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Abstract: This paper introduces a new technique for automatic modulation classification (AMC)
in Cognitive Radio (CR) networks. The method employs a straightforward classifier that utilizes
high-order cumulant for training. It focuses on the statistical behavior of both analog modulation
and digital schemes, which have received limited attention in previous works. The simulation
results show that the proposed method performs well with different signal-to-noise ratios (SNRs) and
channel conditions. The classifier’s performance is superior to that of complex deep learning methods,
making it suitable for deployment in CR networks’ end units, especially in military and emergency
service applications. The proposed method offers a cost-effective and high-quality solution for AMC
that meets the strict demands of these critical applications.
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1. Introduction

The use of smart transmitters, adaptive receivers and intelligent communication
networks has revolutionized radio communication in the modern era. These technologies
have helped us optimize our usage of wireless channels. One crucial task in this regard
is the implementation of intelligent radio modulation detection. Automatic modulation
classification plays a vital role in various civilian and military applications, which are
diverse and often massive. Established radio networks have been in operation for years
and require fast and adaptive radio networks that can be used to combat various tasks daily
and in times of need. To achieve this, the SDR platform is considered a feasible option.

Software-defined radio (SDR) is a communication platform that works through soft-
ware programs rather than traditional hardware components. This means that the radio’s
functions can be adapted and changed dynamically based on different networks and tasks.
SDR is considered the modern realization of the term “software radio”, which was coined by
Mitola [1]. By converting signal processing to the digital domain, SDR-based networks can
incorporate complex algorithms that improve the communication rate, accuracy, and distance.

One example of the benefits of SDR is the concept of Cognitive Radio, which was
also introduced by Mitola in 1999 [2]. The idea behind Cognitive Radio is to develop a
radio unit that can manage its communication network dynamically and automatically
using software programs. The reason for this is to solve the problem of spectral congestion
in modern communication. As the number of daily users increases, spectrum resources
become more expensive and less available. By using Cognitive Radio, the radio unit can
adapt to its environment and establish unlicensed communication networks that share
the same wireless spectrum with other users. This helps solve the problem of spectral
congestion and makes it easier for unlicensed users, such as the military and emergency
services, to communicate effectively in times of crisis.
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Setting up the shared network involves a method called spectrum sensing, where the
Cognitive Radio unit can detect and analyze the available spectrum, and then manage
the communication network accordingly. By utilizing software instead of expensive and
complex hardware, Cognitive Radio offers a more efficient and cost-effective solution to
the problem of spectral congestion. During the spectrum sensing step, a Cognitive Radio
performs a scan of all available channels to find “empty holes”, or unused frequencies in the
spectrum. By sensing the channel parameters, the adaptive qualities of the Cognitive Radio
enable it to dynamically change the modulation scheme used for transmission in order
to improve the transmission rates and quality. However, dynamic modulations require
a recognition method for the received signal modulation scheme, which is known as
automatic modulation classification, or modulation recognition and modulation detection
in the literature [3–5]. Spectrum sensing is essential for adaptive networks that must
change according to their location without causing any interruption to local users’ daily
communication needs, especially in times of emergency, where every message counts.

Automatic modulation classification (AMC) is a process used to detect and identify
the unknown modulation scheme of a radio signal. It has been around since the 1980s [6,7]
but gained more popularity after the publication of the Cognitive Radio idea. Today, the
modern AMC literature is mainly focused on deep learning and neural networks [8–10].
However, the classic AMC algorithms are split between two methods [11]. The process of
identifying radio signals can be challenging due to the high computational complexity that
certain algorithms require. The first set of methods, called likelihood-based algorithms [12],
are accurate but can be expensive to implement, which is a drawback for government-
funded services that rely on cost-efficient projects.

On the other hand, feature-based (FB) methods offer a more efficient approach to
signal analysis. By extracting features like high-order statistical moments (HOS) or instan-
taneous frequency and phase parameters, these algorithms can help understand signal
characteristics. FB algorithms rely on a predetermined set of features, reducing the compu-
tational burden when compared to more complex machine learning techniques. To use FB
algorithms, the process starts by extracting classification features from the signal. Once the
algorithm has identified the key features, it can train the selected classification algorithm.
Some examples of feature-based algorithms are support vector machines (SVMs), decision
trees, and K-means. After the model is trained, it can be applied with minimal complexity
and runtime, making it a useful tool for identifying radio signals.

In recent years, the field of neural networks has experienced massive growth, leading
to most new studies on AMC utilizing neural networks for feature extraction, classification,
or both. Neural networks have demonstrated optimal results concerning classification
accuracy, achieving high detection probability, even at low SNR values. However, like
likelihood-based methods, neural networks can suffer from high computational complexity
and require significant system storage if a deep network model is used. This can become
a challenge when dealing with a quick-setup radio network that relies on end units and
needs to be power- and time-efficient. This is particularly important when considering
emergency services, where there is a need for a new, easy-to-set-up network that can quickly
adapt itself to the spectral environment. Therefore, the training process for the desired
modulation must be efficient.

This paper focuses on the FB method for the AMC, where we utilize high-order
cumulants (HOCs) as key features. Cumulants are statistical measures that are alternatives
to moments such as mean and variance. The HOCs are popular in the AMC literature
as a detection feature [13,14], due to their additive property that separates the desired
signal from its additive noise. While most of the literature discusses digital modulation
classification [15,16], our work aims to include analog modulations as well. In our study, we
analyze the statistics of eleven modulation schemes, explore the best classification feature
for each modulation, and discover the statistical connection between pairs of modulations.

The rest of this paper is organized as follows. Section 2 presents the modulated signal
models and the theory behind HOS and cumulants. In Section 3, we evaluate the simulation
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results for our proposed FB method. Finally, in Section 4, we discuss the conclusions from
the results.

2. Background and Algorithm

This section is divided into four subsections to provide a comprehensive explanation
of our work. The first part briefly reviews the theory of high-order statistics and the
cumulants, which provide an alternative approach to the more familiar moments. In the
second part, we introduce the dataset that we used for our work. The third subsection
explains the theoretical aspect of the classification process. Finally, the last subsection
briefly explains the method we used for our work.

2.1. High-Order Statistics

In statistics, moments of a random variable provide quantitative measures related to
the shape of its probability density graph and the distribution behavior. Specifically, the
nth-order moment of a random variable x is defined by

mn(x) =
∫

xn f (x)dx, (1)

where f (x) is the probability density function of x. If the nth-order moment integral
diverges, the nth-order moment of the variable does not exist. If the nth-order moment of x
exists, so does the (n − 1)th-order moment, and thus all lower-order moments. We define
a central moment by mn(x − µ), which is the mean value of x, and define the normalized
moment as mn(x/σ), where σ is the standard deviation.

The cumulants cn of a probability distribution are an alternative to the moments of the
distribution. Any pair of probability distributions with identical moments will also share
identical cumulants, and vice versa. The first, second, and third cumulants are equal to
the first three central moments—known as the mean, variance, and skewness—but fourth-
and higher-order cumulants diverge from the central moments. The cumulant of a random
variable x is defined using the cumulant-generating function

Ct(x) = log(E[etx]), (2)

and the cumulants cn are obtained from a power series expansion of the cumulant-
generating function:

Ct(x) = ∑ cn
tn

n!
. (3)

This expansion is a Maclaurin series expansion of the logarithm function, so we obtain
that the nth-order cumulant can be obtained by differentiating the expansion n times at
t = 0. The use of cumulants instead of moments as features for AMC in the literature is
usually based on their cumulative property: assume X and Y are independent random
variables, then

cn(X + Y) = cn(X) + cn(Y). (4)

Despite its benefits, the cumulant-generating function can be challenging to calculate,
especially when we are not familiar with the exact distribution of the signal. However,
since moments and cumulants are shared when the distribution is the same, we can use the
moments to calculate the cumulants based on the work in [14,17]. We use



Sensors 2024, 24, 701 4 of 12

c4.0 = m4.0 − 3m2
2.0 (5)

c4.1 = m4.1 − 3m2.1m2.0 (6)

c4.2 = m4.2 − |m2.0|2 − 2m2
2.1 (7)

c6.0 = m6.0 − 15m4.0m2.0 + 30m3
2.0 (8)

c6.3 = m6.3 − 9c4.2m2.1 − 6m2
2.1 (9)

c8.0 = m8.0 − 28m6.0m2.0 − 35m2
4.2 + 420m4.0m2

2.0 − 630m4
2.0 (10)

where mq,p is the mixed moment of the signal, defined as E(xq × x̄p−q). This set of equa-
tions enables simple and fast calculation for the HOC, which will act as features for the
classification algorithm. Since our work is based on digital signals, we will use the discrete
approximation for the mixed moment of N samples from a signal:

mq,p =
1
N

N

∑
n=1

xq[n]× x̄p−q[n]. (11)

The classification method in our paper uses the cumulants above as input features,
along with the matching cumulants Cp,q(xd) for the derivative of the signal

xd[n] = x[n + 1]− x[n]. (12)

After experimenting with different features, we added the cumulants of the derivative
to the features list, including separated cumulants for the real and imaginary parts of the
signal and the cumulants of the amplitude and phase of each signal. Only the derivative’s
cumulants noticeably improved the classification accuracy.

When discussing AWGN (additive white Gaussian noise), the primary benefit of
utilizing cumulants becomes evident. The noise is a random process that follows a normal
distribution. Therefore, we can use its cumulant-generating function, which is calculated
in [18,19] using

Ct(w) = log(Mt(w)) = µt + σ2 t2

2
, (13)

where µ and σ are the mean and standard deviation, respectively. The function in (13)
is a second-order polynomial, so its 3rd- and higher-order derivatives are zero-valued,
meaning the HOC cumulants of AWGN are equal to zero. Hence, the HOC of the sum
between AWGN and another independent random process will equal the HOC of the
second random process alone. Since the derivative of AWGN is distributed the same, the
derivative’s cumulants are still effective for our method under the above assumptions.

2.2. Modulation and Signal Model

The signals used in this paper are taken from the RadioML2018.01A dataset [20]. This
dataset contains 2,555,904 frames. Each frame is 1024 IQ samples from a modulated signal,
with various modulation schemes and SNR values from −20 to 30 dB. The dataset contains
24 different modulations generated using SDR under the following channel specifications:

• Selective multipath Rician fading;
• Carrier frequency offset;
• Symbol rate offset;
• Non-impulsive delay spread;
• Doppler shift;
• AWGN.

We only consider 11 modulations as the “Normal” set. This includes the following:
OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-DSB-SC, FM, GMSK, OQPSK
(We will refer to AM-SSB-SC and AM-DSB-SC as SSB and DSB, respectively). We decided
to evaluate our work on the “Normal” dataset since it is considered the benchmark for
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classification models in the literature, in contrast to the “hard” set, which contains all
24 schemes.

2.3. Decision Tree

A decision tree is a flowchart-like model for supervised learning in which each internal
node represents a decision test on a single feature, each branch represents the outcome of
the test, and each leaf node represents a class label. The paths from root to leaf represent
the classification rules. Decision trees have several advantages as a classification model,
and we are focusing on two of them in this paper. The first is that training the tree model
does not require a large dataset; this is a significant advantage over neural networks that
are widely popular in the literature despite the need for massive data to yield results. The
second advantage is the model’s simplicity, which allows it to combine with other decision
techniques. The benefit of combining techniques comes when we make a tree model, where
instead of a simple decision rule at each node, we can use a more complex model.

The decision tree model we used in our work is from the Python scikit-learn (Sklearn)
library, which is trained based on Gini impurity. Gini impurity is a measurement for the
probability of classifying the labels incorrectly. Let A be a random variable that takes one
of k labels (a1, a2, ... ak); then, we define the Gini impurity of a classification model as

G(A) = 1 −
k

∑
i=1

(P(ai))
2 . (14)

The training process of a decision tree contains three steps:

1. Decide the feature to split the data: for each feature, the Gini impurity is calculated,
and the one for which it is minimized is selected.

2. Continue splitting the data based on 1.
3. Stop splitting the data if we reach a certain tree depth.

The decision tree model’s parameters are the comparison threshold at each node,
barring the leaves, meaning the total number of parameters in a tree of depth d can be
calculated with

Pn = 2H − 1, (15)

which is also the number of calculations a single tree applies when classifying since there is
no need for multiplications or additions.

2.4. Method

Our classification algorithm is designed for integration within SDR systems operating
in Cognitive Radio networks. The workflow initiates with signal acquisition by the SDR,
followed by the segmentation of acquired signals into discrete packets, typically stan-
dardized at a length of 1024 samples—although this length is variable, subject to network
requirements and design. These packets serve as inputs to our classification algorithm. For
each packet received, we use the set of Equations (5) through (10) to extract the features
vector of the cumulants. This feature extraction process is computationally straightforward,
involving a singular pass through the packet data, which aligns with the predetermined
packet length of the communication network’s settings.

Subsequently, these extracted features undergo the classification phase, where the
decision tree model is employed. The output of this classification stage yields the identifica-
tion of one among the 11 available modulation schemes within the “Normal” modulations
set. The detected modulation holds significant utility within the Cognitive Radio context,
facilitating dynamic functionalities, such as adaptive frequency channel selection and
network usage detection. Furthermore, the system’s training procedure can be executed
proactively in controlled environments or dynamically during operational use, enabling
real-time adaptation to the evolving network landscape. This adaptability ensures the



Sensors 2024, 24, 701 6 of 12

system is efficient and adaptive within varying operational scenarios, allowing seamless
integration into dynamic spectrum environments.

3. Simulation and Results

The suggested classification method requires hand-picked features for each step, so
we start the simulation with a small-scale experiment. We start with an experiment to
determine which of the features is optimal for the classification and detection of every
single modulation from our desired set of 11 schemes. This simulation includes a simple
decision tree model, where only one feature from the cumulants and derivative cumulants
is used each run, where a run is defined as training and testing. Table 1 shows the top two
features for each modulation scheme in terms of the detection accuracy using the simple
decision tree model.

Table 1. The best two features for each modulation at SNR = 10 dB.

Modulation 1st Feature Pd 2nd Feature Pd

SSB C4.1 100% C4.0 100%
DSB Cd

4.1 74.69% Cd
4.0 73.34%

BPSK C2.0 99.57% C4.0 92.73%
FM C4.1 99.63% C2.0 99.27%

GMSK C4.2 96.09% C8.0 81.23%
OOK C2.0 95.82% C2.1 93.61%
4ASK C2.1 95.84% C2.0 93.71%
QPSK Cd

4.0 87.95% Cd
8.0 86.69%

OQPSK C4.2 76.39% C4.0 60.53%
16QAM Cd

6.0 100% Cd
6.3 99.74%

8PSK Cd
4.0 100% Cd

4.2 99.87%

Table 1 shows the average outcomes obtained when classifying signals specifically at
an SNR of 10 dB. This SNR value is deemed sufficient for a receiver to effectively detect
and demodulate signals with accuracy. Utilizing the insights derived from this table, we
proceed to construct the ultimate feature vector, which forms the foundational input for
our classification algorithm.

This feature vector is meticulously composed of a consolidated set of cumulants, as
illustrated in the table, representing a combined and optimized selection based on their
performance at the specified SNR of 10 dB. This selection process is pivotal in crafting
an efficient and discriminative feature set, chosen explicitly for its effectiveness in signal
classification within this specific SNR context. By amalgamating these cumulants into a
unified feature vector, we aim to encapsulate the most informative and distinguishing
signal characteristics essential for accurate modulation classification at this SNR threshold.

The next part of the simulation is the picking process of the training set for the model.
It is widely agreed that for training machine learning models, the algorithm randomly
picks the training set, out of the total database. However, in our work, we consider training
our model with only a subset of the data. This subset includes all the sampled signals with
SNR values higher than a certain threshold. The reasoning behind our decision comes from
the fact that when we study different modulation schemes, we can see that each scheme has
a minimal SNR requirement for adequate demodulation, which means that using signals
with an SNR below that threshold might affect our model training in negative ways. Based
on these facts, we split the data into two separate groups: high SNR signals and low SNR
signals. In order to pick an SNR threshold for the splitting, we conducted our second
experiment. Figure 1 shows the classification results when we train the model using a
signal with SNR higher than varying thresholds; we also include a zoomed-in view of the
section where the classification accuracy is the highest.
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(a) Full view. (b) Zoomed in.

Figure 1. Pd based on train set SNR threshold. (a) Full view; (b) zoomed-in view.

First, picking a train set from all the SNR values gives better results at a negative
SNR but deteriorates when reaching a positive value as expected. Another conclusion
is that using over 5 dB as the threshold gives lesser accuracy for high and low SNR test
samples. The final choice of threshold was between 1 dB and 5 dB. Although the 1 dB
threshold yields better accuracy at lower SNR levels, a slight improvement in the detection
accuracy is observed starting from 4 dB and higher with the 5 dB threshold. This result
supports the assumption that modulation schemes have minimal SNR requirements for
perfect demodulation. The depth of the decision tree was not considered for the first test.
So, we want to pick a balanced tree, deep enough to view all the features we chose before
but not too deep, which can result in overfitting and high complexity.

Figure 2 shows the detection probability under different decision tree depths. We start
at four layers since this is the minimal depth for 11 labels, and stop at nine, as we see no
significant improvement from eight. The optimal depth for each application can be chosen
based on the memory and runtime requirements. We pick an 8-deep tree with a higher
than 5 dB SNR train set.

(a) Full view. (b) Zoomed in.

Figure 2. Pd based on tree depth. (a) Full view; (b) zoomed-in view.

We aim to compare our results to state-of-the-art deep learning models. First, we
compare our method with three different state-of-the-art models of deep neural networks as
examples. The models we examine are ResNet [21], DenseNet [22], LSTM [10], FLANs [8]
and VGG [23]. We aim to compare our model to the neural networks in two manners.
Figure 3 shows the first comparison of neural networks in the classification accuracy.
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Figure 3. Pd comparison for the suggested method.

We can see the advantage of deep neural networks in the negative SNR zone, while
our method fails in comparison. However, we already discussed why classification at
negative SNR is usually irrelevant in terms of perfect demodulation. Starting from a
splitting threshold of 6 dB SNR, our suggested method yields better detection accuracy
than the popular NN methods by a margin of almost 8%.

The secondary comparison with the neural network models primarily centers on the
parameters or memory requirements. We use Equation (15) to compute the total parameters
necessary for diverse tree depths, subsequently contrasting these values in Table 2 alongside
the proposed NN models.

Table 2. Parameter size of different models.

Model Total Parameters

6 Deep Tree 63

7 Deep Tree 127

8 Deep Tree 255

ResNet 214,922

LSTM 770,378

DenseNet 542,850

VGG 1,621,780

FLANs 954,747

Our model, even with the inclusion of additional layers, consistently maintains a
parameter count ranging in the range of a few hundreds. In contrast, the NN models register
parameters in the hundreds of thousands. This substantial discrepancy highlights the sparse
memory utilization inherent in our model, a characteristic that holds substantial significance.
It is particularly advantageous when considering the amalgamation of multiple models to
bolster accuracy, especially in scenarios necessitating low complexity and an abbreviated
runtime. This streamlined memory usage serves as a pivotal advantage, especially in
contexts where computational efficiency and rapid processing are imperative.

Moreover, this substantial difference in the parameter count underscores a critical limi-
tation in NN models, notably their impracticality for deployment within SDR systems. The
hefty memory requirements demanded by NN architectures, often in the realm of millions
of parameters, render them impractical for many SDR implementations. In contrast, our
model’s ability to operate within the realm of mere hundreds or thousands of parameters
renders it significantly more feasible for integration within SDR systems. This advantage
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positions our approach as particularly suitable for real-world deployment scenarios, where
memory limitations are stringent, allowing for more practical utilization within SDR-based
Cognitive Radio networks.

We examine the confusion matrix from the suggested method. Figure 4 shows the
confusion matrices at 6 dB for the 7- and 8-deep decision trees under the 5 dB SNR
threshold train set. We observe in the illustrated figures, as well as in the other matrices
we examined, that the mislabeling of the model is consistent, meaning the labels that can
become mismatched are almost always the same. Based on this observation, we can split
the modulation schemes into subgroups as follows:

• Group 0—AM-SSB;
• Group 1—AM-DSB and BPSK;
• Group 2—4ASK and OOK;
• Group 3—FM and GMSK;
• Group 4—8PSK, 16QAM, QPSK and OQPSK.

(a) Tree Depth = 7 (b) Tree Depth = 8

Figure 4. Confusion matrices for different tree depths: (a) depth = 7; (b) depth = 8.

Group 0 exclusively comprises SSB modulation due to its nearly instantaneous classifi-
cation across an array of features, even at relatively low SNR values. This consistent and
rapid detection is observed consistently across various models tested, establishing SSB as a
distinct and easily recognizable modulation type.

On the other hand, Groups 1, 2, and 3 collectively represent pairs of modulations
that exhibit a tendency to be confused or mixed up, particularly prevalent at lower SNR
levels. This occurrence suggests a noteworthy statistical similarity in the signal models of
these modulation schemes. This statistical resemblance often results in misclassification or
overlapping characteristics, leading to the assumption that the underlying signal models
within these groups share comparable statistical behaviors, thereby complicating their
differentiation, especially under lower SNR conditions.

Group 4, encompassing the remaining modulations, portrays a more intricate scenario,
where these modulations commonly intermingle without any particular pair exhibiting a
significantly higher occurrence than the others. This lack of distinct differentiation signifies
a higher level of complexity within this group, where multiple modulation schemes exhibit
overlapping statistical features or behaviors, making their individual identification consid-
erably more challenging, especially in contexts where their distinguishing characteristics
are blurred due to similarities.

This categorization provides valuable insights into the behavior and detectability of
various modulation groups, shedding light on the distinct characteristics observed across
different SNR levels and establishing patterns of similarity or complexity among them.
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4. Discussion

We conducted simulations to validate our hypothesis on the benefits of using a classic
feature-based algorithm for AMC. Our initial focus was to examine the impact of individual
features on detection accuracy, which led us to remove unnecessary or redundant features
during the model’s training phase. We then partitioned the data into high- and low-SNR
groups to demonstrate how specific modulation schemes become detectable only above
a certain SNR threshold. This finding allowed us to refine our model by focusing on the
essential SNR levels relevant to real-world systems. The final phase of our simulation aimed
to fine-tune the tree’s hyperparameters to ensure the highest accuracy while maintaining
the optimal complexity.

Next, we compared our finalized model against three NN models, which yielded
varied results. On one hand, our proposed method exhibited superiority over NN models
in terms of detection accuracy, especially beyond the specified threshold SNR values. On
the other hand, our method struggled to detect signals with low SNR, where NN models
excelled. However, as previously noted, many modulation schemes become irrelevant
for demodulation below certain SNR thresholds. Apart from the detection accuracy, we
also compared our method with NN models in terms of memory storage. While basic NN
models required millions of deep parameters, our straightforward classifier required a
maximum of a few hundred parameters, depending on the chosen model. This advantage
significantly impacted the end units, as the variance in total parameters directly influ-
enced memory usage and runtime during the classification process. These factors directly
contribute to improved battery life, reduced costs, and enhanced speed in desired end units.

However, our suggested method does have limitations. Primarily, the algorithm may
not be optimal for discussions involving low-SNR scenarios and modulations that are
decodable even with an SNR lower than 2–4 dB. Additionally, we observed instances
where certain modulation schemes were erroneously identified even at higher SNR. This
occurrence might be attributed to similar carriers and statistics among some modulations,
indicating that our method might not be suitable for those specific schemes. Despite these
limitations, all outcomes affirm that the classic FB classifier for AMC can be both successful
and advantageous when considering its application in real-life Cognitive Radio networks.

5. Conclusions

Our research focused on developing a simple yet effective method for automatic
modulation classification in spectrum sensing. We found that our proposed method
outperforms some of the most widely used neural networks in terms of both accuracy and
memory efficiency. To achieve this, we chose the decision tree classifier for its simplicity,
which allowed us to identify efficient statistical features like High-Order Cumulants (HOCs)
that are specifically tailored for each modulation scheme. Our study went beyond the
usual emphasis on digital modulations and explored the possibility of using cumulants
to classify analog modulations, which has not been extensively researched before. By
identifying specific cumulants for each modulation type, we discovered that there are
subsets of modulations that share similar statistical behaviors. This discovery not only
helped us understand modulation characteristics better but also provided a foundation
for improving classification methodologies. Our approach is optimal for end units within
Cognitive Radio (CR) networks, as it achieves high accuracy with minimal parameters,
which is crucial for memory and speed efficiency. In our future work, we plan to leverage
these identified modulation subgroups to develop a more intricate method that further
improves accuracy. We also aim to expand our approach to include a wider range of
modulations, making our classification framework more versatile and applicable.
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