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ABSTRACT

We introduce a general and data-driven adaptation-control frame-
work for stereophonic acoustic-echo cancellation. The adaptation
update rule for the filters that estimate the actual echo paths is com-
pactly expressed with the widely-linear model in the complex time
domain. A single step-size parameter that governs the behavior of
the adaptation process is optimized by minimizing the misalignment
between the actual echo paths and their filtered estimate. The rela-
tion between acoustic signals and the optimal step-size is learned
via a deep neural network. In test mode, the optimal step-size pre-
diction is inferred by the network and fed to the sign-error nor-
malized least mean-squares (SNLMS) adaptive filter for echo-paths
tracking. Real and simulated data show advantageous performance
in single and double-talk scenarios across various acoustic setups.

Index Terms— Stereophonic acoustic echo cancellation, adap-
tation control, variable step-size, sign-error NLMS, deep learning.

1. INTRODUCTION

In stereophonic hands-free speech communication, the near-end mi-
crophones may capture three types of acoustic signals; the desired
speech, additional noises, and reverberant echoes. The echoes are
nonlinearly distorted versions of the far-end signal played by loud-
speakers and reverberate to the microphones via echo paths [1].
These echoes may impede conversation intelligibility as perceived
by the far-end participant. The stereophonic acoustic echo cancella-
tion (SAEC) task is two-fold; tracking the near-end echo-paths and
subtracting them from the microphones signals, and communicating
the undistorted desired-speech signal to the far-end [2].

The popular normalized least mean-squares (NLMS) adaptive
filter is numerically stable and efficient [3, 4]. Its sign-error NLMS
(SNLMS) variation employs the polarity of the adaptation error [5]
and is favorable over the NLMS due to its protection against abrupt
noises [6–8]. The adaptation of the SNLMS filter is governed by
the step-size parameter, which balances the convergence pace and
the adaptation accuracy of the filter. Controlling the step-size is
desirable in scenarios of frequent acoustic changes, e.g., echo-path
variations and single-to-double-talk transitions. The variable step-
size (VSS) problem has motivated Haubner et al. to employ deep
learning for near-end speech [9] and noise [10] evaluation, and to
reduce the error of the adaptive process [11]. Meta-learning-based
solutions have also recently emerged in [12]. The a priori adap-
tation error and the far-end signal undergo feature extraction for
VSS estimate in [13] and a non-parametric VSS (NPVSS) mini-
mized the adaptation error in [14]. The mean-error sigmoid VSS
(SVSS) combines adaptation-error history with current adaptation-
error estimate [15].

The methods in [9–11] model the far-end signal as linear with
its respective echo-signal, and the studies in [13–15] consider the

echo path as time-invariant. Unfortunately, both assumptions re-
strict performance in realistic setups and may cause low adapta-
tion accuracy with slow convergence-pace [16]. On top of that,
parameter-tuning, as in the NPVSS [14], involves heuristics that are
inaccurate in practice. Thus, SAEC in real-life scenarios remains a
relevant challenge and an active research area.

Inspired by [17], we mitigate these disparities by introducing
a data-driven framework for deep learning-based VSS (DVSS) that
avoids heuristics and does not require acoustic setup hypotheses.
First, the update rule of the adaptation process, governed by the
step size, integrates the widely-linear model in the complex time
domain. The mismatch between the actual echo paths and their fil-
tered estimate is quantified by the normalized misalignment, which
is then minimized with respect to the step size. A neural network
(NN) relates acoustic signals to the optimal step-size in training, and
the predicted step-size feeds the SNLMS filter in real time for track-
ing the echo paths. The described framework is novel for SAEC.

We compare our approach with the competition by consider-
ing a pair of near-end loudspeakers and microphones, although this
framework generalizes to any number of channels. Experimenting
with 100 h from the AEC-challenge corpus [18] reveals the con-
sistent advantage of the DVSS in single and double-talk periods
across various acoustic setups. The DVSS-SNLMS system also
re-converges more rapidly and accurately after abrupt echo-path
changes and is more robust to single-to-double-talk transitions.

2. PROBLEM FORMULATION

Our DVSS-SNLMS setup is in Figure 1. The left and right near-end
microphones mL (n) and mR (n) at time index n are, respectively,

mL (n) = yL (n) + sL (n) + wL (n) , (1)
mR (n) = yR (n) + sR (n) + wR (n) , (2)

where sL (n) and sR (n) are the near-end speech signals, wL (n) and
wR (n) represent environmental and system noises, and yL (n) and
yR (n) are the nonlinear reverberant echo signals, as correspond-
ingly captured by the left and right microphones:

yL (n) = hT
LL (n)xNL,L (n) + hT

RL (n)xNL,R (n) , (3)

yR (n) = hT
LR (n)xNL,L (n) + hT

RR (n)xNL,R (n) . (4)

Here, xNL,L (n) and xNL,R (n) respectively denote the L-recent sam-
ples from the left and right far-end signals, i.e., xL (n) and xR (n),
subsequent to nonlinear distortions by nonideal hardware [16]:

xNL,L (n) = [xNL,L (n) , . . . , xNL,L (n− L+ 1)]T , (5)

xNL,R (n) = [xNL,R (n) , . . . , xNL,R (n− L+ 1)]T , (6)

and each of the column vectors hLL (n), hRL (n), hLR (n), hRR (n)
has L samples and represents an echo path from the loudspeakers
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to the microphones, also known as a room impulse response (RIR).
Instead of tracking 4L real-valued coefficients, we turn to the more
compact widely-linear model [19] by defining the complex signals:

h (n) = h1 (n) + jh2 (n) , (7)

h′ (n) = h′
1 (n) + jh′

2 (n) , (8)

where j =
√
−1, and

h1 (n) = 0.5 [hLL (n) + hRR (n)] , (9)
h2 (n) = 0.5 [hRL (n)− hLR (n)] , (10)

h′
1 (n) = 0.5 [hLL (n)− hRR (n)] , (11)

h′
2 (n) = −0.5 [hRL (n) + hLR (n)] . (12)

The complex echo signal y (n) = yL (n) + jyR (n) can now be
expressed in a widely-linear manner by y (n) = h̃H (n) x̃NL (n):

h̃ (n) =

[
h (n)
h′ (n)

]
, (13)

x̃NL (n) =

[
xNL (n)
x∗

NL (n)

]
, (14)

where xNL (n) = xNL,L (n) + jxNL,R (n). The superscripts H

and ∗ correspondingly notate the transpose-conjugate and con-
jugate operations. As a result, the complex microphone signal
m (n) = mL (n) + jmR (n) can be formulated by

m (n) = h̃H (n) x̃NL (n) + s (n) + w (n) , (15)

where s (n) = sL (n) + jsR (n) and w (n) = wL (n) + jwR (n).

The echo estimation ŷ (n) =
̂̃
h
H

(n) x̃ (n), where x̃ (n) and
x̃NL (n) follow the same notation, is evaluated by tracking the 2L

complex-coefficients of ̂̃h (n) with the SNLMS adaptive filter. Sub-
sequently, the complex near-end speech estimate can be drawn by

e (n) = m (n)− ŷ (n) (16)
= (y (n)− ŷ (n)) + s (n) + w (n) ,

where e (n) = eL (n) + jeR (n). Our focus is two-fold; tracking
and cancelling the echo signal, i.e. nullifying y (n)− ŷ (n), and
avoiding distortion of the near-end speech, i.e. preserving s (n).

3. DVSS-SNLMS FILTER FOR SAEC

3.1. Modeling the SNLMS Filter and Step-size in Double-talk

By placing (15) and the definition of ŷ (n) into (16), we respectively
derive the a priori and a posteriori errors of the SNLMS filter [4]:

ϵ (n) = h̃
H

(n) x̃NL (n) − ˆ̃
h

H
(n − 1) x̃ (n) + s (n) + w (n) , (17)

e (n) = h̃
H

(n) x̃NL (n) − ˆ̃
h

H
(n) x̃ (n) + s (n) + w (n) . (18)

The update rule of the 2L complex-valued filter coefficients is [5]:

ˆ̃
h (n) =

ˆ̃
h (n− 1) + µ (n) x̃ (n) sign (ϵ∗ (n)) , (19)

where ˆ̃
h (0) is a column vector of 2L zeros, the step-size is given

by µ (n) ∈ R, and sign (z) = z/|z| for every z ∈ C, where | · | is
the absolute value. From (17)–(19):

e (n) = ϵ (n)− µ (n) sign (ϵ (n)) x̃H (n) x̃ (n) . (20)
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Figure 1: Top - SAEC scenario under the widely-linear model. Bot-
tom - the DVSS-SNLMS block, where a NN estimates the step-size

µ̂∗ (n) and the SNLMS filter estimates the acoustic paths via ˆ̃
h (n).

We now force the a posteriori error to a complete echo-cancellation
and extract the corresponding expression of the step-size µ (n) [19].
Assuming s (n) and w (n) are zero-mean and uncorrelated [4]:

σ2
e (n) = σ2

s (n) + σ2
w (n) , (21)

where σ2
e (n) = E

[
|e (n) |2

]
and σ2

s (n), σ2
w (n) follow the same

definition. Now, the E
[
| · |2

]
operator is applied on both sides of

(20), and then (21) is substituted into (20). This process yields

µ (n) = c+

√√√√σ2
s (n) + σ2

w (n)− σ2
ϵ (n)

E
[
(x̃H (n) x̃ (n))2

] − c2, (22)

where c = E
[
|ϵ|x̃H (n) x̃ (n)

]
/E

[(
x̃H (n) x̃ (n)

)2]
.

3.2. Step-size Optimization with a Data-driven Approach

The mismatch between the adaptive and true filter coefficients is
often assessed using the normalized misalignment measure [19]:

D (n) =

∥∥∥h̃ (n)− ˆ̃
h (n)

∥∥∥
2∥∥∥h̃ (n)

∥∥∥
2

(23)

=

∥∥∥h̃ (n)− ˆ̃
h (n− 1)− µ (n) x̃ (n) sign (ϵ∗ (n))

∥∥∥
2∥∥∥h̃ (n)

∥∥∥
2

,
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where (19) was employed to the second transition and ∥ · ∥2 is the
ℓ2 norm. We now solve a constrained nonlinear optimization prob-
lem [20] to yield the optimal step-size. Formally, the normalized
misalignment is minimized with respect to the step-size, in dB:

µ∗ (n) = argmin
0<µ(n)<2

20 log10 D (n) , (24)

where the condition 0 < µ (n) < 2 is dictated by the stability re-
quirements of NLMS-based adaptive filters [4]. The active-set op-
timization algorithm [21] is utilized to perform optimization. Ac-
cording to (23), the only values involved in deriving D (n) are the
far-end and the a priori error signals. This data-driven approach
does not require heuristic parameter tuning to estimate µ∗ (n).

3.3. Deep Adaptation to the Optimal Step-size

A deep NN is integrated into our system to model the relation de-
rived in (22) between acoustic signals and the optimal step-size
µ∗ (n). Despite the near-end speech and noise signals being inac-
cessible in reality, the microphone signal can serve as an approxima-
tion. Thus, the microphone signal, along with the far-end and a pri-
ori error signals, are mapped to their respective step-size. The NN
architecture is of a convolutional form [22] with six input channels,
one for the real and one for the imaginary part of each of the three
input signals. These six waveforms undergo short-time Fourier
transform (STFT) [23] separately before being fed to the NN. The
specific architecture is standard and follows the one in [17]. During
training, optimization is carried to minimize the ℓ2 norm between
the optimal step-size µ∗ (n) and the output of the network. During
inference, the step-size estimate µ̂∗ (n) is evaluated by the network
and injected to an SNLMS filter that tracks the echo paths. Address-
ing complexity analysis, the NN and the SNLMS filter consume
4.2 Million floating-point operations per second (Mflops) and 4.8
Megabytes (MB) of memory, by employing 1.05 Million parame-
ters. Embedding this system into real-life edge devices for hands-
free speech communication is thus considered feasible in terms of
resources [24]. One example of dedicated hardware for this task is
the NDP120 neural processor by SyntiantTM [25].

4. EXPERIMENTAL SETUP

4.1. Database Acquisition

The database corpus utilized in this study includes 100 h of noisy
and clean segments taken from the AEC-challenge [18], where 25 h
are simulated recordings, and 75 h are real recordings. The AEC-
challenge data involves scenarios with no echo-paths change, where
the near-end speaker and devices do not move, and scenarios with
echo-paths change, where either the near-end speaker or devices are
moving. We consider both double-talk periods and single-talk peri-
ods with far-end speakers only. Practically, audio clips are assigned
to the original far-end source signal r (n) and to the near-end speech
and noise signals, where sL (n) = sR (n) and wL (n) = wR (n) in
this study. To produce the far-end signals xL (n) and xR (n), r (n)
is randomly propagated via one of 4500 pairs of RIRs that generate
gL (n) and gR (n), i.e., the acoustic paths between r (n) and the left
and right far-end microphones, respectively. To account for realistic
acoustic environments, one of 4500 simulated nonlinear functions
is applied to every xL (n) and xR (n) pair in a random fashion.
These nonlinearities are modeled after realistic power amplifiers
and loudspeakers in current hands-free hardware [16]. Each pair of

nonlinearly-distorted far-end signals xNL,L (n) and xNL,R (n) is ran-
domly propagated via one of 4500 foursomes of near-end RIRs. All
RIRs are generated using the Image Method [26] with L coefficients
and reverberation times RT60, where RT60 ∼ U [0.2, 0.5] seconds.
The near-end stereo-echo-to-speech ratio (SESR) and stereo-echo-
to-noise ratio (SENR) levels were drawn from [−10, 10] dB and
[0, 40] dB, respectively, where SESR=10 log10

[
|y (n) |2/|s (n) |2

]
and SENR=10 log10

[
|y (n) |2/|w (n) |2

]
in dB [19]. These ratios

are derived by running 20 ms frames that overlap by 50%.

4.2. Preprocessing, Training, and Inference

We recognize the well-known non-uniqueness problem in setups of
SAEC, where strong coherence between xNL,L (n) and xNL,R (n)
may degrade the adaptation process [27]. To mitigate that, we apply
the following channel-wise transformation introduced in the context
of the widely-linear model [19]. First, we define the positive and
negative half-wave rectifiers [28]:

x′
NL,L (n) = xNL,L (n) + 0.5 [xNL,L (n) + ∥xNL,L (n) ∥] , (25)

x′
NL,R (n) = xNL,R (n) + 0.5 [xNL,R (n)− ∥xNL,R (n) ∥] . (26)

With the element-wise operation tanθ (n) = x′
NL,R (n) /x′

NL,L (n):

x′′
NL,L (n) = cosθ (n) ∥xNL (n) ∥, (27)

x′′
NL,R (n) = sinθ (n) ∥xNL (n) ∥, (28)

where eqs. (27) and (28) use element-wise arithmetic. This trans-
formation modifies only phase information, so employing x′′

NL,L (n)
and x′′

NL,R (n) instead of xNL,L (n) and xNL,R (n) allows a desired
reduction in coherence with the advantage of little distortion.

The entire 100 h batch of data is split to yield training, val-
idation, and test sets of sizes 80 h, 10 h, and 10 h, respectively.
The split is random, but constrained to preserve balance and avoid
bias by following the principles in [29]. Using the training and
validation parts, the step-size is evaluated once every 8 ms ac-
cording to (24) with parameter values of µ(0) = 3 × 10−5 and
L = 2400. Echo-paths are abruptly changed once every t seconds,
where t ∼ U [4, 10], which characterizes in-the-wild conversations.
Waveforms undergo STFT with running time frames that are 16 ms
long and have 50% overlap. Before being inserted into the network,
every STFT representation of every channel is attached to its 96 ms
past context. Training the network using back-propagation involves
learning rate of 10−4 that decays by 10−6 every 5 epochs, mini-
batch size of 32 ms, and 40 epochs, using Adam optimizer [30].
The real-time inference is done on the test set. After the artificial
gain of the network is calibrated according to [31], the step-size es-
timate is injected from the network output into the SNLMS, which
constantly evaluates the echo paths. Training the network took 32
minutes for every 1 h of input data from all channels. The inference
time for the end-to-end system, from the network entry to the echo-
paths estimate, is 26 ms on average using an Intel Core i7-8700K
CPU @ 3.7 GHz with two GPUs of Nvidia GeForce RTX 2080 Ti.

4.3. Performance Measures

In single-talk periods with only far-end signals and noise pres-
ence, we estimate the echo suppression level between the micro-
phone and enhanced signals using the echo return loss enhancement
(ERLE) [32], defined as 10 log10

[
|m (n) |2/|e (n) |2

]
. In double-

talk, we consider both the signal-to-distortion ratio (SDR) [33] and
the perceptual evaluation of speech quality (PESQ) [34]. The SDR
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Table 1: Performance with no echo-paths change.

SDR [dB] PESQ ERLE [dB] Norm. Mis. [dB]
DVSS 3.31±0.6 2.45±0.3 16.1±4.8 -17.3±4.4

NPVSS 2.47±1.0 2.01±0.4 12.9±5.9 -14.8±4.6
NNVSS 2.41±1.0 1.86±0.5 12.5±6.0 -14.2±4.8
SVSS 2.12±0.9 1.73±0.5 10.7±6.5 -13.1±4.8

SNLMS 1.93±1.1 1.60±0.3 9.7±6.8 -11.6±5.2

Table 2: Performance with echo-paths change.

SDR [dB] PESQ ERLE [dB] Norm. Mis. [dB]
DVSS 3.05±0.8 2.27±0.4 10.9±6.3 -12.5±5.7

NPVSS 2.20±1.2 1.79±0.5 7.9±6.5 -9.9±5.9
NNVSS 1.98±1.1 1.71±0.5 7.4±6.8 -9.4±6.1
SVSS 1.91±1.3 1.63±0.5 7.0±6.8 -9.2±5.9

SNLMS 1.74±1.5 1.51±0.3 6.6±6.3 -8.2±6.0

Table 3: Convergence times [sec] and success rates [%].

DVSS NPVSS NNVSS SVSS SNLMS
4.4s, 79% 7.1s, 63% 8.5s, 55% 8.6s, 51% 9.1s, 48%

is defined by 10 log10
[
|s (n) |2/|e (n)− s (n) |2

]
and is affected

by both echo levels and speech distortion levels. The PESQ we re-
port is the average of the PESQ score between sL (n) and eL (n),
and the PESQ score between sR (n) and eR (n). These measures
are derived with running time frames of 20 ms with an overlap of
50%. For a complete view of performance, we report the adaptation
convergence times and convergence success rates. Convergence is
considered achieved when D (n) falls below −10 dB and is con-
sidered successful if D (n) remains below −10 dB until echo-paths
change [4].

5. EXPERIMENTAL RESULTS

Our DVSS-SNLMS approach is matched against the VSS ap-
proaches in [13–15], correspondingly abbreviated “NNVSS”,
“NPVSS”, and “SVSS”. These competing algorithms were inte-
grated with the widely-linear model and the SNLMS filter for
an unbiased comparison. The SNLMS filter with step-size of
µ = 3× 10−5, briefly “SNLMS”, is the classic approach baseline.
Performance in Tables 1 and 2 is outlined with mean and standard
deviation (std) values, and Table 3 shows average test set values.

We distinguish between the performance when no echo-paths
changes occur, i.e., in Table 1, from segments where echo-paths
change, as in Table 2. In both cases, we only consider the post-
convergence of the adaptive filter. In Table 1 and Table 2, the mean
value of the results reflects the advantage of the DVSS method over
the competition. The ERLE stresses the leading echo suppression of
the DVSS method, and the SDR and PESQ measures reveal its abil-
ity to maintain low speech distortion and high speech quality. It is
also noted that the low std values of the DVSS indicate the stability
of its performance across various acoustic setups. Table 3 affirms
that our method achieves the shortest re-convergence times and the
most successful convergence rates in scenarios with no echo-path
changes. Unlike the competition, our method has shown a promi-
nent ability to track echo paths by adapting the step-size accurately
and rapidly while maintaining high robustness and generalization
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Figure 2: Convergence comparison. Near-end echo paths abruptly
change at 5 s. SESR and SENR values regularly vary.

capabilities. This can be associated with our approach avoidance of
heuristic parameter tuning and of making acoustic assumptions that
often mismatch realistic scenarios.

Fig. 2 depicts the desired convergence behavior of the DVSS-
SNLMS filter in a two-fold manner; it shows the most rapid con-
vergence and re-convergence after abrupt echo-paths change, and
it is also the least disturbed by the occurrence of double-talk. On
the contrary, competing VSS-based methods slightly diverge due to
double-talk, which impedes their convergence success afterward.

6. CONCLUSIONS

Controlling the step-size in adaptive filtering can allow for opti-
mally operate between convergence rate and adaptation accuracy.
This study attempts to bring this ability a step closer to practice
by introducing a general adaptation-control framework that is both
non-parametric and does not require acoustic assumptions and ap-
ply it to SAEC. Using the widely-linear model, we first derive the
optimal step-size by minimizing the filter misalignment in the com-
plex time domain. Then, we train a neural network to predict this
optimal step-size from acoustic data in real time. Based on this
step-size estimate, the SNLMS filter tracks the echo paths and per-
forms well over competition across various acoustic setups. Future
work may focus on generalization to scenarios where near-end mi-
crophones capture different versions of the speech and noise signals.
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Perspective on Stereophonic Acoustic Echo Cancellation.
Springer Science & Business Media, 2011, vol. 4.

[20] A. Ruszczynski, Nonlinear optimization. Princeton univer-
sity press, 2011.

[21] W. W. Hager and H. Zhang, “A new active set algorithm for
box constrained optimization,” SIAM J. on Opt., vol. 17, no. 2,
pp. 526–557, 2006.

[22] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding
of a convolutional neural network,” in Proc. Int. Conf. Eng.
Tech. IEEE, 2017, pp. 1–6.

[23] D. Griffin and J. Lim, “Signal estimation from modified short-
time Fourier transform,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 32, no. 2, pp. 236–243, 1984.

[24] ETSI ES 202 740: Speech and multimedia Transmission
Quality (STQ); Transmission requirements for wideband VoIP
loudspeaking and handsfree terminals from a QoS perspective
as perceived by the user, ETSI Std., 2016.

[25] “NDP120 Syntiant™ Neural Processor,” https:
//www.syntiant.com/ndp120, 2021.

[26] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” J. Acoust. Soc. America,
vol. 65, no. 4, pp. 943–950, 1979.

[27] T. Gansler and J. Benesty, “New insights into the stereophonic
acoustic echo cancellation problem and an adaptive nonlin-
earity solution,” IEEE Trans. Speech Audio Process., vol. 10,
no. 5, pp. 257–267, 2002.

[28] D. R. Morgan, J. L. Hall, and J. Benesty, “Investigation of sev-
eral types of nonlinearities for use in stereo acoustic echo can-
cellation,” IEEE Trans. Speech Audio Process., vol. 9, no. 6,
pp. 686–696, 2001.

[29] A. Ivry, I. Cohen, and B. Berdugo, “Deep residual echo sup-
pression with a tunable tradeoff between signal distortion and
echo suppression,” in Proc. ICASSP. IEEE, 2021, pp. 126–
130.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in Proc. ICLR, 2015.

[31] A. Ivry, I. Cohen, and B. Berdugo, “Objective metrics to eval-
uate residual-echo suppression during double-talk,” in Proc.
WASPAA, 2021.

[32] ITU-T Rec. G.168: Digital network echo cancellers, ITU-T
Std., Feb. 2012.

[33] E. Vincent, R. Gribonval, and C. Févotte, “Performance mea-
surement in blind audio source separation,” IEEE Trans. Au-
dio, Speech, Lang. Process., vol. 14, no. 4, pp. 1462–1469,
2006.

[34] ITU-T Rec. P.862.2: Wideband extension to recommendation
P. 862 for the assessment of wideband telephone networks and
speech codecs, ITU-T Std., Oct. 2017.


