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Abstract: This paper presents a novel approach utilizing uniform rectangular arrays to design a
constant-beamwidth (CB) linearly constrained minimum variance (LCMV) beamformer, which also
improves white noise gain and directivity. By employing a generalization of the convolutional
Kronecker product beamforming technique, we decompose a physical array into virtual subarrays,
each tailored to achieve a specific desired feature, and we subsequently synthesize the original array’s
beamformer. Through simulations, we demonstrate that the proposed approach successfully achieves
the desired beamforming characteristics while maintaining favorable levels of white noise gain and
directivity. A comparative analysis against existing methods from the literature reveals that the
proposed method performs better than the existing methods.

Keywords: LCMV beamformer; constant-beamwidth beamforming; Kronecker product beamformer;
array signal processing; rectangular sensor arrays

1. Introduction

Beamformers play a crucial role in diverse fields, such as telecommunications [1],
acoustics [2,3], hearing aids [4], and others [5–8]. Among the array configurations used
for beamforming, rectangular arrays are an interesting option to be explored [9–11], as
they offer distinct advantages over linear arrays, providing enhanced spatial information
regarding impinging sources [12,13] and reduced redundancy due to their asymmetry [14].

The development of robust adaptive beamformers with frequency-invariant character-
istics has been a significant point of interest as, in this case, frequency does not affect the
behavior of the beamformer. Some desired features are a constant beamwidth [15] and null
steering [16]. One approach for null steering is using a linearly constrained minimum vari-
ance (LCMV) beamformer [17–19], which cancels interfering signals from given directions
and steers the main beam toward the desired signal. However, it lacks a robust mechanism
for maintaining a constant beamwidth. Constant-beamwidth (CB) beamforming [15,20,21]
can be accomplished by using window-based beamforming techniques [22], but these
methods cannot incorporate directional restrictions. CB-LCMV beamformers have been
recently explored [23], however only in the context of linear sensor arrays, leaving space
for their study in the context of different array configurations.

Other metrics that are desired to be enhanced are white noise gain and directivity
factor, which can respectively be maximized by the delay-and-sum (DS) and superdirective
(SD) beamformers [24]. Another quality that is often required for designing a beamformer
is a distortionless response to the desired source or to the desired source direction. This
ensures that the desired signal is unaltered by filtering processes.

While constructing a beamformer with multiple beamforming features is non-trivial,
efforts have been made to combine multiple beamforming techniques for a single array of
sensors. Two notable approaches are the Kronecker product (KP) method [25,26] and the
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linear convolutional Kronecker product (LCKP) method [23]. The LCKP method is valid
only for linear arrays, however it allows for the virtual utilization of more sensors than are
physically available [23]. Meanwhile, the KP method can be used in linear or rectangular
arrays, but it does not increase the number of sensors available for beamforming. For
both combination methods (the KP and LCKP), beampattern features and distortionless
constraints are preserved in the combined beamformers. Therefore, by using beamformers
with desired beampattern characteristics that respect the distortionless constraint, these are
maintained in the end result.

In this paper, we propose a novel approach to constructing a CB-LCMV beamformer
for rectangular arrays. To this end, we generalize the LCKP beamforming technique to
the case of rectangular arrays. We synthesize beamformers for virtual subarrays and, with
our proposed generalized technique, apply them to a full array to achieve the desired
beamwidth and null placement. This is achieved without sacrificing white noise gain or
the directivity factor. The performance of the proposed method is compared against that
of beamformers obtained through the KP and LCKP methods. Our results demonstrate
superior performance in terms of the beamwidth, white noise gain, and directivity of the
beamformers obtained using the proposed method when compared to the performance of
the beamformers obtained using the methods in the literature.

This paper is organized as follows: Section 2 presents the array and signal model
considered for the problem; Section 3 shows the traditional beamforming techniques and
methods that are used further. In Section 4, the newly proposed method for an array
analysis for rectangular arrays is introduced and detailed, as well as its proposed usage
for solving the problem at hand. In Section 5, we present the conducted simulations and
discuss the results, comparing them to those in the literature. Finally, Section 6 concludes
this paper, presenting an overview of the main contributions.

2. Signal and Array Model

Let S be a uniform rectangular array (URA) of sensors over the x− y plane in an
anechoic environment with desired and undesired sources. The URA comprises Mx sensors
spaced δx apart along the x-axis and My sensors spaced δy apart along the y-axis, resulting
in a total of M = MxMy sensors. Assume a source in the far field on the same plane as the
sensor array (that is, with elevation φ = 0o), impinging on it from an azimuth angle θ. As it
is unusual, in speech enhancement, for the desired and undesired sources to have the same
azimuth, differing only by elevation, we assume the elevation to be 0o. This constraint can
be easily removed without affecting the developed mathematical framework.

Let D(ω, θ) denote the steering matrix of size Mx × My with elements {mx, my}
given by

[D(ω, θ)]mx,my
= exp

{
−j ω

c rmx,my cos(θ − ψmx,my)
}

, (1)

where c = 340 m/s is the speed of sound, (rmx,my , ψmx,my) are the polar coordinates of the
sensor at (mxδx, myδy), ω = 2π f is the angular frequency, f is the temporal frequency,
and j =

√
−1 is the imaginary unit. We let d(ω, θ) = V(D(ω, θ)) denote the M × 1

steering vector, with M = mxmy and V( · ) being the vectorization operation, and we let
D(ω, θ) = V −1(d(ω, θ); My) denote the inverse vectorization of d(ω, θ).

The M× 1 observed signal vector y(ω) for all sensors in the frequency domain can be
written as

y(ω) = d(ω, θd)X(ω) + v(ω), (2)

where X(ω) is the desired signal at the reference sensor, d(ω, θd) is the steering vector
of the desired source from direction θd, and v(ω) is the additive noise signal vector. All
signals are assumed to be zero-mean and uncorrelated. We can estimate the desired signal
X(ω) as Z(ω) using the beamformer h(ω) (assumed to be a 2-D beamformer) through
linear filtering,

Z(ω) = h(ω)Hy(ω), (3)
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where the superscript H denotes the conjugate-transpose operator. In that case,

Z(ω) = X(ω) + vrn(ω), (4)

where vrn(ω) = h(ω)Hv(ω) is the residual noise at the beamformer’s output. The beam-
former is called distortionless if it satisfies h(ω)Hd(ω, θd) = 1 for all ω. This constraint
guarantees that the beamformer does not affect the desired signal, only altering the unde-
sired noise signal.

From here on, ω is omitted unless in definitions, and θ in the steering vectors appears
in subscripts where necessary. When no angle is shown, d = d(ω, θd) is assumed to be the
desired signal steering vector for conciseness.

Beamformer Metrics

Beampattern B, as a function of beamformer h and direction θ (through steering vector
dθ) is given by

B(h, dθ) = hHdθ . (5)

Given the desired signal steering vector d, the white noise gain (WNG), desired signal
distortion index (DSDI), and directivity factor (DF) are, respectively,

W(h, d) =

∣∣∣hHd
∣∣∣2

hHh
, (6a)

υd(h, d) =
∣∣∣hHd− 1

∣∣∣2, (6b)

D(h, d) =

∣∣∣hHd
∣∣∣2

hHΓh
, (6c)

where Γ(ω) is the spherical isotropic noise field coherence matrix [27]. Using the DSDI, the
distortionless constraint can also be written as υd(h, d) = 0.

3. Conventional Beamformers

This section briefly overviews the beamforming techniques used to construct the
proposed beamformer, as well as the different methods for beamformer synthesis.

3.1. LCMV Beamformer

Assuming the presence of undesired sources in known directions, a linearly con-
strained minimum variance (LCMV) beamformer [17–19] is useful to position the nulls
of the beampattern in those undesired directions. To this end, we assume the existence
of N (with N < M) uncorrelated interfering sources in the far field, each coming from a
(different) direction θi (i ∈

{
1 , · · · , N

}
) that we want to cancel. We write v as

v =
N

∑
n=1

dθn νn + u, (7)

where νn is the noise signal for the n-th undesired direction, and u is the portion of the
noise signal not coming from the N undesired directions, also accounting for acoustic un-
correlated noise. We assume that E

[
uH(dθn νn)

]
= 0. We then use N + 1 linear constraints,

representing the distortionless constraint for the desired signal plus the canceling of the N
undesired directions.

The LCMV constraint is written in matrix form as

C =
[

d , dθ1 , · · · , dθN

]
, (8a)

q =
[

1 , 0 , · · · , 0
]T, (8b)
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CHh = q, (8c)

where C(ω) is an M× (N + 1) matrix, q is an (N + 1)× 1 vector, and the superscript T

denotes the transpose operator. The LCMV beamformer is obtained by minimizing the
variance of residual noise vrn in the beamformer output (from Equation (4)), given the
constraints in (8), which translates to a minimization problem given as

hLCMV = argmin
h

hHΦvh s.t. CHh = q, (9)

where Φv(ω) = E
[
v(ω)vH(ω)

]
is the correlation matrix of v, assumed to be a full-rank

invertible matrix. As the undesired directions will be canceled (assuming an anechoic envi-
ronment [28]), this minimization process minimizes u, the noise portion that is uncorrelated
with the N undesired directions. The solution to this minimization problem is

hLCMV = Φ−1
v C

[
CHΦ−1

v C
]−1

q. (10)

To ensure the existence of a solution, the number of sensors should be larger than or equal
to the number of constraints, i.e., M ≥ N + 1. For N = 0, only the distortionless con-
straint remains, and the LCMV beamformer reduces to a minimum variance distortionless
response (MVDR) beamformer [29], which is given by

hMVDR =
Φ−1

v d
dHΦ−1

v d
. (11)

It is possible to show that the LCMV and MVDR beamformers are also defined in
terms of the observed signal correlation matrix Φy [24], in which case

hLCMV = Φ−1
y C

[
CHΦ−1

y C
]−1

q (12a)

hMVDR =
Φ−1

y d

dHΦ−1
y d

. (12b)

This formulation depends only on the statistics of the observed signal, which are easier to
compute than those of the noise signal.

3.2. CB Beamformer

Constant-beamwidth (CB) beamformers guarantee a certain beamwidth around the
desired direction that is constant over frequency. This is important to ensure the correct
receiving of the desired signal, even if θd is not precisely calibrated.

We define θB as the first-null beamwidth (FNBW), such that |B(h, d)| > 0 if |θ − θd| <
θB/2. That is, θB/2 is the first angle in which a null of the beampattern occurs. A constant-
beamwidth beamformer can be achieved using a window-based design technique [22].
Here, the Kaiser window is used [30], which can be written as

[w]m =

J0

(
β

√
1−

[ 2m
M−1 − 1

]2)
J0(β)

, (13)

where J0(·) is the zero-order modified Bessel function of the first kind, and β(ω) ([22],
Section 3.3.2) is frequency-dependent to maintain the θB constant. This technique requires
that the desired source signal impinges on the array from the broadside direction [22]. To
satisfy the distortionless constraint, we normalize w, obtaining

hCB =
w

∑M−1
m=0 [w]m

. (14)
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3.3. SD and DS Beamformers

Superdirective (SD) and delay-and-sum (DS) beamformers are obtained by maximizing
the DF and the WNG, respectively [29,31], both subject to the distortionless constraint. The
solutions to these minimization problems are respectively given by

hSD =
G−1d

dHG−1d
, (15a)

hDS =
d
M

. (15b)

3.4. Kronecker Product Beamforming

Designing a single beamformer with different features is highly important, allowing
different effects to be employed over a single array of sensors. Two methods to accomplish
such a task are the Kronecker product (KP) [25,26] and linear convolutional Kronecker
product (LCKP) methods [23]. In these processes, the sensor array is split into subarrays
for which we design separate beamformers and use the chosen technique to synthesize the
whole sensor array’s (or full array’s) beamformer.

The KP beamforming process is as follows: given steering vector dθ , we decompose
it into two parts (namely, d1;θ and d2;θ) satisfying the relation dθ = d1;θ ⊗ d2;θ , where ⊗
represents the Kronecker product. By designing beamformers h1 and h2 for d1 and d2,
respectively, we obtain the beamformer for the full array as h = h1 ⊗ h2 [32].

LCKP beamforming is achieved similarly: given a uniform linear array’s (ULA) steer-
ing vector dθ of length M, we define d1;θ as the M1-th first elements of dθ and, similarly,
d2;θ with M2 elements, respecting M1 + M2 − 1 = M. By designing beamformers h1 and
h2 for each subarray, the full array’s beamformer is h = h1 ∗ h2 [23], where ∗ denotes the
linear convolution.

For both the KP and LCKP methods, we have the following properties:

B(h, dθ) = B(h1, d1;θ)B(h2, d2;θ), (16a)

υd(h, d) ≤ [1 + υd(h1, d1)][1 + υd(h2, d2)]− 1. (16b)

The first one shows that the beampattern of h is the combination of the beampatterns of
the subarrays. Through the second one, we can see that, if h1 and h2 are distortionless
beamformers, h also will be. From these properties, we can see that the beampattern
properties (including the distortionless feature) from h1 and h2 are maintained for h.

4. Constant-Beamwidth LCMV Beamformer with Rectangular Arrays

Both the KP and LCKP beamforming methods have advantages and disadvantages.
While the LCKP is only usable over linear arrays, beamformers achieved through it have
(virtually) more sensors than there are available in the physical array, generally leading to
better performance when combining different techniques. Meanwhile, the KP method can
be applied to rectangular arrays, which on its own is beneficial, but it does not have the
virtual utilization of more sensors. To benefit from the lack of symmetry of the rectangular
arrays and to also be able to have more sensors available for each subarray’s beamformer,
we propose a generalization of the LCKP to URAs to take advantage of both methods,
enabling virtual sensor augmentation while exploiting the rectangular array’s symmetry.

4.1. Rectangular Convolutional Kronecker Product Beamforming

Let S1 be a subarray of S, including the M1,x ×M1,y first sensors of S, with steering
vector d1, and similarly for S2. These arrays sizes are such that M1,x + M2,x − 1 = Mx, and
M1,y + M2,y − 1 = My. By designing beamformers h1 and h2 for S1 and S2, respectively,
we show in Section A that it is possible to synthesize a beamformer for full array S through

h = V
(
V −1

(
h1; M1,y

)
~ V −1

(
h2; M2,y

))
, (17)
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with ~ representing the 2-D convolution operation. We call this the rectangular convolu-
tional Kronecker product (RCKP) method. A simple implementation of the proposed RCKP
method is presented in Algorithm A1 in Appendix B, which is written in a Python-like
pseudolanguage.

In the same way as with the KP and LCKP methods, with the RCKP, one can design
beamformers for subarrays S1 and S2, and one can synthesize the URA’s beamformer h
through the 2-D convolution (and vectorization processes). Accordingly, h is an M × 1
vector; however, in this scenario we have a total of M′ = M1,xM1,yM2,xM2,y virtual sensors.
Assuming that all Ms are ≥1, it is trivial to see that M′ ≥ M (equality happens if S1 and S2
are perpendicular ULAs, or if one of them has only one sensor). Therefore, we have more
sensors virtually than if S was split into two VAs through the KP method.

It is easy to verify that the properties in (16) are also valid for the proposed RCKP.
With this, like for the KP and LCKP, the full-array beamformer obtained through the
RCKP inherits the beampattern and distortionless features from the subarray beamformers.
Also, since convolution is commutative and associative, one can split the S array into
more than two virtual arrays, design a beamformer for each subarray, and combine all the
beamformers through the RCKP without the loss of generalization. In this case, assuming
that we are using K beamformers, each with size Mk,x ×Mk,y, then their dimensions must
be such that

K

∑
k=1

Mk,x − (K− 1) = Mx, (18a)

K

∑
k=1

Mk,y − (K− 1) = My. (18b)

This is easily verifiable by repeating the synthesis operation in Equation (17) K− 1 times.

4.2. CB-LCMV Beamformer with RCKP

Here, we propose the use of the RCKP method as derived previously to construct a
CB-LCMV beamformer with an increase in white noise gain and directivity measures. For
this, full array S is separated into four subarrays: S1, S′2;x, S′′2;x, and S2;y. Each subarray is
used to design one of the desired beamformers presented in Sections 3.1–3.3.

S1 is used to design the LCMV beamformer, following the steps detailed in Section 3.1.
Since the LCMV beamformer does not require the array to be linear, we use S1 as a rectangu-
lar array of size M1,x ×M1,y. As explained previously, this choice has the advantage of the
rectangular array’s lesser symmetry compared to a linear array. We have M1 = M1,xM1,y
virtual sensors and, at most, M1 − 1 nulls to be placed. If N = 0, this same array is used for
the MVDR beamformer instead.

The subarray S2;y is used to construct the CB beamformer. Given that the CB is
achieved through the window technique (as per Section 3.2), this subarray must be a ULA,
and the desired source direction should be on its broadside direction. Here, this implies
that θd = 0o.

The SD and DS beamformers are built from the S′2;x and S′′2;x subarrays, respectively,
based on Section 3.3. We assume that they are constructed from linear arrays, but this
condition is flexible and can be changed in other implementations.

Once all the subarray beamformers are designed, we use the RCKP method to com-
bine these beamformers into a full-array beamformer. Thus, we construct a beamformer
with many desired features (null placement + constant beamwidth + white noise gain +
directivity factor gain) that exploit the symmetry of the rectangular array, which implies
more spatial information and more performance. Algebraically, the full-array beamformer
is given by

h = V
(
V −1

(
hLCMV; M1,y

)
~ V −1(hSD; 1)~ V −1(hDS; 1)~ V −1

(
hCB; M2,y

))
. (19)
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An implementation of the proposed CB-LCMV beamformer is shown in Algorithm A2
in Appendix B. The procedure calculates beamformer h for a single frequency.

For the CB beamformer to be effective, its condition must be valid for all beamformers.
That is, |B(h, d)| > 0 if |θ − θd| < θB / 2, where h ∈ [hLCMV, hCB, hSD, hDS]. This is true
by definition for the CB beamformer, and by setting N = M1 − 1 for the LCMV, no nulls
are free to end up inside the main beam. For the SD and DS beamformers, we assume that
their FNBWs are sufficient to satisfy the condition.

5. Experimental Results

In this section, we present the simulations performed to verify the proposed method’s
implementation and to compare its performance to that of existing methods. The code
used for these simulations is available at https://github.com/VCurtarelli/py-cb-lcmv-rect
(accessed on 27 July 2023). We test different combinations of the number of sensors for each
subarray, as established in Table 1. The table presents the dimensions for each subarray,
for the full array of sensors, and the virtual number of sensors being employed. [A, B] are
obtained through the RCKP, [C, D] through the LCKP, and [E, F] through the KP + LCKP,
with the KP and LCKP methods being as defined in Section 3.4. [A, C, E] utilize the SD and
DS beamformers, while [B, D, F] “disable” them in favor of the CB beamformer. For [E, F],
the LCMV beamformer is more spaced out.

Table 1. Number of sensors for each subarray, dimension of the full array (FA), and size of the virtual
array in each simulation.

Cond. LCMV SD DS CB FA M′

A 2× 2 2× 1 2× 1 1× 8 4× 9 128
B 2× 2 1× 1 1× 1 1× 17 2× 18 68
C 1× 4 1× 2 1× 2 1× 31 1× 36 496
D 1× 4 1× 1 1× 1 1× 33 1× 36 132
E 2× 2 2× 1 2× 1 1× 3 6× 6 48
F 2× 2 1× 1 1× 1 1× 9 2× 18 36

In all situations, S has a total of M = 36 sensors. The sensors are assumed to be
ideal omnidirectional sensors with a plain frequency response over the spectrum. The
intersensor distances are δx = 0.5 cm and δy = 3.0 cm. We assume that θd = 0o and
θB = 40o. Since the LCMV has four sensors, we use three interfering sources (for all
situations), with directions θi ∈ [−90o, 60o, 130o], each with φvi = 1, and we also assume
v′ to be uncorrelated Gaussian white noise with unit variance (that is, Φv′ is the identity
matrix). The variance of the desired signal is φX = E

[
|X|2

]
= 5. The simulations are

performed for the range f ∈ [4, 8] kHz. This range is chosen to satisfy the conditions
from ([22], Equation (29)) for condition [A].

Figures 1 and 2a–c show the simulation results for B, measured θB,W , and D. θB was
measured as the first angle in which B

(
h, dθB/2

)
≤ 0.05. All methods manage to achieve

the nulls in the desired directions from the LCMV. Observing Figure 2a, all but [E] are
capable of maintaining a reasonable beamwidth across all frequencies, with [E] not being
able to maintain the beamwidth because of too few sensors in the CB beamformer. The
“naïve” combination of KP and LCKP [E, F] leads to worse performance for all metrics; thus,
their results are not further compared.

https://github.com/VCurtarelli/py-cb-lcmv-rect
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Both methods (the RCKP and LCKP) lead to very akin results for θB, even though
the LCKP simulations [C, D] have many more sensors in the CB beamformer than the
RCKP ones [A, B]. This indicates that increasing the CB array size does not result in a better
performance in either FNBW or directivity. However, in Figure 1, it can be seen that it
generates a more focused beam. Both the RCKP and LCKP have similar WNG results of
around 10 dB. The proposed method (especially [A]) leads to a better performance in terms
of DF for all frequencies compared to the LCKP. The LCKP is marginally better for WNG
in lower frequencies and does not suffer from performance loss at approximately 6.4kHz,
caused by using rectangular arrays.

Comparing [A] and [B], the former has better results for both WNG and DF, while
both have a similar result in maintaining a constant θB. This is a direct result of using the
SD and DS beamformers in [A], and although [A] has less than half the number of sensors
in the CB beamformer than [B], the FNBWs are similar. The beampattern of [B] is more
focused than that of [A], but this does not cause a better performance in either beamwidth
or directivity.

Comparing [C] and [D], both lead to almost identical results for all metrics. This
can also be seen by comparing Figure 1c,d, where their beampatterns are almost indis-
tinguishable. This indicates that the SD and DS beamformers are obfuscated by the CB
in [C, D], caused by the CB beamformer having too many sensors compared to the other
beamformers.
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Figure 1. Beampattern heatmap for all situations in Table 1. x-axis is direction of source (in o), and
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Figure 1. Beampattern heatmap for all situations in Table 1. x-axis is direction of source (in o), and
y-axis is the frequency (in kHz).
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Figure 2. (a) FNBW, (b) WNG, and (c) DF for the beamformers designed with the parameters in
Table 1.

6. Conclusions

We have introduced a novel approach for designing a constant-beamwidth beam-
former with null-direction constraints, utilizing uniform rectangular arrays and a general-
ized convolutional Kronecker product beamforming technique. By synthesizing beamform-
ers for virtual arrays and applying our proposed technique to a full array, we successfully
achieved the desired features in terms of beamwidth and null placement. Moreover, by
using virtual arrays and beamformers, we demonstrated the ability to enhance the signal
quality in terms of white noise gain and the directivity factor without compromising the
beamwidth. The experimental results using simulated sensor arrays demonstrate that
the performance of our method surpassed the performance obtained using only known
techniques based on the Kronecker product for beamforming synthesis when assessing
beamwidth, white noise gain, and directivity.
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Abbreviations
The following abbreviations are used in this manuscript:
CB Constant beamwidth
CKP Convolutional KP
DF Directivity factor
DS Delay and sum
DSDI Desired signal distortion index
FNBW First-null beamwidth
KP Kronecker product
LCKP Linear CKP
LCMV Linearly constrained minimum variance
MVDR Minimum variance distortionless response
RCKP Rectangular CKP
SD Superdirective
ULA Uniform linear array
URA Uniform rectangular array
WNG White noise gain

Appendix A. Proof of CKP Beamforming for URAs

We assume a rectangular uniform sensor array of size Mx ×My, with steering vector
d, and two subarrays of sizes M1,x ×M1,y and M2,x ×M2,y, with steering vectors d1 and
d2, such that M1,x + M2,x − 1 = Mx and M1,y + M2,y − 1 = My. We define

∼
h = h1 ⊗ h2, (A1a)
∼
d = d1 ⊗ d2. (A1b)

From this, it easily follows that

∼
h
H∼

d =
(

hH
1 d1

)(
hH

2 d2

)
. (A2)

Expanding both,

hHd =

(
M1−1

∑
m1=0

h∗1 [m1]d[m1]

)(
M2−1

∑
m2=0

h∗2 [m2]d[m2]

)
. (A3)

We define H1 = V −1
(
h1; M1,y

)
as the inverse vectorization of h1; similarly, D = V −1(d; My)

is the inverse vectorization of d, and H2 = V −1
(
h2; M2,y

)
is the inverse vectorization of h2.

Using the inverse vectorization on the sum over m1, we have

M1−1

∑
m1=0

h∗1 [m1]d[m1] =
M1,x−1

∑
m1,x=0

M1,y−1

∑
m1,y=0

H∗1 [m1,x, m1,y]D[m1,x, m1,y]. (A4)

https://github.com/VCurtarelli/py-cb-lcmv-rect
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We also assume that D[m1,x, m1,y] = dx[m1,x]dy[m1,y], by the definition of the steering vector.
Applying a similar process to the sum over m2 from (A3),

∼
h
H∼

d =


M1,x−1
M1,y−1

∑
m1,y=0
m1,x=0

H∗1 [m1,x, m1,y]dx[m1,x]dy[m1,y]



×


M2,x−1
M2,y−1

∑
m2,y=0
m2,x=0

H∗1 [m2,x, m2,y]dx[m2,x]dy[m2,y]

,

(A5)

By applying the Cauchy product [33] to the second sum twice,

∼
h
H∼

d =

M1,x+M2,x−2
M1,y+M2,y−2

∑
my=0
mx=0

k2,x
k2,y

∑
ny=k1,y
nx=k1,x

(H∗1 [nx, ny]dx[nx]dy[ny])

× (H∗2 [mx − nx, my − ny]dx[mx − nx]dy[my − ny])

=

Mx−1
My−1

∑
my=0
mx=0

k2,x
k2,y

∑
ny=k1,y
nx=k1,x

(H∗1 [nx, ny]H∗2 [mx − nx, my − ny])

× (dx[nx]dy[ny]dx[mx − nx]dy[my − ny]).

(A6)

By the definition of the steering vectors, dx[a]dx[b] = dx[a + b] (also for dy), and, therefore,
the d term becomes dx[mx]dy[my] = D[mx, my]. By noting that the sum over H1 and H2
is the 2-D convolution between them (at the element [mx, my]), and with this defining
H = H1 ~ H2 (where ~ denotes the 2-D convolution), then

∼
h
H∼

d =

Mx−1
My−1

∑
my=0
mx=0

H∗[mx, my]D[mx, my]. (A7)

Finally, by vectorizing H and D into h and d,

∼
h
H∼

d =

Mx−1
My−1

∑
my=0
mx=0

h∗[Mymx + my]d[Mymx + my]

=
M−1

∑
m=0

h∗[m]d[m]

= hHd,

(A8)

which concludes the proof.

Appendix B. Pseudocode Algorithms

These algorithms are written in a Python-like pseudolanguage. Brackets can denote
both vector definition and vector slicing/indexing. For example, a = [1, 2, 3, 4, 5] denotes a
1× 5 vector, while b = a[0 : 3] denotes a 1× 3 vector, such that b = [1, 2, 3] (last exclusive
slicing, zero indexing). Comments are added where necessary to clarify the steps.
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Algorithm A1 RCKP beamforming algorithm

Input:
h1 , h2 , · · · , hK # Input beamformers
M1,y , M2,y , · · · , MK,y # Beamformer y-axis sizes

Output:
h # Full-array beamformer
Mx , My # Output beamformer sizes

Procedure:
H← [[1]] # 1× 1 matrix
My ← 1
for 0 ≤ k < K do

H′ ← V −1
(
hk; Mk,y

)
H← H ~ H′

My ← My + Mk,y − 1
end for
h← V(H)
M← len(h) # Length of output vector
Mx ← M

My

Algorithm A2 CB-LCMV beamformer algorithm

Input:
M1,x , M′2,x , M′′2,x , M1,y , M2,y # Array sizes
dθ1;LCMV , · · · , dθN ;LCMV , N # LCMV nulls
dx , dy # Steering vectors
Φy , G # Coherence matrices
β # CB parameter

Output:
h # Full-array beamformer

Procedure:
# LCMV beamformer

dLCMV ← dx[0 : M1,x]⊗ dy[0 : M1,y]
C← [dLCMV dθ1;LCMV · · · dθN ;LCMV]

q← [1] + [0] ∗ N; q← qT

hLCMV ← Φ−1
y C

(
CHΦ−1

y C
)−1

q # Equation (12a)
# CB beamformer

dCB ← dy[0 : M2,y]

hCB ← [0] ∗M2,y; hCB ← hT
CB

for 0 ≤ m < M2,y do
hCB[m]← calcCB(m, M2,x, β) # calcCB() is as in Equation (13)

end for
hCB ← hCB/ ∑ hCB

# SD and DS beamformers
dSD ← dx[0 : M′2,x]

dDS ← dx[0 : M′′2,x]

hSD ← G−1d
dHG−1d # Equation (15a)

hDS ← d
M′′2,x

# Equation (15b)

# Full-array beamformer
h← RCKP(hLCMV, hSD, hDS, hCB ; M1,y, 1, 1, M2,y) # Equation (A1)
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