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Abstract: Weighted prediction error (WPE) is a linear prediction-based method extensively used
to predict and attenuate the late reverberation component of an observed speech signal. This pa-
per introduces an extended version of the WPE method to enhance the modeling accuracy in the
time–frequency domain by incorporating crossband filters. Two approaches to extending the WPE
while considering crossband filters are proposed and investigated. The first approach improves the
model’s accuracy. However, it increases the computational complexity, while the second approach
maintains the same computational complexity as the conventional WPE while still achieving im-
proved accuracy and comparable performance to the first approach. To validate the effectiveness of
the proposed methods, extensive simulations are conducted. The experimental results demonstrate
that both methods outperform the conventional WPE regarding dereverberation performance. These
findings highlight the potential of incorporating crossband filters in improving the accuracy and
efficacy of the WPE method for dereverberation tasks.

Keywords: crossband filtering; speech dereverberation; speech enhancement; weighted prediction
error

1. Introduction

When a distant microphone captures a speech signal in a room, it is inevitably subjected
to adverse acoustic effects, including background noise and reverberation. These effects can
harm the quality of the observed speech signal, significantly degrading the performance of
crucial applications like automatic speech recognition (ASR). To address this issue, extensive
research has been conducted on speech dereverberation. The primary objective of speech
dereverberation is to eliminate or reduce late reflections in the observed speech signal. It is
well known that while the early reflections are not harmful and, in some cases, even might
improve the speech intelligibility [1–3], the late reflections are a significant contributing
factor to the degradation in speech quality and intelligibility [4–6]. By mitigating the effects
of reverberation, dereverberation techniques aim to restore the clarity and intelligibility of
the captured speech, ultimately enhancing the performance of various speech processing
applications. As a result, developing efficient and reliable dereverberation methods plays a
vital role in advancing the field of speech processing and facilitating the deployment of
robust speech-based applications in diverse settings.

Over the years, numerous dereverberation methods have been developed, employing
different approaches to address the challenge of reverberation in speech signals [7–10].
One prominent approach is beamforming, which leverages an array of microphones to
enhance the desired speech signal while suppressing unwanted background noise and re-
verberation. Notable beamforming methods include the Minimum Variance Distortionless
Response (MVDR) beamformer [11] and its two-stage variant [12]. These methods estimate
the optimal weights for the microphone array to enhance the desired speech source while
attenuating the reverberant and noise components. Spectral enhancement methods have
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also been widely explored in dereverberation research. These methods operate in the
frequency domain and aim to enhance the desired speech signal by modifying the spectral
characteristics. One example is the spectral subtraction method [13,14]. This technique esti-
mates the noise and reverberation spectra and subtracts them from the observed signal to
enhance the speech component. Other spectral enhancement approaches employ advanced
signal processing methods such as Wiener filtering and statistical modeling to separate the
desired speech from the interfering components [15].

Another category of dereverberation methods focuses on estimating an inverse filter
to predict and suppress the late reflections present in the observed speech signal [16–20].
One notable method in this category that has gained significant attention in the field
of speech processing is the weighted prediction error (WPE) method [19,20]. WPE is
based on linear prediction (LP), utilizing an inverse filter to estimate and suppress the
late reflections in the observed speech signal. By exploiting the statistical properties
of the reverberation, WPE effectively separates the desired speech component from the
reverberant component. The method estimates the optimal filter coefficients by minimizing
the prediction error between the observed signal and its predicted version. WPE has
proven highly effective in various applications [21,22]. Due to its effectiveness, WPE has
received significant attention and has been extensively studied, leading to the proposal
of numerous extensions, generalizations, and variants. For instance, in [20], the model
formulation, which assumed a single speech source, was generalized to an arbitrary number
of sources. Other extensions and generalizations include the employment of deep neural
networks [23,24], switching mechanisms [25], and Kronecker product filtering to improve
the computational complexity [26].

In most applications, the WPE method is implemented in the short-time Fourier trans-
form (STFT) domain, which provides a suitable framework for the analysis and processing
of the observed speech signal. By decomposing the time-domain-observed signal into
subbands, WPE operates on these subbands individually in a frequency-band-wise manner.
In the time domain, WPE models the observed speech signal as the result of a linear con-
volution between the clean speech signal and an unknown room impulse response (RIR).
However, when transitioning to the STFT domain, the relationship between the observed
and clean signals becomes more intricate. In the STFT domain, the observed subbands
are influenced not only by their corresponding clean subbands but also by the adjacent
subbands and the crossband filters [27,28]. The exact relation between each observed sub-
band and the clean signal results from convolutions between all clean subbands and their
corresponding crossband filters. These filters capture the interdependencies and interac-
tions between different frequency bands. The influence and information exchange between
adjacent frequency components is taken into account by considering the crossband filters,
enabling more comprehensive modeling and processing of the observed speech signal.

However, the conventional WPE method in the STFT domain neglects the influence of
crossband filters. It assumes that each observed subband is solely the result of a convolution
between the corresponding clean subband and a convolutive transfer function (CTF), often
referred to as the “band-to-band filter” [28]. In other words, the CTF approach approximates
each observed subband as solely dependent on its corresponding clean subband. This
simplification introduces an inherent error in the WPE model when operating in the STFT
domain [19]. The approximation error resulting from neglecting the crossband filters can
significantly impact the performance of speech processing methods in the STFT domain.
Previous studies have explored the effect of this approximation error in the context of
system identification methods [28,29]. However, for WPE-based speech dereverberation,
a preliminary study was conducted in [30]. Unfortunately, this study had limited scope and
did not provide a comprehensive analysis of the effectiveness of the WPE-based approach
incorporating crossband filtering in various real-world scenarios.

Given the importance of accurately modeling the crossband filters, further investiga-
tion is necessary to understand their impact on the performance of WPE-based dereverber-
ation. A comprehensive analysis of the effectiveness of the WPE approach with crossband
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filtering in diverse real-world scenarios is essential to shed light on the potential benefits
and limitations of incorporating crossband filters into the dereverberation process. Such
research will contribute to advancing the understanding and practical implementation of
WPE-based methods, facilitating their optimization and broader application in real-world
speech processing scenarios.

In this paper, we present an extension to the conventional WPE method that enhances
the accuracy of the model approximation in the STFT domain by incorporating crossband
filters. Our approach aims to capture the interdependencies between adjacent subbands and
refine the estimation of the late reflections in the observed speech signal. By considering
samples from neighboring subbands, we redefine the WPE observation vector and modify
the prediction inverse filter to include both crossband and traditional band-to-band compo-
nents. We explore two versions of the proposed method to investigate their effectiveness.
The first version prioritizes accuracy by improving the model approximation, albeit at the
expense of increased computational complexity. In contrast, the second version maintains
the same computational complexity as the conventional WPE while enhancing the accuracy.
Surprisingly, the second version demonstrates competitive performance compared to the
first method.

We conduct a series of experiments to validate the performance of our proposed
versions. The results confirm that both versions surpass the conventional WPE regarding
dereverberation performance. This highlights the significance of incorporating information
from neighboring subbands in the STFT domain in improving dereverberation outcomes.
Furthermore, our findings suggest that the early samples of the crossband components
might offer greater efficacy in mitigating reverberation than the late samples of the band-
to-band component. By presenting these experimental results, we provide empirical
evidence supporting the effectiveness of our proposed extensions to the WPE method,
offering valuable insights into the potential benefits of considering crossband filters for
dereverberation tasks in the STFT domain.

The remainder of this paper is organized as follows. Section 2 presents the model and
the problem. Section 3 describes the proposed method. Section 4 details the experimental
setup and results. Section 5 concludes this work.

2. Model Formulation
2.1. Signal Model and Crossband Filters

Our study considers an arbitrary room with a single speech source. Let x(n) ∈ R be
the time-domain clean speech signal, and let x f ,t ∈ C be the STFT representation of x(n),
where f = 0, . . . , F− 1 and t = 0, . . . , T − 1 are the frequency and time bins, respectively.
The speech signal is captured by an array of M microphones. In this work, we assume that
the background noise is negligible. Hence, the observed signal in the m-th microphone,
y(m)(n), is given by

y(m)(n) = ∑
i

h(m)(i)x(n− i) (1)

where n is the discrete-time index, and h(m)(n) is the RIR from the source x(n) to the m-th
microphone. Based on the analysis in [28], the relation between the clean signal x f ,t and

the observed signal y(m)
f ,t in the STFT domain is given by

y(m)
f ,t =

F−1

∑
f ′=0

∑
l

x f ′ ,t−lh
(m)
f ; f ′ ,l =

F−1

∑
f ′=0

x f ′ ,t ∗ h(m)
f ; f ′ ,t (2)

where ∗ denotes a linear convolution, and the coefficients h(m)
f ; f ′ ,t ∈ C are derived from

the time-domain RIR h(m)(n) and from the analysis and synthesis filters that are used to
transform the signals from the time domain to the STFT domain and vice versa. Given a
single frequency bin f , we consider the time sequence h(m)

f ; f ,t as the band-to-band filter, while
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the set of time sequences
{

h(m)
f ; f ′ ,t

}
f ′ 6= f

are considered as the crossband filters associated

with f .

2.2. Problem Formulation

In the conventional STFT-domain dereverberation problem, the CTF approximation
is employed, i.e., the contribution of the crossband filters is neglected, and the observed
signal y f ,t is approximated as

y(m)
f ,t ≈

L−1

∑
l=0

x f ,t−lh
(m)
f ; f ,l (3)

where we assume a length L band-to-band filter (or CTF) h(m)
f ; f ,t. In the context of this paper,

the goal of the dereverberation is to predict the late reflection component and subtract it
from the observed signal, resulting in an enhanced signal z(m)

f ,t that consists of the direct
sound and the early reflections:

z(m)
f ,t = y(m)

f ,t −
L−1

∑
l=D

x f ,t−lh
(m)
f ; f ,l ≈

D−1

∑
l=0

x f ,t−lh
(m)
f ; f ,l (4)

where 0 < D � L is a predefined parameter that enables separation between early and
late reflections.

Extension to Crossband Filters

The model described in (4) can be extended by employing the accurate model in (2).
The enhanced signal is then given by

z(m)
f ,t = y(m)

f ,t −
F−1

∑
f ′=0

L f ′−1

∑
l=D

x f ,t−lh
(m)
f ; f ′ ,l , (5)

where L f ′ is the length of the crossband filter corresponding to frequency bin f ′. In terms
of computational complexity, the accurate model in (5) is expensive since it increases the
complexity by a factor of F compared to the CTF approximation in (4). The analysis in [28]
shows that in terms of energy, the band-to-band filter is more significant compared to
the crossband filters, and the energy of h f ; f ′ ,t decreases when | f − f ′| increases. Based on
this observation, and to improve the accuracy of the CTF model in (3) with a relatively
small price of increasing model complexity, we consider the contribution of the two nearest
crossband filters, i.e., we approximate the observed and the enhanced signals as

y(m)
f ,t ≈

f+1

∑
f ′= f−1

L| f− f ′ |−1

∑
l=0

x f ′ ,t−lh
(m)
f ; f ′ ,l , (6)

z(m)
f ,t = y(m)

f ,t −
f+1

∑
f ′= f−1

L| f− f ′ |−1

∑
l=D

x f ,t−lh
(m)
f ; f ′ ,l , (7)

where L0 := Lbb and L1 := Lcb are the lengths of the band-to-band filter and the crossband
filter, respectively.

3. Proposed WPE with Crossband Filtering
3.1. Conventional WPE

The conventional WPE for multichannel input predicts the components of the late
reflections based on the LP of an inverse filter [19]. To leverage the spatial information to
improve the estimation of the late reflections, the inverse filter predicts the late reflections



Appl. Sci. 2023, 13, 9537 5 of 15

based on observations from all channels. More specifically, let y(m)
f ,t be an observed signal

in the STFT domain captured by the m-th microphone of an M length microphone array,
and let

g(m)
f ∈ CLM be an LM-order prediction filter. The enhanced signal z(m)

f ,t is achieved as

z(m)
f ,t = y(m)

f ,t − g(m)
f

Hy f ,t;L ∈ C, (8)

y f ,t;L =
[
y(1)

f ,t;L, . . . , y(M)
f ,t;L

]T
∈ CLM, (9)

y(m)
f ,t;L =

[
y(m)

f ,t−D, . . . , y(m)
f ,t−D−L+1

]
∈ CL, (10)

where (·)T and (·)H represent the transpose and Hermitian transpose, respectively, and
D > 0 is the predefined prediction delay. Note that given a frequency bin f , based on
the definition of y f ,t;L in (9), the enhanced signal is obtained using only information from
samples of the observed signal in the band-to-band frequency bin, ignoring samples from
the crossband frequency bins. For simplicity, we select an arbitrary value for m and omit
the microphone designation from this point onward.

3.1.1. Filter Estimation

The filter g f is estimated in a frequency-wise manner based on the maximum likeli-

hood (ML) criterion, assuming that the signal z f :=
{

z f ,t

}
t

follows a complex Gaussian

distribution with zero mean and time-dependent variances λ f :=
{

λ f ,t

}
t
. The filter coeffi-

cients g f and the variances λ f are alternately estimated to minimize the following objective:

L(g f , λ f ) = ∑
t

[
|y f ,t − gH

f y f ,t;L|2

λ f ,t
+ log λ f ,t

]
. (11)

The entire estimation process for the first channel (i.e., m = 1) is described in
Algorithm 1. The extension to other channels is straightforward.

Algorithm 1 Conventional WPE Filter Estimation for First Channel

Input:
Observed multichannel signal in STFT domain

{
y(m)

f ,t

}
f ,t,m

Small constant ε > 0, filter length L, number of iterations N
for f = 0, . . . , F− 1 do

1. Initialize λ f ,t = max
{

1
L ∑t+L/2

t′=t−L/2+1

∣∣∣y(1)f ,t

∣∣∣2, ε

}
2. for n = 1, . . . , N do

Compute:

Φ f = ∑t
y f ,t;LyH

f ,t;L

λ2
f ,t

φ
(1)
f = ∑t

y f ,t;Ly(1)f ,t

λ2
f ,t

Update:

Filter: g(1)
f =

(
ΦH

f Φ f

)−1
ΦH

f φ
(1)
f

Enhanced signal: z(1)f ,t = y(1)f ,t − g(1)
f

Hy f ,t;L

Variances: λ f ,t = max
{

1
L ∑t+L/2

t′=t−L/2+1

∣∣∣z(1)f ,t

∣∣∣2, ε

}
3. end for

end for
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3.2. WPE with Crossband Filtering

To consider the contribution of the two nearest crossband filters, we define a prediction
filter g̃ f ∈ CL̃M, where L̃ = Lbb + 2Lcb, and an observation vector:

ỹ f ,t;L̃ =
[
yT

f ,t;Lbb
, yT

f+1,t;Lcb
, yT

f−1,t;Lcb

]T
∈ CL̃M, (12)

where we consider y f ,t;Lbb
and y f±1,t;Lcb

as the “band-to-band component” and “crossband
components”, respectively. The enhanced signal is now obtained as

z̃ f ,t = y f ,t − g̃H
f ỹ f ,t;L̃ ∈ C. (13)

The definition of ỹ f ,t;L̃ in (12) forces the enhanced signal to take into account samples
from the two nearest crossband frequency bins in addition to the samples from the band-
to-band frequency bin. The filter coefficients g̃ f are estimated according to the method
described in Section 3.1.1 and in Algorithm 1. Here, the term gH

f y f ,t;L in (11) is substituted

with the term g̃H
f ỹ f ,t;L̃.

We propose two versions of the proposed WPE with crossband filtering. First, we fix
Lbb = L. The parameter Lcb controls this setup’s tradeoff between model complexity and
model accuracy. When Lcb = 0, the proposed method is equivalent to the conventional
WPE, and the length of g̃ f is equal to the length of g f . When Lcb increases, the accuracy of
the model approximation increases, but so does the length of g̃ f , resulting in larger com-
putational complexity. In the second version, we fix L̃ = L. Here, Lbb decreases when Lcb
increases, meaning that early samples from crossband components are taken into account
instead of late samples from the band-to-band component. This setup reduces the accuracy
of the band-to-band model approximation but maintains fixed computational complexity.

4. Experimental Results
4.1. Data and Setup

To validate the performance of the proposed method, we collected a dataset of 10 clean
speech signals from the Deep Noise Suppression (DNS) challenge dataset [31]. To emulate
realistic acoustic conditions, we generated acoustic channel RIRs using the image model
method [32]. The reverberation levels were controlled by adjusting the wall reflection
coefficient parameter. The experimental setup consisted of a uniform linear array with
four microphones positioned in a room measuring 6 m by 8 m by 3 m. The speaker
was located at coordinates (5, 4, 1.7), while the microphones were placed at different
positions along the x-axis. More specifically, the microphones were positioned at (x, 2, 1.6),
where x was uniformly distributed from 2.936 to 2.999. The reverberation time (T60)
of approximately 300 ms was attained by configuring the absorption coefficient of the
room’s walls. This choice was informed by our observation that lower values of T60
resulted in a relatively inconspicuous reverberation effect, accompanied by an insubstantial
enhancement through the proposed method. Furthermore, various room configurations
were comprehensively explored, encompassing alterations in the microphone array’s spatial
arrangement, inter-microphone spacing, and the speaker’s position. More specifically, we
conducted a comprehensive exploration of microphone spacing, ranging from 1 cm to 4 cm.
Additionally, we meticulously examined various configurations involving offsets in both the
microphone array and the speaker’s position along both the x-axis and y-axis. Remarkably,
despite these deliberate modifications, the experimental outcomes exhibited remarkable
consistency across configurations. Given this consistency, we present the outcomes from a
representative configuration for brevity and clarity. The clean speech signals and RIRs were
sampled at 16 kHz. The multichannel observed signals were generated by convolving the
RIRs with the single-channel clean speech signals. Spectral analysis was performed using
STFTs with a 512-length Blackman window and a shift of 128 samples between frames.
By meticulously designing this experimental setup, we aimed to establish a reliable basis for
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evaluating the proposed method’s performance. Including diverse speech signals, accurate
RIR generation, and careful control of reverberation levels contributed to a comprehensive
assessment of the method’s effectiveness in enhancing speech signals. Additionally, when
performing WPE, we set the predefined prediction delay to D = 3 to maintain consistency
across the experiments. Using Algorithm 1, we have empirically determined that setting
the number of iterations to N = 3 is adequate to achieve the convergence of the filter
coefficients and the variances. Based on the definition of the prediction filters of order L
and L̃ in Section 3, we conducted two types of experiments.

1. Length extension (Ext.): In this first version of the proposed method, denoted as
the “length extension”, we set the parameter Lbb equal to L. This design choice en-
sured that the samples from the crossband components, which introduced additional
computational complexity, were included in the analysis. This specific experiment
aimed to demonstrate the significance of the information contained in the crossband
components in enhancing the dereverberation performance. While it did introduce
computational complexity, this experimental approach allowed us to assess the true
potential and effectiveness of the proposed method by leveraging the information-rich
crossband components.

2. Length preservation (Pres.): In the second version of the proposed method, denoted
as “length preservation”, we established L̃ to equal L. To maintain comparable compu-
tational complexity to the conventional WPE method, we introduced a modification
by discarding the two most recent samples from the band-to-band component for
every sample utilized in the crossband components. This adjustment allowed us
to strike a balance between computational efficiency and the evaluation of the rela-
tive importance of early samples from the crossband components and late samples
from the band-to-band component. By discarding the two latest samples from the
band-to-band component, we aimed to explore the tradeoff between the temporal
characteristics of the crossband and band-to-band components. This experimental
design enabled us to assess the respective significance of early samples from the
crossband components and late samples from the band-to-band component in the
dereverberation process.

4.2. Performance Measure

We varied the length of the crossband components Lcb to examine how it affected the
performance of the proposed method. We examined the performance in terms of three
widely used measures for speech dereverberation [21,33]: the frequency-weighted segmen-
tal SNR (FWSegSNR) [34,35], the cepstral distance (CD) [36], and the perceptual evaluation
of speech quality (PESQ) [37]. Given a clean ground-truth signal in the STFT domain x f ,t
and the corresponding enhanced signal x̂ f ,t, FWSegSNR was computed as follows:

FWSegSNR =
10
T

T−1

∑
t=0

∑F−1
f=0 w f ,t log10

x2
f ,t

(x f ,t−x̂ f ,t)
2

∑F−1
f=0 w f ,t

, (14)

where F and T are the numbers of frequency bands and time frames, respectively, and
w f ,t is the weight assigned to the f -th frequency at the t-th frame. We set the weights w f ,t
according to the standard AI weights [38]. The CD measure is defined as

CD =
1
T

T−1

∑
t=0

√√√√M−1

∑
m=0

[Cx(m, t)− Cx̃(m, t)]2, (15)

where Cx(m, t) is the cepstral coefficient of the m-th Mel band of x f ,t [36]. It is worth noting
that a universally accepted suite of objective quality measures has yet to be fully established
within the dereverberation landscape [33]. Given this ongoing evolution, our choice of
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performance measures aimed to shed light on the relative strengths and limitations of
various approaches. For FWSegSNR and PESQ, larger values indicate better dereverber-
ation performance. For CD, smaller values indicate better performance. To highlight the
effectiveness of the method, we considered the “gain” concerning the observed signal,
i.e., instead of presenting the absolute measures’ values, we offer the following measures:

∆FWSegSNR = FWSegSNR/FWSegSNRobserved, (16)

∆CD = CDobserved/CD, (17)

∆PESQ = PESQ/PESQobserved, (18)

where (·)observed is the performance measure when considering the observed signal instead
of the enhanced signal. Based on this definition, larger values indicate better dereverber-
ation performance across all measures. Values smaller than 1 indicate a degradation in
performance. The performance gain was computed individually for each of the 10 speakers.
The scores depict the mean improvement across these 10 speakers and the corresponding
standard deviation.

4.3. Optimal Band-to-Band Length

To begin our investigation, we performed a series of simulated experiments on the
conventional WPE method to identify the optimal filter length Lbb within the specific room
configuration under consideration. In this set of experiments, we systematically varied the
value of Lbb in the range of 5 to 25 while keeping the crossband filter length Lcb fixed at 0.

The results of these experiments are presented in Figure 1, which showcases the scores
obtained for each measure across the range of Lbb. Upon close examination, it becomes
evident that the optimal filter length varies for different performance measures. Specifically,
the FWSegSNR measure attains its peak performance with Lbb = 15, while the CD measure
achieves its optimal result at Lbb = 14. On the other hand, the PESQ measure demonstrates
its best performance when Lbb is set to 20.

Building upon these findings, we conducted further experiments, focusing exclusively
on the optimal values of Lbb. Consequently, we set Lbb to take on 14, 15, and 20 values,
thereby allowing us to thoroughly compare the proposed and conventional WPE methods’
performance under these specific settings.

5 10 15 20 25
Lbb

1.18

1.20

1.22

1.24

Δ 
FW

Se
gS

N
R

(a)

5 10 15 20 25
Lbb

1.225

1.250

1.275

1.300

Δ 
C
D

(b)

5 10 15 20 25
Lbb

1.6

1.7

Δ 
PE

SQ

(c)
Figure 1. Performance of conventional WPE for different filter lengths: (a) FWSegSNR—optimal
length is 15. (b) CD—optimal length is 14. (c) PESQ—optimal length is 20.

4.4. Crossband Filtering—Length Extension

To thoroughly explore the impact of different crossband filter lengths (Lcb) in conjunc-
tion with various choices of Lbb, we systematically varied Lcb within the range of 0 to Lbb,
while keeping Lbb fixed for each specific experiment. Results show that early crossband
samples indeed improve the dereverberation performance, and, in all cases (i.e., for each
measure and each choice of Lbb), the optimal performance is achieved for Lbb > 0. To our
surprise, introducing late samples from the crossband components leads to a decrease in
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performance, even when the length of the band-to-band component remains fixed. This
intriguing finding strongly suggests that late samples of the crossband components may
have a detrimental effect on the overall performance, even compared to the conventional
WPE. Drawing from this observation and the outcomes presented in Figure 1, we propose
that both the traditional and proposed methods of WPE attain optimal performance at a spe-
cific length choice. Surprisingly, beyond this optimal value, the performance deteriorates,
despite the availability of additional information for dereverberation.

4.4.1. Optimal FWSegSNR (Lbb = 15)

The observations depicted in Figure 2a,c provide valuable insights into the impact of
incorporating the first crossband component on the dereverberation performance, specif-
ically in terms of FWSegSNR and PESQ. Surprisingly, it is evident that introducing the
first sample of the crossband component leads to a decrease in performance compared
to the conventional WPE method. Conversely, when considering the CD measure (as
illustrated in Figure 2b), adding the first sample of the crossband component improves
the dereverberation performance. Further analysis reveals that the optimal performance,
in terms of FWSegSNR and CD, is achieved when Lcb is set to 2, as shown in Table 1.
On the other hand, the optimal performance in terms of PESQ is attained when Lcb is set
to 3. It is worth noting that for Lcb > 6, the performance starts to decline, surpassing the
level achieved by the conventional WPE method. These intriguing findings shed light on
the intricate relationship between different choices of Lcb and their impact on the overall
dereverberation performance.
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Figure 2. Performance evaluation (Ext.) for Lbb = 15 (optimal FWSegSNR) in terms of (a) FWSegSNR,
(b) CD, and (c) PESQ.

4.4.2. Optimal CD (Lbb = 14)

The obtained results are demonstrated in Figure 3a–c. Notably, a remarkable im-
provement in performance is observed from the first sample of the crossband component,
as evidenced by the enhancement in all measured metrics. Furthermore, as indicated in
Table 1, the optimal performance, both in terms of FWSegSNR and CD, is achieved when
Lcb is set to 2. Similarly, for optimal performance in terms of PESQ, a value of Lcb = 3 is
identified. It is worth highlighting that for values of Lcb exceeding 7, a noticeable decline
in performance is observed compared to the conventional WPE method. This observation
further underscores the importance of carefully selecting an appropriate value for Lcb to
achieve optimal dereverberation results. The presented findings shed light on the effective-
ness of integrating the first crossband component and its significant impact in improving
the dereverberation performance across various evaluation metrics.
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Figure 3. Performance evaluation (Ext.) for Lbb = 14 (optimal CD) in terms of (a) FWSegSNR,
(b) CD, and (c) PESQ.

4.4.3. Optimal PESQ (Lbb = 20)

The obtained results are depicted in Figure 4a–c, providing insights into the perfor-
mance characteristics when considering Lcb = 20. The observed behavior closely resembles
the findings discussed in Section 4.4.1, where the inclusion of the first sample of the
crossband component initially leads to a degradation in performance. However, it is note-
worthy that a performance improvement becomes evident from the second sample onward.
Table 1 reveals that the optimal gain in performance coincides with the choices identified
in Section 4.4.1. However, it is worth noting that the optimal gain values are slightly lower
for the cases of FWSegSNR and CD. These findings underscore the consistent impact of the
crossband component and its potential to enhance the dereverberation performance, albeit
with some variation in the optimal gain values across different evaluation metrics.
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Figure 4. Performance evaluation (Ext.) for Lbb = 20 (optimal PESQ) in terms of (a) FWSegSNR,
(b) CD, and (c) PESQ.

Table 1. Summary of experimental results (length extension).

Measure Lbb Optimal Gain Optimal Lcb

FWSegSNR
14 1.23 2
15 1.24 2
20 1.22 2

CD
14 1.33 2
15 1.32 2
20 1.31 2

PESQ
14 1.76 4
15 1.76 3
20 1.75 3

4.5. Crossband Filtering—Length Preservation

In order to evaluate the performance, we set up an experimental configuration where
we systematically varied the value of Lcb for each chosen Lbb. In this setup, we discarded
two late samples from the band-to-band component for each increment in the crossband
samples in order to maintain fixed computational complexity. Specifically, we explored the
range of Lcb from 0 to bLbb/3c, where b·c denotes the floor function, ensuring that the band-
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to-band component retained its significance relative to the crossband components. Notably,
introducing early crossband samples led to an overall improvement in dereverberation
performance across all measured criteria. This finding underscores the effectiveness of
incorporating the information within the crossband components to enhance the quality of
the dereverberated speech signals.

4.5.1. Optimal FWSegSNR (Lbb = 15)

The obtained results are illustrated in Figures 5a–c, providing a comprehensive as-
sessment of the performance. The optimal gains and corresponding values of Lcb are
summarized in Table 2. Surprisingly, the observed performance is highly competitive with
the outcomes presented in Section 4.4.1, despite using fewer data for the dereverberation
process. Notably, the introduced method even exhibits an improvement in terms of CD
compared to the length extension approach. Optimal performance, in terms of FWSegSNR,
is achieved when Lcb = 2, while, for CD and PESQ, the optimal values are obtained with
Lcb = 3. These findings highlight the efficacy of incorporating early crossband samples,
demonstrating their valuable contribution in improving dereverberation outcomes.
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Figure 5. Performance evaluation (Pres.) for Lbb = 15 (optimal FWSegSNR) in terms of
(a) FWSegSNR, (b) CD, and (c) PESQ.

4.5.2. Optimal CD (Lbb = 14)

The obtained results are presented in Figures 6a–c and are summarized in Table 2.
Interestingly, it is observed that for all measures, the optimal gain is achieved when Lcb = 2.
In this particular setup, the length preservation method outperforms the length extension
method in terms of FWSegSNR and CD. However, regarding PESQ, the length extension
method provides better and competitive performance. These findings emphasize the
significance of considering the specific setup and context when evaluating the performance
of different dereverberation methods, as their effectiveness may vary depending on the
chosen measures and objectives.
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Figure 6. Performance evaluation (Pres.) for Lbb = 14 (optimal CD) in terms of (a) FWSegSNR,
(b) CD, and (c) PESQ.

4.5.3. Optimal PESQ (Lbb = 20)

Results are presented in Figures 7a–c and are summarized in Table 2. Notably, in
Figure 7a, it is observed that the optimal performance in terms of FWSegSNR is achieved
when Lcb = 5, which corresponds to Lbb = 10. This finding is further supported by
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Figure 1a, which indicates that the performance in terms of FWSegSNR remains relatively
stable for Lbb in the range of 10 to 16. This suggests that the optimal performance in
terms of FWSegSNR, when utilizing the crossband components, is achieved when Lbb is in
proximity to the optimal value obtained with the conventional WPE. A similar observation
can be made for the CD metric, as depicted in Figures 1b and 7b. Furthermore, it is worth
mentioning that this experiment yielded the best overall performance in terms of PESQ,
as shown in Table 2. These findings highlight the importance of carefully selecting the
parameters and considering the specific objectives when evaluating the performance of
dereverberation methods.
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Figure 7. Performance evaluation (Pres.) for Lbb = 20 (optimal PESQ) in terms of (a) FWSegSNR,
(b) CD, and (c) PESQ.

Table 2. Summary of experimental results (length preservation).

Measure Lbb Optimal Gain Optimal Lcb

FWSegSNR
14 1.24 2
15 1.24 2
20 1.23 5

CD
14 1.33 2
15 1.34 3
20 1.33 5

PESQ
14 1.74 2
15 1.75 3
20 1.77 4

4.6. Discussion

The conducted experiments involving length extension and length preservation meth-
ods have provided valuable insights into the performance of the WPE-based dereverbera-
tion approach. The results, as summarized in Tables 1 and 2, demonstrate the effectiveness
of both methods in improving the performance compared to the conventional WPE while
considering different aspects of the evaluation metrics. The length preservation method,
which incorporates the early samples of crossband components, has shown competitive per-
formance compared to the length extension method. Remarkably, the length preservation
method achieves comparable or superior results across various evaluation metrics, includ-
ing FWSegSNR, CD, and PESQ. This indicates that by utilizing the crossband components
in an optimized manner, the length preservation approach offers an attractive alternative
for dereverberation tasks. Notably, the length preservation method achieves these perfor-
mance gains while maintaining the same computational complexity as the conventional
WPE. This is a significant advantage, as it allows for efficient real-time implementation
without sacrificing the quality of dereverberation results.

Overall, the findings highlight the importance of considering different approaches and
parameters in the WPE-based dereverberation framework. The length preservation method
presents a promising avenue for further exploration, offering competitive performance
with improved computational efficiency. Further research can investigate the method’s
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robustness across various real-world scenarios and explore potential optimizations to
enhance its effectiveness in different reverberant environments.

5. Conclusions

Our investigation focused on exploring the impact of crossband filters in the STFT
domain on WPE-based speech dereverberation. We introduced two extensions to the
conventional WPE that specifically accounted for crossband filtering and demonstrated
their effectiveness in enhancing the dereverberation performance. Interestingly, the first
extension, which increased the model’s complexity, naturally improved the performance.
However, the second extension maintained the same model complexity as the conventional
WPE and exhibited notable performance improvements. This observation suggests that the
early samples of the crossband components play a crucial role in dereverberation, surpass-
ing the significance of the late samples from the band-to-band components. Surprisingly,
the late samples of the crossband components had an unexpected detrimental effect on the
dereverberation performance. To further advance this research area, future investigations
can explore the impact of crossband filtering in more complex models, such as scenarios
involving speaker switching or time-varying RIRs. Additionally, combining the proposed
concept with other extensions of WPE, such as the Kronecker filtering extension, holds
promise [26]. The combination of crossband and Kronecker filtering for WPE has the
potential to reduce the computational complexity while simultaneously improving the
performance, as demonstrated by the recent work on Kronecker filtering for WPE.
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