
1

A User-centric Approach for Deep
Residual-Echo Suppression in Double-talk

Amir Ivry , Israel Cohen , Fellow, IEEE, Baruch Berdugo

Abstract—We introduce a user-centric residual-echo suppres-
sion (URES) framework in double-talk. This framework receives
a user operating point (UOP) that consists of two metric values:
the residual echo suppression level (RESL) and the desired
speech-maintained level (DSML) that the user expects from the
RES outcome. Then, the URES pipeline undergoes three stages.
Firstly, we consider a deep RES model with a tunable design
parameter that balances between the RESL and DSML and
utilizes 101 pre-trained instances of this model, each with a
different design parameter value. Thus, an identical input is
expected to generate a different pair of RESL and DSML values
in the prediction of every instance. Second, every prediction is
separately fed to a subsequent pre-trained deep model instance
that estimates the RESL and DSML of the prediction since these
metrics depend on unavailable information in practice. Lastly,
each pair of RESL and DSML estimates is compared with the
UOP. The pairs that match the UOP up to a given tolerance
threshold are narrowed down to the prediction with the maximal
acoustic-echo cancellation mean-opinion score (AECMOS), which
is the output of the URES system. This suggested framework
holds three prominent advantages introduced in this study: it
generates an RES output with RESL and DSML that match
a UOP, supports near-real-time tracking of UOP changes, and
applies AECMOS maximization. Experimental results consider
60 h of varied real and synthetic data. Average results can achieve
an AECMOS subjectively considered excellent with RESL and
DSML deviations of roughly 2 dB from the UOP. Any UOP
adjustment can be tracked in less than 40 ms with a real-
time factor of 1.92, but due to the high computational resources
demanded by the framework, this is enabled on-edge only with
high-end dedicated hardware, which limits general availability.

Index Terms—Residual-echo suppression, user-centric, double-
talk, RESL and DSML, AECMOS, deep learning.

I. INTRODUCTION

HANDS-FREE speech communication has become in-
creasingly popular in recent years due to the growing

trend of transitioning from face-to-face meetings to online
meetings [1], which are characterized by two conversation
ends; far-end and near-end. In business calls, for instance, the
far-end speaker is commonly a single participant who wears
headphones in a close-talk environment, while the near-end
is an office conference room. In that setup, speech from the
far-end is transmitted to the near-end, which echoes via a
nonlinear loudspeaker. In modern conferencing, loudspeakers
are frequently not enclosed with but are detached from the
near-end microphone, which creates an acoustic coupling

This research was supported by the Israel Science Foundation (grant no.
1449/23) and the Pazy Research Foundation.

The authors are with the Andrew and Erna Viterbi Faculty of Elec-
trical and Computer Engineering, Technion-Israel Institute of Technol-
ogy, Haifa 3200003, Israel (e-mail: sivry@campus.technion.ac.il; ico-
hen@ee.technion.ac.il, bbaruch@technion.ac.il).

between the two [2]. Thus, in double-talk periods, the near-
end microphone may capture reverberant echo, desired speech
from participants in the near-end, and additional noises. This
may cause echo to be transmitted back to the far-end and
severely impede the conversation intelligibility [3], [4].

Various linear acoustic echo cancellation (AEC) systems
combat this issue [5]–[10]. However, these methods often
cannot eliminate echo presence in realistic setups due to
nonideal hardware that induces nonlinearity between the echo
and the far-end signal [11], the rapidly varying nature of the
echo path, and the complicated modeling of echo in double-
talk. Residual-echo suppression (RES) systems have achieved
impressive results using deep learning to eliminate linear and
nonlinear echo patterns that are still present after the linear
AEC stage [12]–[21]. In double-talk, RES systems trade-off
between residual-echo suppression and desired-speech distor-
tion levels in their output [22]. To evaluate this trade-off, we
have introduced two objective performance metrics for RES in
double-talk [23]: the residual-echo suppression level (RESL)
and the desired-speech maintained level (DSML). In [24], we
showed a strong correlation between these metrics and the
recent AEC mean-opinion score (AECMOS) objective metric,
which predicts subjective human ratings of speech quality of
AEC systems with high accuracy in double-talk [2], [25].

Existing studies on RES primarily focus on improving
benchmark performance rather than supporting users’ inputs.
For instance, most RES systems neither offer a framework to
trade-off between residual echo and speech-distortion levels at
their output nor report performance across various operating
points that represent this trade-off. Instead, users employ exist-
ing RES systems based on an average benchmark performance,
which is frequently reported with metrics that do not distin-
guish residual-echo presence from desired-speech distortion
[23], e.g., signal-to-distortion-ratio [26] or perceptual evalua-
tion of speech quality [27]. Even if an off-the-shelf model is
rendered suitable by a user for a specific scenario, adjustments
based on user preferences are not supported. Although the
AECMOS is currently the most accurate objective assessment
for speech quality by humans, no RES system provides a
mechanism to maximize the AECMOS. These gaps limit the
user experience and flexibility in dynamic environments that
often require personalized adjustments. In practice, a business
presentation in a near-end conference room may lead the
far-end listener towards low speech distortion. In contrast,
residual echo suppression may be more important during
frequent abrupt echo-path changes when transitioning from
the presentation to a near-end multi-participant discussion.

We introduce the user-centric RES (URES) framework in

https://orcid.org/0000-0002-9043-7040
https://orcid.org/0000-0002-2556-3972


2

double-talk. The URES is initiated with a user operation point
(UOP) that consists of two performance metrics values: the
RESL and DSML [23] that the user wishes to experience
from the RES prediction. The URES system then undergoes
three stages. Firstly, we utilize an existing deep RES model
introduced in [22]. This model embeds a design parameter
that controls the trade-off between the RESL and DSML of
the RES prediction. We consider 101 pre-trained instances
from this model, each with a different design parameter value.
Feeding the same input to all instances results in different
RESL and DSML values in the prediction of every instance,
which covers a wide range of UOPs. Second, each prediction
is fed to a separate pre-trained deep model, which maps this
prediction to its RESL and DSML estimates. This is essential
since these metrics depend on the desired speech signal that
is unavailable in double-talk in practice. Third, the estimates
from all instances are compared with the UOP. The ones
that match it, up to a given tolerance threshold specifying
the allowed deviation from the UOP, are narrowed down to
the single prediction with the maximal AECMOS transmitted
to the far-end. The proposed URES system has three unique
advantages: the RESL and DSML of its output match or
approach the UOP, changes in the UOP can be tracked in near-
real-time in less than 40 ms and with real-time factor (RTF)
[28] of 1.92, and the AECMOS of its output is maximized.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem. In Section III, we
describe the proposed solution. Section IV lays out the ex-
perimental setup. In Section V, we present the experimental
results. Finally, in Section VI, we conclude.

II. PROBLEM FORMULATION

The proposed URES system is depicted in Fig. 1. Scalars
are denoted in italics, and vectors are in bold and regarded as
column vectors. All acoustic signals are assumed to be zero-
mean unless stated otherwise. The near-end microphone signal
in time index n ∈ Z is given by:

m (n) = s (n) + w (n) + y (n) , (1)

where m (n) , s (n) , w (n) , y (n) ∈ R. Here, s (n) holds the
desired speech and w (n) holds environmental and system
noises. The reverberant echo y (n) satisfies

y (n) = hT (n)xNL (n) , (2)

where xNL (n) ∈ RL denotes the L most recent samples of the
nonlinearly distorted far-end signal, and h (n) ∈ RL is mod-
eled as a finite impulse response filter with L coefficients that
denote the echo path from the loudspeaker to the microphone:

xNL (n) =
[
xNL (n) , xNL (n− 1) , . . . , xNL (n− L+ 1)

]T
,

(3)

h (n) = [h0 (n) , h1 (n) , . . . , hL−1 (n)]
T
. (4)

We apply adaptive filtering for the linear AEC system that
receives m (n) as input and the L most recent samples of the

Near-end
+

Linear
AEC

Nonideal
Hardware

A
gg

.

M
ax

.

Multi-thread Process

Th
re

s.

URES

Agg.

Far-end

Fig. 1: The three stages of the proposed URES framework
at time index n. (1) For i ∈ {0, 1, . . . , 100}, the ith model
instance RESi produces a prediction ŝi (n). (2) ŝi (n) is
inserted to the corresponding ith model instance RDEi, which
estimates the RESL and DSML of ŝi (n), respectively denoted
R̂i (n) and D̂i (n). (3) These estimates are aggregated over all i
values and undergo threshold filtering by their proximity to the
UOP, followed by an AECMOS maximization. The prediction
with the chosen index î (n), namely ŝ̂i (n), is communicated
to the far-end. Notice the RES and RDE models run inference
in parallel across all their instances.

far-end signal, i.e., x (n) ∈ RL, as reference, and produces the
echo-path estimate ĥ (n) ∈ RL:

x (n) = [x (n) , x (n− 1) , . . . , x (n− L+ 1)]
T
, (5)

ĥ (n) =
[
ĥ0 (n) , ĥ1 (n) , . . . , ĥL−1 (n)

]T
. (6)

The echo estimate ŷ (n) ∈ R and adaptation error e (n) ∈ R
in time index n can then be derived by calculating:

y (n) = ĥT (n)x (n) , (7)
e (n) = m (n)− ŷ (n) (8)

(1)
= (y (n)− ŷ (n)) + s (n) + w (n) .

The signals x (n), ŷ (n), e (n), and m (n) are the inputs of the
URES system that produces the desired-speech estimate ŝ (n)
and then communicates it to the far-end. The goal is that ŝ (n)
confines to a UOP and achieves the maximal AECMOS value.

III. A USER-CENTRIC APPROACH FOR DEEP RES

This process is comprised of three main stages. The first
stage is described in subsection III-A, where the user chooses
a UOP that includes two values: the RESL and the DSML
of the RES prediction. In the second stage, as detailed in
subsections III-B and III-C, our deep models generate several
RES predictions with RESL and DSML values that match the



3

UOP up to a given tolerance threshold. The third stage in
subsection III-D depicts how the prediction with the highest
AECMOS is chosen before being communicated to the far-
end. At every iteration of the URES framework, it processes
new information from frames with M samples that overlap by
⌈M/2⌉ samples with the previous frames, where M > 1.

A. Providing a user operating-point for the URES framework

The UOP consists of a pair of RESL and DSML values.
In [23], we introduced the RESL and DSML metrics to
separately assess residual echo and speech-distortion levels
of RES systems in double-talk. We also provided empirical
results of average RESL and DSML values in which the RES
system operates, which may guide a UOP selection. Let the
UOP in time index n be (R (n) ,D (n)), where R (n) ∈ R is
the RESL and D (n) ∈ R is the DSML. This study supports
15 ≤ R (n) ≤ 30 and 7.5 ≤ D (n) ≤ 15, in dB.

B. RES with a tunable design parameter

Building upon our earlier work [22], we utilize a deep
RES system that at time index n receives the M most recent
samples of the outcomes of the linear AEC stage, i.e., the echo
estimate ŷ (n) ∈ RM and the adaptation error e (n) ∈ RM :

ŷ (n) = [ŷ (n) , ŷ (n− 1) , . . . , ŷ (n−M + 1)]
T
, (9)

e (n) = [e (n) , e (n− 1) , . . . , e (n−M + 1)]
T
. (10)

In practice, during training, the RES takes as inputs ŷ (n) and
e (n) when they are concatenated to 29 past time frames of
M samples each that overlap one another by ⌈M/2⌉ samples,
to utilize past context. Let these context-dependent inputs be
denoted by ŷc (n) ∈ R30M/2 and ec (n) ∈ R30M/2:

ŷc (n) = [ŷ (n) , ŷ (n−M/2) , . . . , ŷ (n− 29M/2)]
T
, (11)

ec (n) = [e (n) , e (n−M/2) , . . . , e (n− 29M/2)]
T
, (12)

where we omit the ⌈·⌉ sign from this point on for sake of
clarity. For these inputs, the RES produces ŝ (n) ∈ RM , which
aims to estimate s (n) ∈ RM , i.e., the M most recent samples
of the desired speech:

ŝ (n) = [ŝ (n) , ŝ (n− 1) , . . . , ŝ (n−M + 1)]
T
, (13)

s (n) = [s (n) , s (n− 1) , . . . , s (n−M + 1)]
T
. (14)

The RES system architecture is based on the UNet [29] neural
network and is detailed in Appendix A-A. This system aims
to remove residual-echo components and preserve the desired
speech in the short-time Fourier transform (STFT) domain
[30] by using an analysis window of M samples with M/2
samples overlap. During training, α ∈ R is a non-negative
design parameter that governs the trade-off between residual
echo and speech distortion levels at the output of the RES
system by regularizing the following objective function:

J(α) =
∥∥∥Ŝ− S

∥∥∥2
2
+ α ·

∥∥∥Ŝ∥∥∥2
2
+ σ2

Ŝ
· Iα>0 , (15)

Here, Ŝ ∈ RF and S ∈ RF represent the STFT amplitudes
of the time-domain frames ŝ (n) and s (n), respectively. Also,

∥Ŝ∥2 is the ℓ2-norm of Ŝ, σ2
Ŝ

is the variance of Ŝ, and Iα>0

equals 1 when α > 0 and 0 otherwise. For brevity, we neglect
time-frequency index notations from (15), but it is explicitly
mentioned that Ŝ, S, and σ2

Ŝ
are all functions of time and

frequency. The objective function in (15) has been developed
by the authors in [22], and in [22], [23] its functionality
has been thoroughly investigated and experimental results
have shown its inherent ability to create a trade-off between
residual-echo suppression and desired-speech distortion levels
in RES systems during double-talk. According to (15), when
α increases, the training process inclines towards minimizing
the norm of the prediction. This creates more residual echo
suppression but constrains the speech component in the output
to a higher distortion rate. In contrast, as α lowers and reaches
α = 0, more focus is put on minimizing the distortion between
the system prediction and the desired speech for the cost of
high residual echo presence.

In [23], we have shown how the average RESL values rise
and how the average DSML values lower when α increases,
and vice versa. Since higher values mean better performance
for both the RESL and the DSML, shifting α can change
the operating point of the RES system and match it with the
UOP. We exploit this property and separately pre-train 101
identical instances of the RES system, each with a different α
value ranging from α = 0 to α = 1 with increments of 0.01.
This large number of α values separated by a thin resolution
was empirically shown to cover a wide range of RESL and
DSML pairs supporting the UOP. It was also revealed that
α > 1 causes undesired nullification of sub-bands in the RES
prediction. The index i ∈ N0, where i ∈ {0, 1, . . . , 100},
is used to denote each pre-trained RES model instance, i.e.,
RESi, and each of its corresponding predictions in time index
n, i.e., ŝi (n) ∈ RM . For all i values, the design parameter
value used to pre-train RESi is calculated by αi = i/100.

C. Estimation of the RESL and DSML metrics
Each prediction from the 101 RES system instances from

subsection III-B separately undergoes RESL and DSML es-
timation. These estimates are then compared with the UOP.
Formally, the RESL and DSML metrics [23] depend on the
time-varying response of the RES system in double-talk:

p (n) =
ŝ (n)

e (n)

∣∣∣∣
Double-talk

, (16)

using element-wise division, where p (n) ∈ RM and
e (n− j) ̸= 0 in double-talk for all j ∈ N0 and
j ∈ {0, 1, . . . ,M − 1}. The expression of p (n) as the ratio
between the output and input signals of the neural network in
the time domain allows treating p (n) as a linear response, ap-
ply it separately to different time-domain signals, and inspect
its influence on them. We illustrate the functionality of p (n)
as a valid response expression by observing the popular signal-
to-distortion-ratio (SDR) metric [26], and substitute (16) into
it:

SDR = 10 log10
∥s (n) ∥22

∥s (n)− ŝ (n) ∥22

∣∣∣∣
Double-talk

= 10 log10
∥s (n) ∥22

∥s (n)− pT (n) e (n) ∥22

∣∣∣∣
Double-talk

.

(17)



4

Namely, applying p (n) to the input of the neural network
e (n) in the time domain results is the output of the neural
network ŝ (n), and this relation is represented inside the SDR
in (17). Before defining the RESL and DSML metrics, we
recognize that deep models may apply inherent bias and
compensate for it by defining s̃ (n) = p̂ (n) s (n), where
p̂ (n) ∈ R and is given by:

p̂ (n) =

〈
p (n) s (n) , s (n)

〉
∥s (n) ∥22

. (18)

Here, p (n) s (n) is done element-wise and
〈
·, ·
〉

is the internal
product between vectors. Then, by applying the response p (n)
to the desired speech only and calculating the following ratio,
the DSML scalar value in time index n is derived by:

DSML = 10 log10
∥s̃ (n) ∥22

∥s̃ (n)− p (n) s (n) ∥22

∣∣∣∣
Double-talk

. (19)

The scalar value of the RESL in time index n is man-
ufactured by considering the noisy residual-echo estimate
r (n) = e (n)− s (n), where r (n) ∈ RM and calculating:

RESL = 10 log10
∥r (n) ∥22

∥p (n) r (n) ∥22

∣∣∣∣
Double-talk

, (20)

where p (n) r (n) is done element-wise. According to (19)–
(20), the RESL and DSML metrics cannot be calculated in
practice since they require knowledge of the desired speech
s (n). Namely, during inference, the prediction of the RES
system cannot be translated into its RESL and DSML values.
Thus, we developed a deep model denoted an RESL-DSML
estimator (RDE) that estimates the relation between available
acoustic signals and the RESL and DSML via implicit eval-
uation of s (n). To explain how we choose the inputs of the
RDE, we retrieve a scalar-based view instead of a frame-based
view and recognize with (1), (2) that for every time index n:

s (n) = m (n)− hT (n)xNL (n)− w (n) . (21)

By considering m (n) as an input to the RDE and by ignoring
the noise w (n), it is left to estimate h (n) and xNL (n). Based
on the linear relation in (7), inserting both ŷ (n) and x (n) to
the RDE should yield ĥ (n), which estimates h (n). Notice that
ĥ (n) is practically available from the linear AEC stage, but its
non-speech structure makes it more effective to feed the RDE
with speech signals and derive implicit relations between them,
which is empirically supported in our internal experiments.
By (1) and (2), we estimate xNL (n) by using x (n) and
m (n). The former constitutes a linear part of xNL (n), and
the latter is a mix of signals that includes xNL (n). The RDE
is also fed with e (n), employed in the RESL and DSML
calculations. As a final input, we insert ŝ (n) to the model
since it is both an integral component of the RESL and DSML
calculations and because it is constructed to approximate s (n).
Similarly to subsection III-B, we utilize 101 identical RDE
model instances. RDEi, which denotes the ith RDE instance,
receives five channels in the time domain, i.e., x (n), ŷ (n),
e (n), m (n), and ŝi (n), where we now return to the frame-
based view.

Let the predicted RESL and DSML values of RESi in time
index n be respectively denoted as R̂i (n) ∈ R and D̂i (n) ∈ R.

Notice that in this specific instance, we utilize only the M
most recent samples from x (n), and not its full L most recent
samples as in (5), where L > M since L represents the length
of an echo path that is traditionally longer than the length of
the analysis time frame M . During training, the ℓ2 distance
is minimized between the pair of estimates R̂i (n) and D̂i (n),
and the pair of ground truth calculations of the RESL and
DSML obtained from (16)–(20). The architecture of the RDE
model is detailed in Appendix A-B.

D. Maximizing the AECMOS

In this stage, we describe how the final prediction of the
URES framework is determined before being communicated
to the far-end. First, for all i values, R̂i (n) and D̂i (n) are
aggregated into one batch that contains 101 pairs of values.
Second, the UOP from subsection III-A is being compared
against each pair in this batch. Let us respectively define the
maximal allowed deviation of R̂i (n) and D̂i (n) from the UOP
coordinates R (n) and D (n) using the non-negative tolerance
threshold values THR (n) ∈ R and THD (n) ∈ R. Consider the
set A = {0, 1, . . . , 100} to contain all the possible 101 RDE
systems indices, and its subset ATH (n) ⊆ A that contains only
the indices in A that confine to the two following conditions
in time index n: ∣∣∣R̂i (n)− R

∣∣∣ < THR (n) , (22)∣∣∣D̂i (n)− D
∣∣∣ < THD (n) , (23)

where THR (n) and THD (n) are in dB. We denote the number
of indices in ATH (n), i.e., its cardinality, as P (n) ∈ N0, where
P (n) ∈ {0, 1, . . . , 101}. Notice that when P (n) = 0 this
means that in time index n the estimated RESL and DSML of
every prediction of the URES system has over-deviated from
the UOP beyond THR (n) and THD (n), in dB. In this case, our
system falls back to the prediction with the minimal ℓ2-norm
between its estimated RESL and DSML and the UOP and
reports to the user with suggestions to increase the threshold
values. Our experimental results in Subsection V-C show that
while neither THR (n) nor THD (n) fall below 1 dB, then
P (n) > 0 for every time index n. Third, we turn to the
AECMOS and calculate it in time index n using a long past-
context window. We denote these inputs to the AECMOS by
ŝMOS (n), eMOS (n), and xMOS (n):

ŝMOS (n) = [ŝ (n) , ŝ (n− 1) , . . . , ŝ (n−N + 1)]
T
, (24)

eMOS (n) = [e (n) , e (n− 1) , . . . , e (n−N + 1)]
T
, (25)

xMOS (n) = [x (n) , x (n− 1) , . . . , x (n−N + 1)]
T
, (26)

where typically N >> M . Let î (n) ∈ ATH (n) denote the
index of the RES system that produced the prediction with
the highest AECMOS scalar value in time index n, namely:

î (n) = argmax
i∈ATH(n)

AECMOS
(
ŝMOS
i (n) , eMOS (n) ,xMOS (n)

)
,

(27)



5

where AECMOS ∈ R. We denote ∆R (n) ,∆D (n) ∈ R as the
deviations of outputs of RDEî from the UOP in time index n:

∆R (n) =
∣∣∣R̂î (n)− R (n)

∣∣∣, (28)

∆D (n) =
∣∣∣D̂î (n)− D (n)

∣∣∣, (29)

where 0 ≤ ∆R (n) < THR and 0 ≤ ∆D (n) < THD by defini-
tion. Finally, for all i, the predictions ŝi (n) are aggregated
into one batch, and ŝ̂i (n) is communicated to the far-end.

IV. EXPERIMENTAL SETTINGS

Principal information is shared in this section, and remain-
ing details are given in Appendix B; database acquisition is
detailed in Appendix B-A, and preprocessing, training, and
inference parameters are given in Appendix B-B.

A. Database acquisition

We utilize 50 h from the AEC-challenge database and 10 h
of independent recordings performed in our lab. Both corpora
contain only double-talk periods, i.e., where far-end and near-
end speech overlap.

The AEC-challenge corpus was sampled at 16 KHz and is
detailed in [31]. It includes acoustic scenarios when no echo-
path change occurs and when it occurs regularly. No echo-
path change describes scenarios when neither the near-end
speakers nor near-end devices move. In contrast, echo-path
change describes scenarios when at least one of the above
moves regularly during the recording. We extract from this
database 10 h of synthetic data and 40 h of real recordings,
where the latter were captured using roughly 1, 000 hands-free
devices in various acoustic environments. This data considers
a wide range of noise and echo levels, having signal-to-echo-
ratio (SER) distributed in [−10, 10] dB and signal-to-noise-
ratio (SNR) distributed in [0, 40] dB.

The independent recordings were sampled at 16 KHz and
employed clips from the TIMIT [32] and Librispeech [33]
databases. This data only includes acoustic segments with no
echo-path changes. A mouth simulator played the near-end
speech, and a loudspeaker modeled the effect of the nonlinear
echo inside the near-end, where both devices were located in
various positions in the room during the experiment. Both the
speech and echo were captured by a microphone in the near-
end.

This database was collected to model especially chal-
lenging real-life acoustic scenarios that exhibit high echo
levels. The SER levels were distributed in [−20,−10] dB
and SNR levels were roughly distributed in [27, 37] dB.
Formally, SER=10 log10

[
∥s (n) ∥22/∥y (n) ∥22

]
in dB and

SNR=10 log10
[
∥s (n) ∥22/∥w (n) ∥22

]
in dB.

B. Preprocessing, training, and inference

The training set comprises 45 h from the AEC-challenge
database; 35 h was randomly split from the 40 h batch of
real recordings, and 10 h of synthetic data were included.
The training set also contains 5 h from the real independent
recordings. The test set comprises only real recordings: the

remaining 5 h from the AEC challenge and the remaining 5 h
from the independent recordings. The training and test sets
are balanced to avoid bias by following guidelines from the
preprocessing stage in [22]. Specifically, they contain equal
representation for male and female participants, the far-end
and near-end speakers are different, no speaker participates
in both the training and test sets, and every speaker has
been assigned as the far-end and near-end speaker. The linear
AEC stage that precedes the URES system is a sign-error
normalized least mean square (SNLMS) adaptive filter [6],
[34] that operates in the time domain with a filter length of
150 ms. The training and test sets are each divided into 10 s
segments and internally shuffled. This leads to abrupt echo-
path changes that create frequent re-convergence of the linear
AEC filter, as commonly occurs in real life [35], [36].

During training, each time-domain signal is converted to its
STFT amplitude and normalized before being inserted into the
RES model. The output of this RES model then undergoes
de-normalization and inverse STFT [30] using the overlap-
save method [37] by employing the phase from the adaptation
error of the linear AEC system. Normalization is done by
subtracting its minimal value from the training set and dividing
it by its dynamic range. De-normalization is the inverse
process. The RES and RDE models share the training samples
of the echo estimate and adaptation error. The predictions of
the RES models from the training stage are utilized to train
the RDE models. During inference, normalization, and de-
normalization in the RES stage are applied using the statistics
from the training set [38].

C. Performance Measures
We use the AECMOS version number 4 from the API of

Microsoft [25] and calculate it using the input signals in (24)–
(26). It should be noted that the first AECMOS category is
for call quality degradation caused by echo, and the second
AECMOS category is for call quality degradation caused
by other sources, including noise, missing audio, distortions,
and cut-outs. In the scope of our study, we investigate the
performance of an RES system in double-talk while ignoring
acoustic phenomena such as noise sources, audio packet loss,
communication interruption, and the like. Instead, we focus
on the user experience when they judge the call quality degra-
dation caused by the echo presence. Therefore, the AECMOS
value we include in our calculations is of the first category,
which has been trained to predict the human subjective rating
to the question “How would you judge the degradation from
the echo?”.

Let us consider the integration of the second category into
the study by either reporting its value on the output signal
chosen by maximizing the first AECMOS category, or by
changing the functionality of our method to maximize the
second category instead. To learn how informative the first
is for the user, we conducted an internal experiment that has
shown that the correlation is weak between the two categories
of the AECMOS. The second option deviates from the prime
contribution of this study, which is enabling communication
with least quality degradation due to echo from the view of
the subjective user.



6

Specific cases may come to mind to stress the need for
the complementary view by the second AECMOS category.
Let us consider one, where the near-end microphone signal is
muted to achieve a perfect echo removal while also losing the
desired signal. By-design, our study supports only double-talk
scenarios and user-chosen RESL and DSML values between
[15, 30] and [7.5, 15], respectively, in dB. In case the near-
end microphone outputs zero, both of these values cannot
be defined at all. Also note that the AECMOS has not been
trained on muted microphone scenarios. In practical systems
it can be automatically detected when the microphone outputs
zero, and there should be low probability of activating the
proposed system in such scenarios.

The AECMOS is unitless and ranges on a scale of 1 to 5,
where 5 is the best score. The AECMOS values are calculated
and reported over segments of length N that shift by M/2.
The AECMOS model was trained using and was optimized for
long context windows, which are required to get meaningful
results that emulate subjective human ratings. Short windows,
e.g., 20 ms, to calculate the AECMOS empirically yield noisy
and unreliable values.

Additional evaluation metrics include the RESL and DSML
as correspondingly defined in (19) and (20), the value of P (n)
as defined in subsection III-D, and ∆R (n) and ∆D (n) that are
respectively calculated using (28) and (29). These metrics are
derived by considering a shorter sliding analysis window in
the time domain of M samples, with the same step-size as for
the AECMOS of M/2. This is done to capture the system’s
behavior with thin resolution, allowing us to dive deep into
various interesting data trends during research. However, we
recognize that this short window is often noisy, and thus, we
report performance in this study by averaging these metrics
over long periods, e.g., the test set. The alternative of calculat-
ing the response and its dependent metrics using both shorter
and longer context windows has been internally examined. It
has empirically led to less accurate performance analysis.

To provide the reader with a more holistic perspective
of the performance of the URES framework in double-talk,
we report three additional evaluation metrics. First is the
perceptual evaluation of speech quality (PESQ) metric in
wideband mode [27], a unitless measure between 1.5 and 4.5
where a higher value indicates better performance. Second is
the deep noise-suppression mean opinion-score (DNSMOS)
metric [39], which, similarly to the AECMOS, predicts human
subjective ratings, but instead of examining the influence of
echo on speech quality as in the AECMOS case, the DNS-
MOS queries human raters about how noise affects speech
quality. Nonetheless, the DNSMOS provides another important
estimation of human perception of the output of the URES
framework. The DNSMOS is a unitless measure between 1
and 5; higher values indicate better human rating assessment.
The PESQ and DNSMOS are calculated using a window size
of N samples with a step-size of M/2, since they aim to
capture perceptual evaluations of human ratings and require a
long context window to produce meaningful results. Third, we
report the echo-return loss enhancement (ERLE) [17], which
measures how echo is removed between the degraded input
and enhanced output of the URES system. ERLE is calculated

using an analysis window in the time domain with M samples,
with a step-size of M/2. The ERLE ∈ R in time index n is
given by the following, in dB:

ERLE (n) = 10 log10
∥e (n) ∥22
∥ŝ̂i (n) ∥22

. (30)

It should be noted that single-talk scenarios are naturally not
evaluated in this study since the URES framework was explic-
itly built to address segments in which both desired speech
and residual echo are present. This is expressed technically in
the URES functionality, e.g., when the response calculation
introduced in (16) cannot have values in its denominator
that equal 0, which is a probable possibility in far-end-only
events and even more possible in near-end-only events. Even
though the URES framework only focuses on double-talk,
real-life communication involves a constant shift between
double-talk and single-talk scenarios, and integrating a single-
talk-supporting module into the URES framework in future
research may enhance its practicality.

V. EXPERIMENTAL RESULTS

During the inference stage, every utterance from the test set
is inferred with a random UOP pair where the RESL value
is uniformly drawn from [15, 30] dB and the DSML value is
uniformly drawn from [7.5, 15] dB. Unless stated otherwise,
results are reported using mean and standard deviation values
of performance metrics across the entire test set. In the tables,
the format is mean±σ, where σ stands for standard deviation,
and in the figures, the format includes mean values either with
or without standard deviation error bars. This section neglects
time indices from notation because it reports global results
across the test set.

It is worth emphasizing two points regarding the AECMOS
calculation during the inference stage of the test-set. First, due
to the nature of the AECMOS calculation, the data streaming
must accumulate 15 s before results are produced. Second,
recall that the URES framework processes present time frames
of 20 ms duration, which consist of only a negligible portion
of the entire data used to calculate their associated AECMOS
values that undergo maximization, calculated over a long past-
context window of 15 s. Thus, even though the output frames
of the URES framework are accumulated in the far-end, the
actual AECMOS that the far-end user experiences is not the
accumulation of the AECMOS values used during the URES
inference process. To assess the AECMOS performance of the
URES framework adequately, we first apply inference to the
entire test-set, and then we run AECMOS using the inferred
output stream of the URES framework while maintaining the
15 s analysis window size and 10 ms step-size. Following the
same logic, the PESQ and the DNSMOS metrics are calculated
and reported similarly.

A. Validating the performance of the RDE models

This experiment examines the estimation reliability of the
RESL and DSML values by the 101 RDE model instances.
Using 10-fold cross-validation [40], 80% of the training set
is utilized for training, and the remaining 20% is used for



7

0 0.5 1
0

0.2

0.4

0.6
R

E
SL

 [
dB

]

0 0.5 1
0

0.2

0.4

0.6

D
SM

L
 [

dB
]

0 0.5 1

0.8

1

1.2

1.4

1.6

R
E

SL
 [

dB
]

0 0.5 1

0.8

1

1.2

1.4

1.6

D
SM

L
 [

dB
]

Fig. 2: Top: The ℓ1 error of the RESL (left) and DSML (right)
estimates for each of the 101 RDE model instances versus their
α values. Bottom: The ℓ1 error of the RESL (left) and DSML
(right) estimates of a single RDE model instance versus the α
values associated with the preceding RES model instances.

validation, where the same bias-free principles between the
training and test sets detailed in subsection IV-B are applied
between the crossed training and validation sets in every fold.

For every fold and for every i, where 0 ≤ i ≤ 100, the
crossed training set is used to train the model instances
RESi and RDEi by following the process in subsection IV-B.
Then, RDEi infers the crossed validation set and produces the
corresponding RESL and DSML estimates. These estimates
are being compared against the ground-truth RESL and DSML
of the validation set. Fig. 2 shows the RESL and the DSML
estimation performance of all 101 RDE model instances. For
both the RESL and the DSML, the reported values are the
mean and standard deviation of the ℓ1 distance between the
estimates and their ground truth across all folds.

Recall that αi = i/100, it is shown that the RESL
estimate experiences a maximal mean error of 0.36 dB for
α54 = 0.54, and one standard deviation can bring the error up
to 0.57 dB for α39 = 0.39. The DSML estimate has a maximal
mean error of 0.34 dB for α64 = 0.64, and one standard
deviation can bring the error up to 0.5 dB for α54 = 0.54.
Considering this study supports RESL in [15, 30] dB and
DSML in [7.5, 15] dB, the maximal mean error values can
also be viewed in a relative scale by normalizing them by
their corresponding ranges; namely 100 · 0.36/15 = 2.4% and
100 · 0.34/7.5 = 4.5%. Based on these results, a subjective
view suggests that using 101 RDE model instances produces

a consistently reliable average estimation of the RESL and
DSML in various acoustic setups.

The following experiment examines the computationally
less-heavy possibility of employing a single RDE model for
all α values. Similarly to the previous experiment, a 10-fold
cross-validation is used to train every RES model instance with
its corresponding α value. This time, however, all the outputs
of the RES model instances are aggregated, and a single RDE
model is used for training and validation for every fold. To
ensure bias-free results, the distribution of segments associated
with every α value is uniform in every fold’s crossed training
and validation sets. According to Fig. 2, it is shown that the
RESL estimate experiences a maximal mean error of 1.27 dB
for α44 = 0.44, and one standard deviation can bring the
error up to 1.57 dB for α7 = 0.07. The DSML estimate
has a maximal mean error of 1.29 dB for α68 = 0.68, and
one standard deviation can bring the error up to 1.59 dB for
α75 = 0.75. Again, the maximal mean error values can also be
viewed in a relative scale, namely 100 · 1.27/15 = 8.4% and
100 · 1.29/7.5 = 17.2%. Based on results, a subjective view
suggests that a single RDE model is unreliable in estimating
the average RESL and DSML values.

To recap, utilizing a single RDE model may cause an
accumulated uncertainty and bias of results, while 101 RDE
model instances provide confident results. This renders the
computational load of the latter worthy.

B. The effect of the tolerance threshold values on performance
The performance of the URES framework is examined

concerning the tolerance threshold parameters THR and THD.
We consider (THR,THD) pairs that confine to THR ∈ {1, 2, 3}
in dB and THD ∈ {1, 2, 3} in dB, which yields 9 possible
pairs combinations. These sets’ values are representative of the
URES system behavior but do not significantly deviate from
the UOP. For each (THR,THD) pair, the mean and standard
deviation of ∆R, ∆D, and the AECMOS are reported.

Table I considers test set utterances only with no echo-path
changes. A clear trade-off between the tolerance threshold
values and the yielded AECMOS is shown. Limiting the
permitted deviation of the RESL and DSML estimates from
the UOP to 1 dB leads to a mean AECMOS value of 3.1 out
of 5, considered a subjectively mediocre human evaluation.
Allowing a larger deviation of (THR,THD) = (3, 3) in dB,
leads to an AECMOS average of 4.4, which is subjectively
considered excellent [25]. The trade-off most probably occurs
since increasing the THR and THD creates a larger set of
possible predictions after the threshold stage, which increases
the average maximal AECMOS value of these predictions.

Table II addresses segment only with echo-path changes.
The trade-off described above remains, but with a consis-
tent reduction in the average AECMOS values across all
(THR,THD) pairs. This is associated with the linear AEC stage
struggle with tracking and modeling linear echo in changing
echo-path scenarios, which affects the average performance
of the successive RES system [22]. Thus, the output of the
URES pipeline that relies on the predictions of the RES system
instances degrades in its overall subjective evaluation of speech
quality that the AECMOS quantifies.



8

TABLE I: The effect of tolerance threshold values on the URES performance for segments with no echo-path change.

THR = 1 [dB] THR = 2 [dB] THR = 3 [dB]

∆R [dB] ∆D [dB] AECMOS ∆R [dB] ∆D [dB] AECMOS ∆R [dB] ∆D [dB] AECMOS

THD = 1 [dB] 0.4± 0.3 0.55± 0.25 3.1± 0.3 1.15± 0.45 0.6± 0.15 3.35± 0.3 1.75± 0.65 0.7± 0.15 3.5± 0.5

THD = 2 [dB] 0.55± 0.25 1.3± 0.2 3.45± 0.4 1.25± 0.45 1.45± 0.3 3.6± 0.4 1.85± 0.6 1.55± 0.25 4.0± 0.3

THD = 3 [dB] 0.65± 0.25 1.9± 0.2 3.7± 0.5 1.3± 0.4 2.05± 0.3 4.2± 0.5 1.95± 0.65 2.1± 0.3 4.4± 0.2

THR = 1 [dB] THR = 2 [dB] THR = 3 [dB]

ERLE [dB] PESQ DNSMOS ERLE [dB] PESQ DNSMOS ERLE [dB] PESQ DNSMOS

THD = 1 [dB] 11.6± 1.3 2.9± 0.3 2.95± 0.3 14.2± 1.35 3.0± 0.25 3.0± 0.35 16.7± 1.55 3.25± 0.25 3.2± 0.55

THD = 2 [dB] 13.5± 1.45 3.05± 0.3 3.1± 0.45 16.4± 1.6 3.1± 0.35 3.35± 0.5 18.3± 1.75 3.4± 0.35 3.65± 0.5

THD = 3 [dB] 15.7± 1.85 3.3± 0.4 3.55± 0.5 17.8± 1.95 3.45± 0.4 3.8± 0.5 19.5± 2.05 3.65± 0.35 4.05± 0.4

TABLE II: The effect of tolerance threshold values on the URES performance for segments with echo-path change.

THR = 1 [dB] THR = 2 [dB] THR = 3 [dB]

∆R [dB] ∆D [dB] AECMOS ∆R [dB] ∆D [dB] AECMOS ∆R [dB] ∆D [dB] AECMOS

THD = 1 [dB] 0.5± 0.25 0.65± 0.2 2.95± 0.3 1.25± 0.4 0.65± 0.2 3.05± 0.4 1.85± 0.65 0.75± 0.2 3.35± 0.5

THD = 2 [dB] 0.65± 0.35 1.45± 0.3 3.2± 0.45 1.3± 0.45 1.55± 0.3 3.3± 0.5 1.9± 0.6 1.65± 0.2 3.7± 0.3

THD = 3 [dB] 0.7± 0.1 2.05± 0.45 3.5± 0.6 1.45± 0.45 2.2± 0.3 3.8± 0.5 2.05± 0.6 2.2± 0.35 3.9± 0.3

THR = 1 [dB] THR = 2 [dB] THR = 3 [dB]

ERLE [dB] PESQ DNSMOS ERLE [dB] PESQ DNSMOS ERLE [dB] PESQ DNSMOS

THD = 1 [dB] 11.1± 1.45 2.9± 0.3 2.95± 0.3 13.6± 1.4 3.0± 0.25 3.05± 0.35 15.4± 1.75 3.25± 0.25 3.2± 0.55

THD = 2 [dB] 12.9± 1.65 3.05± 0.3 3.1± 0.45 15.3± 1.7 3.1± 0.35 3.35± 0.5 17.5± 2.0 3.4± 0.35 3.65± 0.5

THD = 3 [dB] 14.9± 2.0 3.3± 0.4 3.55± 0.5 16.9± 2.1 3.45± 0.5 3.8± 0.5 18.1± 2.45 3.65± 0.35 4.05± 0.4

Interestingly, results are consistently not symmetric
in both tables. E.g., (THR,THD) = (2, 3) in dB and
(THR,THD) = (3, 2) in dB have respective average AECMOS
values of 4.2 and 4 in Table I. Namely, having a more extensive
range for the DSML to deviate from the UOP, i.e., controlling
more of the speech distortion rate, enhances the average
AECMOS more than symmetrically applying this logic to the
RESL. An interesting future research may involve investigat-
ing the possible inherent bias of the AECMOS towards more
echo suppression over speech distortion, whether during the
human subjective evaluation or in the following automation
of it into an objective measure. These tables also give an
intuition of how the objective ∆R and ∆D empirically relate
to the subjective human rating prediction in the AECMOS.
Therefore, relying on Tables I and II may allow an educated
choice by the user regarding THR and THD.

It is highlighted that while an estimation error, as discussed
in subsection V-A of 1 dB, for instance, may cause uncertainty
and bias in the results, the human perception of 1 dB deviation
from the UOP tends to be imperceptible [41]. Overall, the

URES framework can enable a deviation from the UOP that
is subjectively low-perceived [41] along with a subjectively
excellent AECMOS, on average, in various acoustic scenarios.

Complementary evaluation metrics in the DNSMOS, PESQ,
and ERLE are also evaluated in no echo-path change scenarios
in Table I and with echo path-change scenarios in Table II.
In both scenarios, all metrics follow the pattern of presenting
improved performance as THR and THD increase. Specifically,
the DNSMOS is correlated with the AECMOS in both Table I
and Table II, a property that has been previously presented by
the authors outside of the context of the URES framework
[23], [24]. However, the DNSMOS values are consistently
lower on average than the AECMOS values. This may occur
because the URES framework has not been optimized to
remove noise, while the DNSMOS has been optimized to
predict how humans would judge speech quality degradation
from noise.

The PESQ scores are also correlated with and are consis-
tently lower than the AECMOS values in both Table I and
Table II. Even though the PESQ metric is not as comparable to



9

the AECMOS as the DNSMOS, the PESQ values still provide
a supportive indication of how speech quality may be per-
ceived in the outcome of the URES framework. For the ERLE,
given a (THR,THD) pair, better performance is achieved when
THR > THD than the opposite in both Table I and Table II.
This might be observed because as THR increases and THD
remains fixed, the AECMOS might achieve maximization by
considering wider deviations of RESL values from the UOP.
The larger the RESL, the more residual echo suppression has
been achieved by the URES system, which is assumed to be
correlated with larger ERLE values since the latter measures
residual echo loss by the URES system.

C. The effect of the tolerance threshold values on P

This experiment includes scenarios with and without echo-
path changes. It reports the average P value for every
(THR,THD) pair that confines to THR ∈ {1, 2, 3, 4, 5} in dB
and THD ∈ {1, 2, 3, 4, 5} in dB, which totals to 25 pairs com-
binations. By observing Fig. 3, P increases as the tolerance
threshold values increase, and vice versa. This is expected
since the construction of the URES framework ensures that,
on average, the higher THR and THD become, the larger
amount of RES predictions are available to undergo AECMOS
maximization after the threshold stage, namely P increases,
and vice versa.

An important case is where (THR,THD) = (1, 1) in dB,
which averages approximately P = 2. This indicates that
these tolerance threshold values are the lowest valid for the
URES framework. A deeper dive reveals that P = 0 did
not occur for this scenario, and P = 1 was reported 17%
of the time. On the other hand, (THR,THD) = (5, 5), in dB,
achieve an average of P > 60. Another observation is the
proximity between the results with and without echo-path
changes. Namely, even though in Tables I and II the presence
of echo-path changes degraded the average AECMOS, it does
not narrow the number of possible predictions that arrive at
the AECMOS maximization stage. Conclusively, the URES
framework supports even very narrow margins of 1 dB from
the UOP. However, lightly relaxing this constraint enlarges P
significantly, which increases the AECMOS, on average, as
supported in Tables I and II and in subsection V-B.

D. The effect of echo and noise levels on performance

We recognize that the dynamic environment of hands-
free speech communication exhibits various levels of echo
and noise. Considering only segments with no echo-path
changes and focusing on a tolerance threshold pair of
(THR,THD) = (2, 2) in dB, we report the average perfor-
mance of the URES framework for SER levels from the
set {−20,−10, 0, 10} dB and for SNR levels from the set
{0, 10, 20, 30, 40} dB. It can be shown in Fig. 4 that in severe
acoustic setups of −20 dB SER or of 0 dB SNR, the URES
framework achieves average AECMOS values close to 3. In
contrast, friendly acoustics of 20 dB SER or 40 dB SNR allow
an average AECMOS that approaches 4 or even exceeds it.

In degraded acoustic conditions, both the lowest average
AECMOS and the most significant average deviations from the

1 2 3 4 5
0

10

20

30

40

50

60

70

1 2 3 4 5
0

10

20

30

40

50

60

70

Fig. 3: Average P values for various (THR,THD) pairs for
scenarios with no echo-path change (left) and with echo-path
change (right). The units of THD values in the legend are dB.

-20 -10 0 10
SER [dB]

0.5

1

1.5

2
dB

2.5

3

3.5

4

A
E

C
M

O
S

0 20 40
SNR [dB]

0.5

1

1.5

2

dB
2.5

3

3.5

4

A
E

C
M

O
S

Fig. 4: Average values of the AECMOS (diamonds), ∆R in
dB (circles) and ∆D in dB (squares) for various levels of
SER (left) and SNR (right) values with no echo-path change
scenarios and (THR,THD) = (2, 2) in dB.

UOP occur. One assumption is that in conditions of high echo
and noise levels, the subjective quality rating is maximized
when the RESL and DSML are taken to their allowed extreme
to suppress most echo and distort the minor speech possible.
Another observation is that the ∆D is almost consistently
higher on average than ∆R across all SER and SNR levels.

In summary, challenging but practical conditions, e.g.,
SER = 0 dB and SNR = 20 dB, are handled well by the
URES system, which allows a broad support of this framework
in various acoustic environments.

E. The effect of the number of RES instances on performance

The URES system initially employs 101 pre-trained RES
model instances, where every instance corresponds to an α
value between 0 and 1 with 0.01 increments. In this exper-
iment, we examine how lowering the computational load by



10

0

2

4

6

8
dB

101 51 21 11 5 3
Number of RES models

3

3.5

4

4.5

A
E

C
M

O
S

0

2

4

6

8

dB

101 51 21 11 5 3
Number of RES models

3

3.5

4

4.5

A
E

C
M

O
S

Fig. 5: Average values of the AECMOS (diamonds), ∆R in dB
(circles) and ∆D in dB (squares) versus number of trained RES
model instances in scenarios without (left) and with (right)
echo-path changes, considering (THR,THD) = (5, 5) in dB.

considering fewer RES model instances affects the URES per-
formance. This is done by applying identical training and test-
ing processes as for the original URES framework but with α
increments now taken from the set {0.02, 0.05, 0.1, 0.25, 0.5}.
In correspondence, the number of RES model instances exam-
ined is the set {51, 21, 11, 5, 3}, where, for example, taking an
increment of 0.25 includes α ∈ {0, 0.25, 0.5, 0.75, 1} and an
increment of 0.5 has α ∈ {0, 0.5, 1}. The number of RES and
RDE model instances is identical, preserving the framework’s
functionality.

Across all increments, we fix the tolerance threshold pairs
to (THR,THD) = (5, 5) in dB. The motivation for this choice
relates to how using fewer RES model instances, i.e., larger α
increments, intrinsically decreases the average value of P per
(THR,THD) pair. We wish to mitigate this bias and isolate the
effect of how the α increment changes the AECMOS in the
URES output.

Based on Fig. 5, the average AECMOS degrades by more
than 0.5 points when transitioning from 101 to 51 model
instances. Narrowing down the number of instances even
further lowers the average AECMOS to subjectively mediocre
and below, reaching as low as 2.7 for scenarios with echo-path
changes. The increase in the average ∆R and average ∆D val-
ues is also significant, almost doubling its size as the number
of RES instances lowers from 101 to only 3. To summarize,
employing the entire 101 RES model instances significantly
impacts the URES framework performance, mainly in terms
of the average AECMOS.

F. The effect of computational complexity on practicality

We recognize that the proposed URES framework intro-
duces a high computational burden. So, this subsection is ded-
icated to resource analysis and discussion on the practicality
of the framework. First, Table III reports the computational
resources of the proposed system using three measures, i.e., the

number of trainable parameters, floating-point operations [42]
per 10 ms, and total memory required for both the instructions
and the architecture [43]. For each of these measures, we
report the resources of a single instance for each of the four
components that compose the URES framework, i.e., the linear
AEC filter and the deep RES, RDE, and AECMOS models.
In addition, we regard the accumulation of these resources
and analyze them for the entire URES framework both in the
minimal case, i.e., when only one instance is considered per
component, and in the maximal case, i.e., when 101 instances
of the RES and RDE models are considered, along with 85
instances of the AECMOS. The number of 85 AECMOS
instances has been chosen since the experiments we introduced
in subsection V-C have revealed that the maximal value of
P (n) was 85 when (THR,THD) = (5, 5) in dB. For clarity,
it is mentioned that regardless of the number of deep models
used, there is merely one linear AEC adaptive filter, which,
instead of requiring memory for the architecture, requires
memory for allocations.

From Table III, we focus on the most computationally-heavy
scenario, where the URES framework requires 43.7 × 106

trainable parameters, 129 × 109 floating-point operations per
10 ms, and 2×109 bytes of total memory. Even in this case, we
illustrate the practicality of the proposed framework to perform
on-edge using existing hardware by taking as an example the
NVIDIA Jetson Xavier NX system-on-module (SoM) [44] that
is dedicated to neural speech processing. We first note that this
SoM has both 8 × 109 bytes and 16 × 109 bytes versions
available, which are sufficient for the instructions and the
architecture memory needed by the URES framework. Second,
this SoM allows for 12.6× 1012 floating-point operations per
second (FLOPs) for 16-bit precision in floating-point format
[45], which is the case in our calculations.

We now regard the inference times of the URES framework
both on standard processing hardware, e.g., the 11th Gen
Intel CoreTM i7-11850H @ 2.50 GHz processor, and on the
dedicated hardware, taken as the SoM above. As detailed
in Appendix B-B, the analysis of the frame size equals
M = 20 ms and the step-size equals 10 ms. We initially
lay out only the buffering latency that every 20 ms analysis
frame undergoes during the URES pipeline, from the linear
AEC filter’s input to the URES framework’s output. In the
first stage, the linear AEC system inserts a negligible delay by
computation. Still, it does accumulate 8 ms of latency, which
is the needed time to align the inputs and the outcomes of
the linear AEC filter before inserting those into the URES
pipeline in a synced manner. This delay is not affected by
the type of hardware. In the second stage, every RES model
instance requires its input to undergo STFT, RES inference,
and inverse STFT. This STFT-related delay is also not affected
by the type of hardware. It causes algorithmic latency of 10 ms
since we use the overlap-save method that does not introduce
additional algorithmic latency [37]. Overall, every 20 ms
frame undergoes an algorithmic delay of 18 ms excluding the
inference time by the URES system components.

To calculate the inference time, we first notice that the
functionality of the URES framework dictates that the out-
comes of all RDE instances are aggregated before the AEC-



11

TABLE III: Computational complexity of the URES framework and a single instance of all its four components.

Linear
AEC
filter

RES
model

(one instance)

RDE
model

(one instance)

AECMOS
model

(one instance)

URES
framework

(minimal compute)

URES
framework

(maximal compute)

Number of parameters 2400 136× 103 45× 103 300× 103 483.4× 103 43.7× 106

Floating-point operations
per 10 ms 720× 103 92× 106 8× 106 1400× 106 1500× 106 129× 109

Memory in bytes 115× 103 10.6× 106 2.2× 106 9.3× 106 22× 106 2× 109

MOS layer can perform. Thus, we divide the calculation
to two; the inference time by the RES and the RDE in-
stances, and the inference time by the AECMOS. In this
calculation, the inference time by the linear AEC filter
is negligible and is not regarded. Turning to Table III,
the floating-point operations needed for inference of every
20 ms frame by the 101 instances of the RES and RDE
models respectively equal 101× 92× 106 = 9.292× 109

floating-point operations and 101× 8× 106 = 0.808× 109

floating-point operations. Due to the step-size of 10 ms
we use, each frame undergoes inference 1000/10 = 100
times per second. Thus, the RES and RDE layers require
100× (9.292 + 0.808)× 109 = 1.01× 1012 FLOPs. By as-
suming a theoretical capability of the standard processor that
performs inference with 100% efficiency, we may utilize all
the 2.457 × 1012 FLOPs of the processor and contain this
calculation using parallel computing [46].

Next, we need to consider the AECMOS layer that ac-
cumulates 85× 1400× 106 = 119× 109 floating-point opera-
tions, and thus 100× 119× 109 = 11.9× 1012 FLOPs, which
cannot be contained by the standard hardware using par-
allel computing. Overall, every 1 s of input frames take
(11.9 + 1.01)× 1012/2.457× 1012 = 5.25 s to be inferred by
the URES framework on a standard processor. Meaning, every
20 ms input frame takes a total latency, including buffering
time and inference time, of 8 + 10 + 20× 5.25 = 123 ms.
The RTF [28], [47] of the URES framework is the ratio
between the actual time necessary for all the computations in
the framework to infer the 20 ms input frame, and the duration
of the input frame to process, i.e., 20 ms. Using a standard
processor, the RTF equals 123/20 = 6.15 by assuming 100%
processor efficiency. Of course, in realistic scenarios where
this standard processor is for general purpose, its efficiency
can go as low as 10%, which can dramatically increase the
inference time and RTF. An interesting complementary view
of the RTF focuses only on the inference time by the models,
and excludes buffering and algorithmic delays. In that case,
the inference time is 20× 5.25 = 105 ms and the RTF equals
5.25. Either way, the standard processor cannot offer real-time
capabilities to run the URES framework.

We now examine the dedicated hardware in the NVIDIA
Jetson Xavier NX SoM, which is able to perform 12.6× 1012

FLOPs. Using the same type of inference calculations as
before, this means that every 1 s of input frames takes
(11.9 + 1.01)× 1012/12.6× 1012 = 1.02 s to be inferred by
the URES framework. Meaning, every 20 ms input frame
takes a total latency, including buffering time and inference

time, of 8 + 10 + 20× 1.02 = 38.4 ms, which is less than
40 ms and meets the standard timing requirements of hands-
free communication [48]. The RTF equals 38.4/20 = 1.92.
If we consider merely the inference time by adopting the
discussed complementary view, then the inference time is
20×1.02 = 20.04 ms and the RTF equals 1.02. It is important
to consider a complementary view of real-time, where the
overall processing time of every 20 ms frame does not exceed
the frame shift time of 10 ms [49]. The URES framework does
not meet this real-time criteria, even on dedicated hardware.

To recap, the URES framework can produce, on average,
speech quality that is subjectively estimated as excellent
while also confining to the UOP by roughly 2 dB deviation,
while allowing UOP adjustments in less than 40 ms with
an RTF of 1.92 given the availability of dedicated on-edge
hardware. However, these capabilities come at the expense of
an immensely high computational burden that can be contained
today only by specifically dedicated hardware, which limits the
general availability of the URES framework to the typical user
and preserves it primarily for high-end users and customers.

VI. CONCLUSIONS

RES in double-talk periods is an integral requirement of
many hands-free speech communication systems, and recent
RES methods have shown impressive advancements in average
benchmark performance. However, existing studies do not
support specific user inputs, which has crucial practical and
commercial implications. In this work, we developed a user-
centric framework for RES in double-talk, which introduces
three attributes that aim to enhance user experience. First, the
RESL and DSML of the RES output are confined to a UOP
up to a given tolerance threshold. Second, our framework
supports tracking of changes in the UOP with less than
40 ms and with RTF of 1.92, which is essential in a dynamic
acoustic environment of rapidly varying user preferences from
a wide spectrum. Third, AECMOS maximization is applied to
enhance the subjective speech quality of the output signal.
However, the developed framework demands immense com-
putational resources, which practically limit it to a specific
market share of high-end users and customers. Future work
may involve a learning framework that maps acoustic infor-
mation to UOP recommendations in real-time, an extension of
the objective function in (15) that aims to optimize its trade-off
functionality between desired-speech distortion and residual-
echo suppression levels, and a release of a lean version to the
URES framework that enables the URES framework to run on
standard hardware.



12

APPENDIX A
DEEP MODEL ARCHITECTURES

A. The deep RES architecture

For the deep RES architecture, we employ the follow-
ing layers: Conv2D for two-dimensional convolution [50],
MaxPooling2D to calculate the maximal patch value [51],
BatchNorm2D for two-dimensional batch normalization [52],
Upsampling [53], and the ReLU activation function [54].
The traditional regularizing dropout [55] layer is replaced
with BatchNorm2D. In Table IV, the DoubleConv unit
is described, which is the core of the RES architecture.
DoubleConv(I,O,M) receives I input channels, O output
channels, and M middle channels. Table V details the RES
architecture. Subscripts ‘c’ and ‘k’ denote the number of
channels and kernel size. For example, the first layer in Table
IV is a Conv2D layer with I input channels and I output
channels that employs a 3× 3 kernel.

TABLE IV: The DoubleConv(I , O, M ) unit

Conv2D: Ic → Ic, (3× 3)k
Conv2D: Ic → Mc, (3× 3)k
BatchNorm2D: Mc → Mc

ReLU: Mc → Mc
Conv2D: Mc → Mc, (3× 3)k
Conv2D: Mc → Oc, (3× 3)k

BatchNorm2D: Oc
ReLU: Oc → Oc

TABLE V: The deep RES architecture

Layer Description Output Dimensions

Input: (2, 30, 161)

DoubleConv (2, 16, 16)
MaxPooling2D: (2× 2)k
DoubleConv (16, 32, 32)
MaxPooling2D: (2× 2)k
DoubleConv (32, 64, 64)
MaxPooling2D: (2× 2)k

DoubleConv (64, 128, 128)
MaxPooling2D: (2× 2)k

DoubleConv (128, 128, 128)
UpSampling: scale factor 2
DoubleConv (256, 64, 128)
UpSampling: scale factor 2
DoubleConv (128, 32, 64)

UpSampling: scale factor 2
DoubleConv (64, 16, 32)

UpSampling: scale factor 2
DoubleConv (32, 16, 16)

Conv2D: 16c → 1c, (1× 1)k

(16, 30, 161)
(16, 15, 80)
(32, 15, 80)
(32, 7, 40)
(64, 7, 40)
(64, 3, 20)
(128, 3, 20)
(128, 1, 10)
(128, 1, 10)
(128, 2, 20)
(64, 3, 20)
(64, 6, 40)
(32, 7, 40)
(32, 14, 80)
(16, 15, 80)
(16, 30, 160)
(16, 30, 161)
(1, 30, 161)

B. Deep RDE architecture

For the deep RDE architecture that operates in the waveform
domain, we utilize the long short-term memory (LSTM) [56]
neural network. The architecture also employs the Flatten layer
[57] and the fully-connected linear layer [58], in addition to the

ReLU activation function. Following Pytorch convention [59],
the LSTM (N,L,H) layer receives batch size of N , sequence
length of L, and input size of H .

TABLE VI: The deep RDE architecture

Layer Description Output Dimensions

Input: (320, 5)

LSTM (5, 20, 10)
Flatten

Linear: 6400c → 2c
ReLU: 2c → 2c

(320, 20)
(6400, 1)
(2, 1)
(2, 1)

APPENDIX B
EXPERIMENTAL SETTINGS

A. Database acquisition from independent recordings

Mouth simulator
Loudspeaker
Microphone

Mouth-simulator-to-mic distance
Loudspeaker-to-mic distance

Number of rooms
Smallest room size
Largest room size

Range of RT60 [60]
Sampling frequency

4227-ATM, Brüel&Kjaer
Z120TM, Logitech
MT503TM, Spider
1m, 1.5m, 2m
1m, 1.5m, 2m

4
3× 3× 2.5 m3

5× 5× 4 m3

0.3− 0.6 s
16× 103 Hz

B. Preprocessing, training, and inference parameters

Sampling frequency
Bits precision

L (time, samples)
M (time, samples)
N (time, samples)

Step-size time, samples
RES past frames

RES past frames indices
RES learning rate

RES mini-batch size
RES epochs

RES optimizer
RES training duration

RDE batch size
RDE learning rate

RDE mini-batch size
RDE epochs

RDE optimizer
RDE training duration

16× 103 Hz
16-bit floating-point

RT60 s, RT60 × 16× 103 samples
20 ms, 320 samples

15 s, 240× 103 samples
10 ms, 160 samples

29
1− 29
0.0005

4
10

Adam [61]
8 minutes / epoch

5
0.001
4
10

Adam
12 minutes / epoch

REFERENCES

[1] M. Schmidtner, C. Doering, and H. Timinger, “Agile working during
COVID-19 pandemic,” IEEE Engineering Management Review, vol. 49,
no. 2, pp. 18–32, 2021.

[2] K. Sridhar, R. Cutler, A. Saabas, T. Parnamaa, M. Loide, H. Gamper,
et al., “ICASSP 2021 acoustic echo cancellation challenge: Datasets,
testing framework, and results,” in Proc. ICASSP. IEEE, 2021, pp.
151–155.



13

[3] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, S. L. Gay, et al.,
Advances in network and acoustic echo cancellation. New York:
Springer, 2001.

[4] M. M. Sondhi, D. R. Morgan, and J. L. Hall, “Stereophonic acoustic echo
cancellation-an overview of the fundamental problem,” IEEE Signal
Processing Letters, vol. 2, no. 8, pp. 148–151, 1995.

[5] S. H. Pauline, D. Samiappan, R. Kumar, A. Anand, and A. Kar, “Variable
tap-length non-parametric variable step-size NLMS adaptive filtering
algorithm for acoustic echo cancellation,” Applied Acoustics, vol. 159,
p. 107074, 2020.

[6] A. Ivry, I. Cohen, and B. Berdugo, “Deep adaptation control for acoustic
echo cancellation,” in Proc. ICASSP. IEEE, 2022, pp. 741–745.

[7] M. Salah, M. Dessouky, and B. Abdelhamid, “Design and implemen-
tation of an improved variable step-size NLMS-based algorithm for
acoustic noise cancellation,” Circuits, Systems, and Signal Processing,
vol. 41, no. 1, pp. 551–578, 2022.

[8] H. Zhao, Y. Gao, and Y. Zhu, “Robust subband adaptive filter algorithms-
based mixture correntropy and application to acoustic echo cancellation,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 31, pp. 1223–1233, 2023.

[9] Y. Yu, T. Yang, H. Chen, R. C. de Lamare, and Y. Li, “Sparsity-aware
SSAF algorithm with individual weighting factors: Performance analysis
and improvements in acoustic echo cancellation,” Signal Processing, vol.
178, p. 107806, 2021.

[10] G. Imen, A. Benallal, M. Mekarzia, and I. Hassani, “The NP-VSS
NLMS algorithm with noise power estimation methods for acoustic echo
cancellation,” in Proc. International Conference on Advanced Electrical
Engineering (ICAEE). IEEE, 2022, pp. 1–6.

[11] A. Ivry, I. Cohen, and B. Berdugo, “Nonlinear acoustic echo cancellation
with deep learning,” in Proc. Interspeech, 2021, pp. 4773–4777.

[12] S. Zhang, Z. Wang, J. Sun, Y. Fu, B. Tian, Q. Fu, and L. Xie, “Multi-task
deep residual echo suppression with echo-aware loss,” in Proc. ICASSP.
IEEE, 2022, pp. 9127–9131.

[13] J. Franzen and T. Fingscheidt, “Deep residual echo suppression and
noise reduction: A multi-input FCRN approach in a hybrid speech
enhancement system,” in Proc. ICASSP. IEEE, 2022, pp. 666–670.

[14] N. K. Desiraju, S. Doclo, M. Buck, and T. Wolff, “Joint online estimation
of early and late residual echo PSD for residual echo suppression,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 31, pp. 333–344, 2022.

[15] K. Xie, Z. Yang, and J. Chen, “Nonlinear residual echo suppression
based on gated dual signal transformation LSTM network,” in Proc.
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC). IEEE, 2022, pp. 1696–1701.

[16] C. M. Lee, J. W. Shin, and N. S. Kim, “DNN-based residual echo
suppression,” in Proc. Sixteenth Annual Conference of the International
Speech Communication Association, 2015, pp. 1775–1779.

[17] G. Carbajal, R. Serizel, E. Vincent, and E. Humbert, “Multiple-input
neural network-based residual echo suppression,” in Proc. ICASSP.
IEEE, 2018, pp. 231–235.

[18] H. Zhang, K. Tan, and D. Wang, “Deep learning for joint acoustic echo
and noise cancellation with nonlinear distortions.” in Proc. Interspeech,
2019, pp. 4255–4259.

[19] L. Pfeifenberger and F. Pernkopf, “Nonlinear residual echo suppression
using a recurrent neural network.” in Proc. Interspeech, 2020, pp. 3950–
3954.

[20] X. Zhou and Y. Leng, “Residual acoustic echo suppression
based on efficient multi-task convolutional neural network,” preprint
arXiv:2009.13931, 2020.

[21] A. Ivry, I. Cohen, and B. Berdugo, “Off-the-shelf deep integration for
residual-echo suppression,” in Proc. ICASSP. IEEE, 2022, pp. 746–750.

[22] ——, “Deep residual echo suppression with a tunable tradeoff between
signal distortion and echo suppression,” in Proc. ICASSP. IEEE, 2021,
pp. 126–130.

[23] ——, “Objective metrics to evaluate residual-echo suppression during
double-talk,” in Proc. WASPAA. IEEE, 2021, pp. 101–105.

[24] ——, “Objective metrics to evaluate residual-echo suppression during
double-talk in the stereophonic case,” Proc. Interspeech, pp. 5348–5352,
2022.

[25] M. Purin, S. Sootla, M. Sponza, A. Saabas, and R. Cutler, “AECMOS:
A speech quality assessment metric for echo impairment,” in Proc.
ICASSP. IEEE, 2022, pp. 901–905.

[26] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[27] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs,” in Proc. ICASSP, vol. 2.
IEEE, 2001, pp. 749–752.

[28] M. Malik, M. K. Malik, K. Mehmood, and I. Makhdoom, “Automatic
speech recognition: a survey,” Multimedia Tools and Applications,
vol. 80, pp. 9411–9457, 2021.

[29] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Medical Image Computing
and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

[30] H. Zhivomirov, “On the development of STFT-analysis and ISTFT-
synthesis routines and their practical implementation,” Technology, Ed-
ucation, Management, Informatics (TEM) Journal, vol. 8, no. 1, pp.
56–64, 2019.

[31] R. Cutler, A. Saabas, T. Parnamaa, M. Purin, H. Gamper, S. Braun,
et al., “ICASSP 2022 acoustic echo cancellation challenge,” in Proc.
ICASSP. IEEE, 2022, pp. 9107–9111.

[32] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett,
“DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1,” NASA STI/Recon technical report, vol. 93, p.
27403, 1993.

[33] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
ASR corpus based on public domain audio books,” in Proc. ICASSP.
IEEE, 2015, pp. 5206–5210.

[34] N. L. Freire and S. C. Douglas, “Adaptive cancellation of geomagnetic
background noise using a sign-error normalized LMS algorithm,” in
Proc. ICASSP, vol. 3. IEEE, 1993, pp. 523–526.

[35] L. Dogariu, C. Paleologu, J. Benesty, and S. Ciochină, “An efficient
kalman filter for the identification of low-rank systems,” Signal Pro-
cessing, vol. 166, p. 107239, 2020.

[36] I. Fı̂ciu, J. Benesty, L. Dogariu, C. Paleologu, and S. Ciochină, “Efficient
algorithms for linear system identification with particular symmetric
filters,” Applied Sciences, vol. 12, no. 9, p. 4263, 2022.

[37] S. Muramatsu and H. Kiya, “Extended overlap-add and-save methods for
multirate signal processing,” IEEE Transactions on Signal Processing,
vol. 45, no. 9, pp. 2376–2380, 1997.

[38] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization
techniques in training dnns: Methodology, analysis and application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[39] C. K. A. Reddy, V. Gopal, and R. Cutler, “DNSMOS P. 835: A non-
intrusive perceptual objective speech quality metric to evaluate noise
suppressors,” in Proc. ICASSP. IEEE, 2022, pp. 886–890.

[40] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-
fold cross validation in prediction error estimation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 3, pp. 569–
575, 2009.

[41] W. A. Yost, “Fundamentals of hearing: An introduction,” 2001.
[42] T. Nguyen, D. Hicks, D. Moss, et al., “11 Tera-FLOP per second

photonic convolutional accelerator for deep learning optical neural
networks,” preprint arXiv:2011.07393, 2020.

[43] K. J. Lee, “Architecture of neural processing unit for deep neural
networks,” in Advances in Computers. Elsevier, 2021, vol. 122, pp.
217–245.

[44] NVIDIA, “Jetson Xavier NX: The world’s smallest
AI supercomputer,” https://developer.nvidia.com/blog/
jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/, 2023.

[45] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi,
et al., “DLFloat: A 16-b floating point format designed for deep learning
training and inference,” in Proc. Symposium on Computer Arithmetic
(ARITH). IEEE, 2019, pp. 92–95.

[46] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” preprint arXiv:1802.09941,
2018.

[47] S. Gulzar Ahmad, H. Ullah Khan, S. Ijaz, and E. Ullah Munir, “Use
case-based evaluation of workflow optimization strategy in real-time
computation system,” The Journal of Supercomputing, vol. 76, pp. 708–
725, 2020.

[48] ETSI ES 202 740: Speech and multimedia Transmission Quality (STQ);
Transmission requirements for wideband VoIP loudspeaking and hands-
free terminals from a QoS perspective as perceived by the user, ETSI
Std., 2016.

[49] R. Cutler, A. Saabas, T. Parnamaa, M. Purin, E. Indenbom, N. Ristea,
et al., “ICASSP 2023 acoustic echo cancellation challenge,” in Proc.
ICASSP, 2023, p. to appear.

[50] Y. Wu, F. Yang, Y. Liu, X. Zha, and S. Yuan, “A comparison of 1-D and
2-D deep convolutional neural networks in ECG classification,” preprint
arXiv:1810.07088, 2018.

https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/


14

[51] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, “Text classification
improved by integrating bidirectional LSTM with two-dimensional max
pooling,” preprint arXiv:1611.06639, 2016.

[52] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[53] J. Pons, S. Pascual, G. Cengarle, and J. Serrà, “Upsampling artifacts in
neural audio synthesis,” in Proc. ICASSP. IEEE, 2021, pp. 3005–3009.

[54] A. F. Agarap, “Deep learning using rectified linear units (ReLU),”
preprint arXiv:1803.08375, 2018.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[56] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: LSTM cells and network architectures,” Neural Computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[57] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural
networks for feedforward acceleration,” preprint arXiv:1412.5474, 2014.

[58] A. G. Schwing and R. Urtasun, “Fully connected deep structured
networks,” preprint arXiv:1503.02351, 2015.

[59] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[60] M. R. Schroeder, “New method of measuring reverberation time,” The
Journal of the Acoustical Society of America, vol. 37, no. 6, pp. 1187–
1188, 1965.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
preprint arXiv:1412.6980, 2014.

Amir Ivry (M’24) earned both his B.Sc. and Ph.D.
degrees (direct track) in Electrical and Computer
Engineering from the Technion - Israel Institute of
Technology, Haifa, Israel, completing the program
in 2016 and 2023, respectively.

In 2022, he assumed the role of Principal Re-
searcher at Microsoft, focusing on spoken language
processing. This followed a tenure as a Research
Scientist in the Prime Minister’s Office from 2015
to 2021, and a research internship at Microsoft from
2021 to 2022.

Dr. Ivry has been recognized with the Jacobs Award twice and received
the Outstanding Research Award in Data Science from the Israel Council
for Higher Education. He served as the chief editor for the book “Deep
Learning Interviews”. His research interests span data-centric AI, automatic
speech recognition, out-of-distribution language processing, spoken language
understanding, analysis of machine learning and deep learning systems, and
performance measurements.

In 2022, Dr. Ivry was listed in Forbes 30 under 30.

Israel Cohen (M’01-SM’03-F’15) received the
B.Sc. (Summa Cum Laude), M.Sc. and Ph.D. de-
grees in electrical engineering from the Technion –
Israel Institute of Technology, Haifa, Israel, in 1990,
1993 and 1998, respectively. He is the Louis and
Samuel Seidan Professor in electrical and computer
engineering at the Technion – Israel Institute of
Technology.

From 1990 to 1998, he was a Research Scientist
with RAFAEL Research Laboratories, Haifa, Israel
Ministry of Defense. From 1998 to 2001, he was a

Postdoctoral Research Associate with the Computer Science Department, Yale
University, New Haven, CT, USA. In 2001 he joined the Electrical Engineer-
ing Department of the Technion. He is a coeditor of the Multichannel Speech
Processing Section of the Springer Handbook of Speech Processing (Springer,
2008), and the coauthor of Fundamentals of Signal Enhancement and Array
Signal Processing (Wiley-IEEE Press, 2018). His research interests are array
processing, statistical signal processing, deep learning, analysis and modeling
of acoustic signals, speech enhancement, noise estimation, microphone arrays,
source localization, blind source separation, system identification and adaptive
filtering.

Dr. Cohen was awarded an Honorary Doctorate from Karunya Institute
of Technology and Sciences, Coimbatore, India (2023), the Norman Seiden
Prize for Academic Excellence (2017), the SPS Signal Processing Letters Best
Paper Award (2014), the Alexander Goldberg Prize for Excellence in Research
(2010), and the Muriel and David Jacknow Award for Excellence in Teaching
(2009). He was as Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING and IEEE SIGNAL PROCESSING
LETTERS, a Member of the IEEE Audio and Acoustic Signal Processing
Technical Committee and the IEEE Speech and Language Processing Techni-
cal Committee, and a Distinguished Lecturer of the IEEE Signal Processing
Society.

Baruch Berdugo received the B.Sc. (Cum Laude)
and M.Sc. degrees in electrical engineering, and
Ph.D. degree in biomedical engineering from the
Technion - Israel Institute of Technology, Haifa,
Israel, in 1978, 1987 and 2001, respectively.

He is currently a Research Associate in electrical
engineering at the Technion - Israel Institute of
Technology. From 1982 to 2001, he was a Re-
search Scientist with RAFAEL Research Laborato-
ries, Haifa, Israel Ministry of Defense. From 2001 to
2003, he was the General Manger of Lamar Signal

Processing, Yoqneam Ilit, Israel. From 2004 to 2018, he was the General
Manager of MRD technologies, Kibbutz Usha, Israel, and the CTO of Phoenix
Audio Technologies, Irvine, CA, USA.

His research interests are array processing, statistical signal processing,
deep learning, analysis, speech enhancement, noise estimation, microphone
arrays, source localization, and adaptive filtering.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Introduction
	Problem Formulation
	A User-centric Approach for Deep RES
	Providing a user operating-point for the URES framework
	RES with a tunable design parameter
	Estimation of the RESL and DSML metrics
	Maximizing the AECMOS

	Experimental Settings
	Database acquisition
	Preprocessing, training, and inference
	Performance Measures

	Experimental Results
	Validating the performance of the RDE models
	The effect of the tolerance threshold values on performance
	The effect of the tolerance threshold values on P
	The effect of echo and noise levels on performance
	The effect of the number of RES instances on performance
	The effect of computational complexity on practicality

	Conclusions
	Appendix A: Deep model architectures
	The deep RES architecture
	Deep RDE architecture

	Appendix B: Experimental Settings
	Database acquisition from independent recordings
	Preprocessing, training, and inference parameters

	References
	Biographies
	Amir Ivry
	Israel Cohen
	Baruch Berdugo


