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ABSTRACT

This paper presents a region-of-interest (ROI) oriented constant-
beamwidth (CB) beamforming approach with rectangular arrays.
We decompose a global rectangular beamformer into a Kronecker-
product (KP) of two linear sub-beamformers: a uniform constant-
beamwidth beamformer along the y-axis and a nonuniform robust
superdirective (SD) beamformer along the x-axis whose topology
is optimized for a broadband array directivity criterion. The KP
decomposition allows a flexible tradeoff control between the CB
threshold frequency and the array directivity by tuning the number
of microphones along each axis. The topology optimization con-
siders a continuous ROI and therefore does not require an accurate
desired source direction in space. The proposed approach is com-
pared to uniform rectangular arrays with uniform differential sub-
beamformers along the x-axis. We show that the proposed method
is advantageous regarding white noise gain and directivity factor
measures, especially when the desired source direction differs from
the estimated source direction.

Index Terms— Microphone arrays, region-of-interest beam-
forming, constant-beamwidth beamformer, rectangular arrays.

1. INTRODUCTION

Beamforming has been a subject of numerous research works in
the past few decades, taking advantage of spatial information ac-
quired by a sensor array to estimate signals of interest from noisy
observations [1, 2]. Apart from the spatial filter coefficients, that
is, the “beamformer”, the array geometry has been shown to play a
significant role in the beamforming performance. For example, uni-
form linear arrays (ULAs) may exhibit either high array directivity
or robustness to white noise but typically not both simultaneously.
They are also susceptible to the desired source direction of arrival
(DOA). Uniform rectangular arrays (URAs), on the other hand, ex-
hibit reduced susceptibility to the desired signal’s DOA and may
be designed in a flexible manner by invoking the KP beamforming
framework, which potentially enables optimization concerning sev-
eral design criteria at once [3–8]. Uniform circular arrays (UCAs)
and uniform concentric circular arrays (UCCAs) are known to be
invariant to the DOA, with the latter geometry even shown to attain
the constant-beamwidth (CB) property [9–11]. Despite this, none of
these geometries can easily be integrated into the KP beamforming
framework.

On top of their design flexibility, URAs have been shown valu-
able for DOA estimation methods [12, 13]. In the context of dif-
ferential beamforming, when the interelement spacing (along both
axes) is small [14, 15]. These approaches improve the array robust-
ness to spatially white noise or allow high directivity beamforming
even when the desired signal significantly deviates from the endfire

direction. Nevertheless, these two attributes are not attained simul-
taneously, and neither of these approaches exhibits the CB property.

Using URAs for differential and CB beamforming has recently
been proposed to control the white noise gain (WNG), the direc-
tivity factor (DF), and the threshold frequency from which the CB
property holds [8]. This was achieved by designing a linear CB
sub-beamformer [16–18] along the y-axis and a linear (uniform) dif-
ferential sub-beamformer [19–22] along the x-axis; then, the URA
was obtained by applying a KP between the two linear beamform-
ers. While this approach is indeed flexible, it assumes the desired
signal impinges on the array from the endfire direction, resulting
from using a uniform differential sub-beamformer along the x-axis.

This paper presents a region-of-interest (ROI) oriented CB
beamforming approach with rectangular arrays (RAs). We decom-
pose a global rectangular beamformer into a KP of two linear sub-
beamformers: a uniform constant-beamwidth beamformer along
the y-axis and a nonuniform robust superdirective (SD) beam-
former along the x-axis whose topology is optimized with respect
to a broadband array directivity criterion, with the latter inspired
by the approach proposed in [23]. The KP decomposition allows
a flexible tradeoff control between the CB threshold frequency
and the array directivity by tuning the number of microphones
along each axis. In contrast, the topology optimization considers
a continuous ROI and does not require an accurate desired source
direction in space. The proposed approach is compared to URAs
with uniform differential sub-beamformers along the x-axis. We
demonstrate that the proposed approach is preferable regarding
WNG and DF measures, notably when the desired signal deviates
from the endfire direction or in high frequencies.

The rest of the paper is organized as follows. In Section 2, we
present the signal model. In Section 3, we briefly review the KP
beamforming. Section 4 presents the proposed nonuniform rect-
angular beamformer’s array topology optimization and derivation.
Finally, Section 5 demonstrates the advantage of the proposed ap-
proach compared to URAs.

2. SIGNAL MODEL

Consider a farfield signal of interest propagating from an azimuth
angle ϕ and an elevation angle θ in an anechoic acoustic environ-
ment at the speed of sound, i.e., c = 340 m/s. The plane wave
impinges on a two-dimensional (2-D) microphone array located on
the x-y plane, which contains Mx and My omnidirectional micro-
phones along the x-axis and y-axis, respectively. The 2-D array
is uniform concerning the y-axis, with an interelement spacing δy,
and nonuniform concerning the x-axis. Defining the microphone
located at (0, 0) as the origin of the Cartesian coordinate, the array
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steering vector of length MxMy is expressed by [2]:

dθ,ϕ (ω) =
[
Bθ,ϕ,1 (ω)a

T
θ,ϕ (ω) · · · Bθ,ϕ,My (ω)a

T
θ,ϕ (ω)

]T
= bθ,ϕ (ω)⊗ aθ,ϕ (ω) , (1)

where

aθ,ϕ (ω) =
[
Aθ,ϕ,1 (ω) · · · Aθ,ϕ,Mx (ω)

]T
=

[
eȷx1ϖθ,ϕ,x(ω) · · · eȷxMxϖθ,ϕ,x(ω)

]T
(2)

is the steering vector associated with the x-axis with {xmx}Mx
mx=1

denoting the microphone locations, and

bθ,ϕ (ω) =
[
Bθ,ϕ,1 (ω) Bθ,ϕ,2 (ω) · · · Bθ,ϕ,My (ω)

]T
=

[
1 eȷδyϖθ,ϕ,y(ω) · · · eȷ(My−1)δyϖθ,ϕ,y(ω)

]T
(3)

is the steering vector associated with the y axis, where

ϖθ,ϕ,x (ω) =
ω sin θ cosϕ

c
,

ϖθ,ϕ,y (ω) =
ω sin θ sinϕ

c
.

The superscript T denotes the transpose operator, ⊗ is the KP op-
erator, ȷ =

√
−1 is the imaginary unit, ω = 2πf is the angular

frequency and f > 0 is the temporal frequency.
The observed signal vector of length MxMy can be expressed

in the frequency domain as [22]:

y (ω) =
[
yT
1 (ω) yT

2 (ω) · · · yT
My (ω)

]T
= x (ω) + v (ω)

= dθ,ϕ (ω)X (ω) + v (ω) , (4)

where X (ω) is the zero-mean desired source signal, v (ω) is the
zero-mean additive noise signal vector, and

ymy (ω) =
[
Ymy,1 (ω) Ymy,2 (ω) · · · Ymy,Mx (ω)

]T
= xmy (ω) + vmy (ω)

= Bθ,ϕ,my (ω)aθ,ϕ (ω)X (ω) + vmy (ω) , (5)

for my = 1, 2, . . . ,My, is the observed signal vector of length Mx

of the my-th nonuniform linear array parallel to the x axis. Denot-
ing the desired signal incident angle by (θ0, ϕ0) and dropping the
dependence on ω, (4) becomes:

y = (bθ0,ϕ0 ⊗ aθ0,ϕ0)X + v, (6)

where bθ0,ϕ0 ⊗ aθ0,ϕ0 = dθ0,ϕ0 is the steering matrix at (θ0, ϕ0),
and the covariance matrix of y is

Φy = E
(
yyH

)
= pXdθ0,ϕ0d

H
θ0,ϕ0

+Φv, (7)

where E(·) denotes mathematical expectation, the superscript H is
the conjugate-transpose operator, pX = E

(
|X|2

)
is the variance of

X , and Φv = E
(
vvH

)
is the covariance matrix of v. Assuming

the noise variance is approximately the same at all sensors, we can
express (7) as

Φy = pXdθ0,ϕ0d
H
θ0,ϕ0

+ pV Γv, (8)

where pV is the noise variance at the reference microphone (i.e.,
the microphone at the origin of the Cartesian coordinate system)
and Γv = Φv/pV is the pseudo-coherence matrix of the noise.
From (8), we deduce that the input signal-to-noise ratio (SNR) is

iSNR =
tr
(
pXdθ0,ϕ0d

H
θ0,ϕ0

)
tr (pV Γv)

=
pX
pV

, (9)

where tr(·) denotes the trace of a square matrix.

3. KRONECKER-PRODUCT BEAMFORMING

In this section, we present a global rectangular beamformer f of
length MxMy as a KP of two linear sub-beamformers designed with
respect to each axis of the RA. Hence, f is of the form:

f = w ⊗ h, (10)

where h is a linear sub-beamformer of length Mx and w is a linear
sub-beamformer of length My. Then, the beamformer output signal
is

Z = fHy = Xfd + Vrn, (11)

where Z is an estimate of X ,

Xfd =
(
wHbθ0,ϕ0

)(
hHaθ0,ϕ0

)
X (12)

is the filtered desired signal, and

Vrn = (w ⊗ h)H v (13)

is the residual noise. In addition, it is clear that a distortionless
constraint is satisfied by

hHaθ0,ϕ0 = 1, wHbθ0,ϕ0 = 1. (14)

The output SNR and the gain in SNR are, respectively,

oSNR (f) =
pX
pV

×
∣∣fHdθ0,ϕ0

∣∣2
fHΓvf

, (15)

and

G (f) =
oSNR (f)

iSNR
=

∣∣fHdθ0,ϕ0

∣∣2
fHΓvf

, (16)

from which we deduce the WNG:

W (f) =

∣∣fHdθ0,ϕ0

∣∣2
fHf

=

∣∣wHbθ0,ϕ0

∣∣2
wHw

×
∣∣hHaθ0,ϕ0

∣∣2
hHh

= W (w)×W (h) , (17)

and the DF:

D (f) =

∣∣fHdθ0,ϕ0

∣∣2
fHΓdf

, (18)

where Γd is the pseudo-coherence matrix of the spherically
isotropic (diffuse) noise field [1, 15].

The beampattern is given by

Bθ,ϕ (f) = fHdθ,ϕ

=
(
wHbθ,ϕ

)(
hHaθ,ϕ

)
= Bθ,ϕ (w)Bθ,ϕ (h) , (19)

where Bθ,ϕ (w) = wHbθ,ϕ is the beampattern of w and Bθ,ϕ (h) =
hHaθ,ϕ is the beampattern of h.
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4. OPTIMAL ROI-ORIENTED CONSTANT-BEAMWIDTH
BEAMFORMING

Consider deriving a rectangular version of the SD beamformer [22],
which is not necessarily a KP beamformer. That is, we are interested
in solving

min
f

fHΓdf s. t. fHdθ0,ϕ0 = 1, (20)

whose solution is obtained by

fSD =
Γ−1

d dθ0,ϕ0

dH
θ0,ϕ0

Γ−1
d dθ0,ϕ0

=

[
Σ

My−1
p=1 JMy,p ⊗ Γd,p

]−1

dθ0,ϕ0

dH
θ0,ϕ0

Γ−1
d dθ0,ϕ0

, (21)

where Γd,p is the pth Mx × Mx block in the top block row of Γd

and (
JMy,p

)
ij

=

{
1, |i− j| = p
0, |i− j| ̸= p

, (22)

is a binary matrix of size My × My with ones on the ±pth diago-
nals and zeros elsewhere. In particular, JMy,0 = IMy , which is the
identity matrix of size My ×My. Assuming∣∣xmi − xmj

∣∣ ≤ δy, ∀mi,mj ∈ [1,Mx] , (23)

(21) may be approximated by

fSD ≈ κ
(
IMy ⊗ Γ−1

d,1

)
dθ0,ϕ0

= κ
(
IMy ⊗ Γ−1

d,1

)
(bθ0,ϕ0 ⊗ aθ0,ϕ0)

= κ
(
IMybθ0,ϕ0

)
⊗

(
Γ−1

d,1aθ0,ϕ0

)
= κw̄DS ⊗ h̄SD, (24)

where κ constitutes a normalization factor, Γd,1 is the top-left block
of Γd of size Mx × Mx, w̄DS is the (unnormalized) delay-and-
sum (DS) beamformer which operates on the sub-beamformer along
the y-axis and h̄SD is the (unnormalized) SD beamformer which
operates on the sub-beamformer along the x-axis.

Since the optimal rectangular SD beamformer can be decom-
posed into a KP of two beamformers, with merely one of which
optimized concerning the array directivity, we may adapt the com-
plementary beamformer to attain other array attributes. As in [8],
we design w̄DS as a (normalized) CB beamformer; more specifi-
cally, we employ the modified rectangular window of [16], denoted
by wrect. As for the high directivity beamformer, we take advantage
of the approach suggested in [23] and optimize this array topology
concerning the broadband directivity index:

DI [ωL,ωH ] [h]
∆
=

∫ ωH

ωL

∣∣aH
θ0,ϕ0

h
∣∣2 dω∫ ωH

ωL
hHΓd,wh dω

, (25)

where ωL and ωH are the minimal and maximal frequencies of in-
terest, respectively, and

Γd,w = (wrect ⊗ IMx)
H Γd (wrect ⊗ IMx) . (26)

As a first step, the array topology along the x-axis is given
by optimizing the worst-case scenario concerning an ROI around
the endfire direction on the x-y plane, that is, for |ϕ0| ≤ ϕH and

(a) (b)

Figure 1: Optimal array topologies for two distinct array settings.
(a) Mx = 4,My = 11 and (b) Mx = 6,My = 7.

θ0 = π/2, where ϕH is taken as half of the mainlobe beamwidth of
wrect. This is performed in the same manner described in [23] and
yields the set of optimal microphone locations {x∗

mx}
Mx
mx=1 with the

first microphone always set to x∗
1 = 0. Then, as a second step, we

optimize a (normalized) robust SD beamformer hSD,opt,ϵ whose
WNG in (17) is designed according to the desirable WNG of the
rectangular beamformer, considering the optimal microphone loca-
tions along the x-axis, and the approach proposed in [24]. Note
that the latter was used in the coefficient post-processing performed
in [23]. However, in our work, this derivation is only performed
once concerning the endfire direction. Therefore, the exact desired
signal location in space is not required to be known in advance nor
estimated as long as it is within the ROI: the linear array topology is
optimized considering the entire ROI and the SD sub-beamformer
is optimized concerning the endfire direction, assuming the desired
signal is more likely to be found there. Finally, the rectangular ROI-
oriented CB beamformer is given by:

fROI/CB = wrect ⊗ hSD,opt,ϵ. (27)

It is worthwhile comparing the proposed approach to the approach
suggested in [8]. While both approaches guarantee the CB prop-
erty to hold, the latter provides much flexibility in setting either
the WNG or DF and controlling their inherent tradeoff, yet it suf-
fers from several drawbacks. Notably, the desired-source location
is assumed to be known and specific, that is, on the x-y plane in
the endfire direction (θ0 = π/2, ϕ0 = 0). Any deviation from this
direction may significantly deteriorate the array gains. In addition,
the rectangular array topology is uniform concerning both axes and,
therefore, not optimized with respect, for example, to the array di-
rectivity.

5. SIMULATIONS

Let us demonstrate the performance of the proposed approach com-
pared to the uniform-differential CB beamformer [8, 25]:

fdiff/CB = wrect ⊗ hSD,ϵ, (28)
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(a) (b)

(c) (d)

Figure 2: WNG and DF in the ROI for the optimal and uniform-
differential array topologies. (a) WNG with fROI/CB, (b) WNG
with fdiff/CB, (c) DF with fROI/CB, and (d) DF with fdiff/CB. Array
settings: Mx = 6,My = 7.

where the CB sub-beamformer wrect is identical to fROI/CB and
hSD,ϵ is a robust SD beamformer [24] optimized with respect to a
uniform differential array with an interelement spacing of 5 mm. In
addition, we set the ROI’s upper edge to ϕH = 20o, the frequency
range to [ωL, ωH ] = [1, 6] kHz, the mainlobe beamwidth to 40o,
δy = 4 cm, the (maximal) aperture of the x-axis to 8 cm with 17
equally-spaced grid points, and the minimal value of the WNG to
−10dB. Note that here, we limit the scope of our work to signals of
interest located on the x-y plane that is, θ0 = π/2, but this can be
easily generalized to any θ0. We simulate two distinct array settings
with each of the two referred beamformers: Mx = 4,My = 11 and
Mx = 6,My = 7.

Figure 1 depicts the two optimal array topologies for the simu-
lated settings. We observe that in both cases, the optimal topology
is not uniform but symmetric around the center of the actual aper-
ture, which may be interpreted as an attempt to maximize the array
directivity (narrower-spaced microphones) and the white noise am-
plification (wider-spaced microphones). In addition, the maximal
possible aperture length of 8 cm is only used in the Mx = 6 case,
which may be explained by the optimal array topology tendency
to maximize the array directivity, which is well known to be max-
imized with closely-spaced microphones, particularly concerning
the endfire direction [22]. Note that the condition in (23) does not
strictly hold for all the microphones. This merely implies that the
proposed approach differs from the rectangular SD beamformer.

Figure 2 shows the WNG and DF for each of the two RAs with
Mx = 6,My = 7. It is evident that considering both measures, the
proposed approach is preferable, particularly in terms of the array
directivity when the DOA deviates from the endfire direction and
|ϕ| ≤ 10o. The broadband directivity is higher with the proposed
approach as well. Comparing the WNG measures, the two beam-
formers exhibit a similar performance, apart from high frequencies
in which a performance gap in favor of the proposed approach is

(a) (b)

(c) (d)

Figure 3: Beampatterns as a function of the frequency and the az-
imuth angle ϕ for different values of Mx and My. Red dashed
lines indicate the desirable mainlobe beamwidth. (a) fROI/CB;
Mx = 4,My = 11, (b) fdiff/CB; Mx = 4,My = 11, (c) fROI/CB;
Mx = 6,My = 7, and (d) fdiff/CB; Mx = 6,My = 7.

distinguishable. Finally, we note that both beamformers exhibit a
beampattern’s discontinuity which originates like the modified rect-
angular beamformer wrect [16].

Figure 3 shows the beampatterns of the two RAs for the two
addressed array settings. It is clear that My alone determines the CB
threshold frequency, above which the mainlobe beamwidth remains
constant. This implies that considering the CB property, the optimal
and the uniform differential beamformers behave similarly. Finally,
comparing the sidelobe levels of each beamformer concerning itself
but with the complementary settings, we infer that the higher Mx is,
the higher the array directivity. This implies that when the total
number of microphones in the RA MxMy is roughly constant, the
relative values of Mx and My control the tradeoff between the array
directivity and the CB threshold frequency.

6. CONCLUSIONS

We have introduced an ROI-oriented CB beamforming approach
for RAs that maximizes broadband array directivity. We designed
a CB ULA along the y-axis and a nonuniform linear array along
the x-axis whose topology was optimized for the broadband array
directivity of the RA. Then, the RA was obtained as a KP of the
two linear arrays. Since the proposed approach considers a con-
tinuous ROI rather than a single direction in space, acquiring the
desired source’s precise direction is unnecessary. Our method was
demonstrated to allow a flexible tuning between the CB threshold
frequency by increasing My and improving the array directivity by
increasing Mx. Finally, we have compared the proposed URA ap-
proach with uniform differential sub-beamformers along the x-axis.
The advantages of the proposed approach were demonstrated in
terms of WNG and DF measures, either when the DOA deviates
from the endfire direction or in high frequencies.
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