consider a range of
architecture-specific (such as N and δ) and target-specific (such as the DOA and the target’s
distance from the array) parameters. This section examines the FB response, as detailed
in (26), and evaluates its performance using key metrics such as sidelobe level reduction,
directivity factor (DF), and beam width. These metrics are standard for assessing the
performance of ULA beamformers. The examination was tested on the beam pattern
of the proposed beamformer, which is defined by 10log10|Hβopt,αopt |2 in units of dB. The
FB’s performance metrics were benchmarked against conventional ULA beamformers,
including the delay and sum (DS) and the maximum DF beamformers, which lack the FB’s
feedback mechanism. This comparative analysis will highlight FB’s advancements and its
potential impact.

5.1. Channel Gain Estimation Error

In the previous section, we defined the channel gain error as r ≜ gc
ĝc

. In the following
subsection, we will investigate the influence of different estimations of r on the proposed
beamformer response. Figure 3 demonstrates the beampattern for several channel gain
estimation errors. As can be seen in Figure 3, r represents the array aperture. The closer
the value is to 1 (precise gain alignment), the narrower the mainlobe, and the better the
sidelobe attenuation. It is noteworthy that when achieving precise gain matching (i.e., as r
tends towards 1), the beamformer achieves impeccable spatial selectivity.

Figure 3. Feedback beamformer beampattern for different channel gain estimations errors for θd = 90◦

and N = 10.
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5.2. Mainlobe and Sidelobe Attenuation

The accuracy of a beamformer is determined by the width of its center lobe and the
height of its sidelobes. The behavior of a proposed feedback beamformer compared to
the DS and maximum DF beamformers, which is presented in [29], is shown in Figure 4,
depending on θ. To this end, we assume perfect range estimation, that is, d = d̂. The
DS beamformer is a basic beamformer obtained by the sum of the time-shifted versions
of the sensor signals. The maximum DF beamformer tends to narrow the mainlobe and
attenuate the sidelobes. As demonstrated in Figure 4, the feedback beamformer beampat-
tern has a much narrower mainlobe than the DS beamformer. Additionally, the feedback
beamformer has better attenuation (in the order of magnitude) than the DS beamformer.
Furthermore, the FB mainlobe is almost as narrow as the maximum DF beamformer main-
lobe. This indicates that the beamformer filter is spatially effective, nearly as much as
a beamformer explicitly designed for that purpose. Moreover, while the distortionless
maximum DF beamformer is designed to have a narrow beamwidth, it comes at the cost of
high sidelobes. The feedback beamformer closely matches the mainlobe beamwidth while
having much better sidelobe attenuation. These results indicate that our proposed beam-
former can achieve better localization estimation for two of the most common beamformer
performance measures.

Figure 4. Feedback beamformer beampattern (blue line), compared to known ULA beamformers, DS
(dashed red line), and maximum DF (dashed green line) for θd = 90◦ and r = 0.6, respectively.

5.3. Directivity Factor

The directivity factor (DF) is an important quality factor of the beamformer. It refers
to the level of directionality of the beamformer. It is measured by the ratio between the
beamformer gain in a specific direction and the average gain in all directions. In the time
domain, it is defined as [29]

D[α, β, cos(θd), d] =
|B(α, β, cos(θd), d)|2

1
2

∫ π
0 |B(α, β, cos(θ), d)|2sin(θ) dθ

(27)

where B represents the beampattern. As explained and developed in [32], the DF for a
generic ULA is

D = 2
Nδ

λ
(28)

for large values of N and λ ≫ δ.
Furthermore, as explained in detail in [17] and shown in Figure 3, the array aperture is

a function of r. For r = 0, the standard ULA beamformer is obtained, while for increasing
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values of r, the array’s aperture is increased. In order to avoid spatial ambiguities in the
results of the directivity factor, r = 0.6 was used throughout the entire experiment. By
simulating the DF for both the feedback beamformer architecture and generic ULA and
plotting the result as a function of δ, in Figure 5, we show that the DF was significantly
improved. In addition, it can be seen from Figure 5 that when the number of sensors is
increased, or the distance between sensors is increased, the DF of both cases increases as
well due to better spatial resolution.

Figure 5. Directivity factor as a function of δ for the feedback beamformer (26) (lines with circles)
compared to DF for a generic ULA (solid lines) for a signal wave with a frequency carrier of 1 GHz,
r = 0.6, θd = 45◦. DF was tested for several values of N: N = 10 (blue lines), N = 20 (red lines),
N = 30 (green lines), and N = 40 (light blue lines).

5.4. Range Error Influence

In CB, although the target’s DOA is the only important parameter, the range is esti-
mated to obtain the target’s position more accurately in our design. We considered the
perfect estimation of the target’s range for equal comparison between our architecture and
CB. The assumption of a perfect estimation is carried out by setting d = d̂ in (26), where d̂
denotes the estimated distance from the reference sensor to the target and d signifies the
target’s true range. Estimating the target’s range can increase the level of accuracy of a
target to a specific location instead of a particular direction.

In order to check the influence of the target’s range estimation error, we further
investigated the change in the beamformer response given in (26) when d ̸= d̂.

We have simulated the proposed beamformer beampattern with different range errors
as a function of θ in Figure 6. It can be seen that the range estimation error can change
beamformer performance by way of shifting the mainlobe direction and different attenua-
tion on both sides of the mainlobe. As opposed to the range error influence in the frequency
domain [17], the time-domain implementation is significantly less sensitive regarding
the range error. This robustness can be seen in the way that the range estimation error
negligibly affects the mainlobe position in the time domain. In contrast, small changes in
the frequency domain can shift the position of the mainlobe by tens of degrees. In [17], this
estimation error was addressed by adding another feedback beamformer. The minor effect
of the estimation error in the time domain eliminates the use of an additional beamformer,
which results in less hardware and a smaller footprint, which are critical considerations.
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Figure 6. Effect of incorrect target range estimation for θd = 90◦ and r = 0.6.

6. Time Domain vs. Frequency Domain Feedback Beamforming

In order to thoroughly investigate the proposed filter, we compared the proposed
beamformer and the frequency domain beamformer [17]. Some of the standard comparison
measures include beamformer fidelity, the system’s robustness, and computational com-
plexity [33]. A comparison was made between time-frequency domain implementations
according to the following additional parameters: the number of sensors used for the
desired output, SNR, sampling frequency, data storage, processing requirements, and area
considerations for implementing the hardware.

6.1. Calculation Complexity

Time-domain spatial filters offer distinct advantages over their frequency-domain
counterparts, notably in computational efficiency. A significant benefit of time-domain pro-
cessing, as demonstrated in the filter design outlined above (26), is its lower computational
complexity relative to an analogous design in the frequency domain. Specifically, the most
computationally intensive operation in the time-domain design is given by

GT(θ̂d, d̂)
[
G(θ̂d, d̂)GT(θ̂d, d̂)

]−1
G(θd, d).

This operation underscores the efficiency of time-domain designs in handling spatial
filtering tasks. The focus is on minimizing the processing load without compromising the
accuracy or effectiveness of the filtering process.

The above matrix multiplications require approximately 3N2L3
h multiplications and

the same number of additions, where N ≫ 1 and L ≈ Lh. In the frequency-domain design,
as defined and developed in [17], the beamformer is

H =
gβHde−jϕ

1 − gαHde−jϕ

=

[
1 − g

ejϕ̂d̂H

ĝ||d̂||2
de−jϕ

]−1

g
ejϕ̂d̂H

ĝ||d̂||2
de−jϕ (29)

where d is the steering vector, for which the nth element is dn = exp(−jωτn), and ϕ
is the round-trip signal propagation phase. One must consider the transform of each
sensor signal to the frequency domain using the fast Fourier transform (FFT) and then
use inverse FFT. Each time frame contains Lh samples, so each sensor requires Lh log2 Lh
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operations. The FFT requires NLh log2 Lh operations. The most expensive operation in
the filter design (29) is the multiplication of the steering vector by itself, which requires
4NLh multiplications and the same number of additions, where the factor of 4 is due to the
frequency-domain design dealing with complex numbers. The frequency-domain design
requires approximately 4N2L2

h log2 Lh multiplications and a similar number of additions.
This shows that for sufficiently large NLh, the frequency-domain beamformer incurs lower
computational costs. Certain applications do not prioritize the beamformer’s output signal
in the time domain, so utilizing the frequency-domain beamformer would be more efficient.
The above frequency domain’s complexity calculation assumes that Lh is an integer power
of two. Otherwise, due to the FFT algorithm, zero padding must be added to each frame,
which increases the computational complexity even more.

6.2. Execution Time

Radar processing systems are based on pulse signals rather than continuous-wave
(CW) stimuli. Although CW signals simplify system analysis, they are hardly feasible to
implement and waste a significant part of the system’s power; therefore, they are barely
used. Moreover, CW radar systems rarely measure distance, which is our primary goal.
One main drawback when using pulse-based signals is the known fact that pulse signals,
which are finite in the time domain, contain high frequencies. A practical pulse signal
contains many more frequencies than a CW signal, which includes, in theory, only one
frequency. Each of the frequencies is considered in the steering vector in the frequency
domain, increasing the execution time of such a beamformer. Figure 7 demonstrates the
differences in the time domain and in the power spectrum between CW and a pulse signal.
As seen in the figures, the frequencies that must be considered are orders of magnitudes
larger in the pulse-based signals than in the sine wave signals. Although just the sine
frequency is a reasonable power in a sine wave, for the pulse-based signal, the power
remains quite similar with increasing frequency.

Figure 7. Power spectrum of both the pulse wave (blue line) and sine wave (red line) in the same
sampling frequency.

This fact directly results from the execution time of the frequency domain beamformer
implementation. In [17], the beamformer computational complexity remains the same
with the number of sensors. In order to authenticate this claim, in Figure 8, we show the
execution time of the feedback beamformer in both the time and frequency domains as a
function of the array size. As can be seen from Figure 8, for a low number of sensors (up
to 10 sensors), the time domain has a better execution time. In addition, one can see that
the frequency domain calculation time is on the scale of seconds, which is not feasible in
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real-time systems. The exponential increase in calculation time in the time domain is due
to the growth of (12), and the samples must be taken at each interval.

Figure 8. Execution time of the beamformer output for both time and frequency domains when 10 K
frequencies are considered.

7. Conclusions

We have introduced a closed-form solution for a time-domain feedback-based beam-
former, laying the groundwork for its future application and development. The feedback
architecture demonstrated notable enhancements over traditional beamforming techniques,
such as “delay and sum” and maximum directivity factor, for beamformers while also
confirming its equivalence to frequency-domain approaches. We conducted an in-depth
analysis of how range estimation errors influence the performance of the beamformer,
revealing that the time-domain implementation offers superior robustness to these errors
compared to its frequency-domain counterpart. The comparative study on computa-
tional complexity and execution time between time- and frequency-domain beamformers
indicates that the choice between these implementations depends on specific use-case
scenarios, particularly the number of sensors and the volume of sampled data. Notably,
our time-domain beamformer exhibits improved execution times with a limited number
of sensors, especially in applications utilizing the pulse-based signals that are standard
in radar systems. This feature is crucial for real-time applications where execution speed
is critical.

Future research directions for the time-domain FB will explore its application to ultra-
wideband (UWB) signals, examining how pulse signals influence the results presented
in this study, and identifying specific conditions under which these effects are most pro-
nounced. Another area of interest involves extending the current findings to scenarios
involving nonstationary or multiple targets, enhancing the beamformer’s applicability to
dynamic environments. Additionally, the proposed implementation holds potential for
broader applications across various spatial array processing tasks, suggesting its versatility
in the field. A particularly promising avenue involves refining the design of feedback
beamforming to enhance adaptive beamforming techniques. This includes dynamically ad-
justing the α and β coefficients within iterative processes to achieve improved performance
compared to the static beamforming approach detailed in this research.
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Abbreviations
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CB Conventional Beamformer
CRB Cramér-Rao Bound
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DF Directivity Factor
DOA Direction of Arrival
DS Delay-and-Sum
FB Feedback Beamformer
FFT Fast Fourier Transform
FIM Fisher Information Matrix
IIR Infinite Impulse Response
ULA Uniform Linear Array
UWB Ultra-Wideband
RIS Reconfigurable Intelligent Surface
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Appendix A. FIM Calculation

A full proof of the FIM main diagonal elements is presented, yielding (23). By combin-
ing (19) and z[m] = βTx[m], we calculate the partial derivatives, ∂z[m]

∂θd
and ∂z[m]

∂d :

∂z[m]

∂θd
=

∂

∂θd

gcβTG(θd, d)s[m]

1 − gcαTG(θd, d)il
(A1)

=
gcβT ∂

∂θd
G(θd, d)s[m]

[
1 − gcαTG(θd, d)il

]
[1 − gcαTG(θd, d)il ]

2

+
gcαT ∂

∂θd
G(θd, d)il gcβTG(θd, d)s[m]

[1 − gcαTG(θd, d)il ]
2

and

∂z[m]

∂d
=

∂

∂d
gcβTG(θd, d)s[m]

1 − gcαTG(θd, d)il

=
gcβT ∂

∂d G(θd, d)s[m]
[
1 − gcαTG(θd, d)il

]
[1 − gcαTG(θd, d)il ]

2

+
gcαT ∂

∂d G(θd, d)il gcβTG(θd, d)s[m]

[1 − gcαTG(θd, d)il ]
2 . (A2)

Recall that a derivative, which is a matrix with a scalar, is a derivative of each element,
and the partial derivatives of Gnij can be written as

∂Gnij

∂θd
=

∂

∂θd
sinc

(
−P − i + j − ∆ − fsnδ cos(θd)

c

)
. (A3)
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By defining A = −P − i + j, B = ∆ and D = fsnδ
c , we obtain

∂

∂θd
sinc(A − B − Dcos(θd))

=
πD cos[π(A − B − D cos(θd))] sin(θd)[A − B − D cos(θd)]

π[A − B − D cos(θd)]
2

− D sin(θd) sin[π(A − B − D cos(θd))]

π[A − B − D cos(θd)]
2 . (A4)

By denoting F = A − B − D cos(θd), we have

∂

∂θd
sinc(A − B − Dcos(θd)) =

πD cos(πF) sin(θd)F − D sin(θd) sin(πF)
πF2 . (A5)

Since δ is at the scale of centimetres (at most) for a common ULA architecture, we
obtain D ≪ 1 , B ≪ 1, and F ∈ Z. In accordance with trigonometric identities, we can
conclude that cos(πF) = −1 and sin(πF) = 0. In conclusion, the partial derivative, with
respect to θd, is given by

∂Gnij

∂θd
= −πD sin(θd)F

πF2 = −D sin(θd)

F
. (A6)

In the same way as for
∂Gnij

∂d , recall that for ∆ = fsτpd = fs
2d
c , we obtain A = −P− i+ j,

B = fs
2
c and C = fsτn such that

∂Gnij

∂d
=

∂

∂d
sinc(A − Bd − C) =

− πB cos[π(A − Bd − C)](A − Bd − C)

π[A − Bd − C]2

+
B sin[π(A − Bd − C)]

π[A − Bd − C]2
(A7)

By denoting F = A − Bd − C, we have

∂Gnij

∂d
= B

−π cos(πF)F + sin(πF)
πF2 (A8)

Similar to before, C ≪ 1. Additionally, fs ≪ c; therefore, B ≪ 1 and F ∈ Z. Thus,
cos(πF) = −1 and sin(πF) = 0. In conclusion, the partial derivative with respect to d is
given by

∂Gnij

∂d
=

πBF
πF2 =

B
F

(A9)

By substituting (A6) and (A9) into (A1) and (A2), correspondingly, and performing
further partial derivatives, we obtain f1 and f2, respectively.
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