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ABSTRACT

Frequency-invariant (FI) beamformers are used in audio and acous-
tic applications to enhance broadband signals with possibly varying
angles of arrival. One of the main challenges is designing such
beamformers using a small number of sensors while still perform-
ing well under adverse conditions. This paper introduces a new
design approach for FI beamformers with sparse concentric circular
arrays. We propose an iterative greedy design that optimizes both
the number of required sensors and rings while preserving the pre-
defined directivity pattern’s properties for different frequencies and
azimuthal steering directions. Experimental results demonstrate the
benefits of the proposed sparse sensor design and FI beamformer
in terms of array gain and rotationally invariant beampattern, under
limited computational and hardware constraints.

Index Terms— Concentric circular array, frequency-invariant
beamformer, rotation invariance, sparse array.

1. INTRODUCTION

Planar arrays are popular in practical applications that require a
variable azimuthal mainlobe direction while preserving the perfor-
mance of array gain and directivity pattern [1–3]. In particular, pla-
nar concentric circular arrays (CCAs) that contain several rings of
sensors and provide similar and steerable beampattern for 360◦ az-
imuthal coverage are advantageous also for broadband beamform-
ers as they enable robust and frequency-invariant (FI) beampatterns
over a wide range of frequencies [4]. Among several extensively
explored classical approaches for FI beamformer design [5–14], the
sparse design class is of great interest since both the beamformer
gains as well as the total number of sensors and their positions are
optimized [15–19].

Previous work on sparse CCAs design includes genetic al-
gorithms (GA) [20–22], modified particle swarm optimization
(MPSO) [23], and biogeography-based optimization (BBO) [24].
However, these approaches focus mainly on the narrowband case
and the optimization of the ring radii only, each with uniformly-
spaced sensors. Broadband sparse designs of FI beamformers for
rotationally symmetric sparse CCAs are presented in [25–30].

In this paper, we extend our recent work on a sparse design of
FI-CCA beamformers [30], where we presented a greedy-based ap-
proach that optimizes the number of sensors and rings while taking
into consideration the requirement regarding the rotation-invariance
property. However, the design in [30] is based on a separate opti-
mization framework for the sensors and rings. Herein, we propose a
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Figure 1: A concentric circular array with G rings. The gth ring,
has a radius of rg , and consists of Mg omnidirectional sensors.

new generalized approach that simultaneously optimizes both num-
bers of sensors and rings while preserving FI and rotation invariance
properties, while ensuring desired properties like array gain and ro-
bustness. We generalized the standard orthogonal matching pur-
suit (OMP) greedy search algorithm originally designed for the nar-
rowband case to fit also to the joint-sparse case. Simulation results
show that the proposed design yields a FI and rotationally invari-
ant beamformer with high white noise gain (WNG) and directivity.
In addition, it requires reasonable resource consumption leading to
a practical design for applications involving large arrays with hun-
dreds of candidate sensors.

2. PROBLEM FORMULATION

Consider a CCA composed of G rings, each characterized by its
radius, rg , and a number Mg which represents the maximum pos-
sible positions for locating sensors along the gth ring, where g =
1, 2, . . . , G (see Fig. 1). It is assumed that 1 =M1 ≤M2 ≤ · · · ≤
MG. The total number of candidate positions is M =

∑G

g=1Mg ,
and the center of the CCA coincides with the first ring having
r1 = 0 and M1=1. Let θ denote the azimuthal direction of ar-
rival (DOA) of signals towards the array, measured anti-clockwise
from the x axis. The azimuthal DOA of the desired source signal
to the array is denoted by θds, where the subscript ‘ds’ stands for
‘desired.’

Let H(ω) be an MG × G weight matrix for a given frequency
ωj ∈ Ω, j = 1, . . . , J , where Ω is the frequency space, whose gth
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column contains the beamformer coefficients on the gth ring:

[H(ωj)]·,g = [H1,g(ωj), H2,g(ωj), . . . , HMg,g(ωj),0
T
MG−Mg

]T ,
(1)

where 0n is an n×1 vector with all entries equal to zero. Similarly,
let D(ωj , θp) be an MG × G steering matrix for a given θp ∈ Θ,
p = 1, . . . , P , whose gth column is given by

[D(ωj , θp)]·,g=[dg,1(ωj , θp), . . . , dg,Mg (ωj , θp),0
T
MG−Mg

]T, (2)

where Θ is the angle space, dg,m(ωj , θp) = e
ωjrg

c
cos(θp−ψg,m),

and ψg,m = 2π(m−1)
Mg

, m = 1, 2, . . . ,Mg .

The beampattern of the sparse array for a given frequency ωj
and azimuth angle θp can be expressed as [30]:

B (ωj , θp) = trace(HH(ωj)D(ωj , θp)). (3)

Let B
θds

d (θ) denote the desired far-field FI beampattern in the band-
width of interest Ω, with a mainlobe steered to a specified azimuth
θds, where (θ, θds) ∈ Θ. Our goal is to design a sparse array with

a FI beampattern which is approximately the same as B
θds
d (θ), re-

gardless of ωj ∈ Ω, and regardless of the direction of the source,

yielding a similar beampattern B
θ̃ds

d (θ) for each θ̃ds only by chang-
ing H(ωj), ∀ωj ∈ Ω. Since designing such an array for any source
direction is cumbersome, we focus on a more practical design. We
partition the azimuth space into the Q sectors

Θq : {θ :
360◦

Q
(q − 1) ≤ θ <

360◦

Q
q} , q = 1, 2, . . . , Q . (4)

Each azimuth sector represents the possibility that θds ∈ Θq . We let
θqds represent the azimuth angle at the center of the sector associated
with the source direction assuming it arrives via the qth sector. Sec-
tor q is associated with the designed beampattern whose mainlobe
is steered to the direction θqds:

B(q)(ωj , θp) = tr((Hq(ωj))
H
D(ωj , θp)) , q = 1, . . . , Q , (5)

where H
q(ωj) is the weight associated with the qth sector. We

also set WNG and the distortionless response (DR) constraints
(specified later) on these weights for a given sector q and fre-
quency ωj . We look for a sparse design such that the sensors are
spread sparsely over a small set of rings out of the G rings, which
means that ‖H(ωj)‖0,2 = ‖‖[H]·,1(ωj)]‖2, . . . , ‖H]·,G(ωj)‖2‖0
is small enough, i.e., less than a predefined threshold η. All re-
quirements focus on minimizing the number of nonzero elements
in the weight matrix defined by the zero-norm ‖H(ωj)‖0 under the
above constraints. Mathematically speaking, our optimization prob-
lem can be expressed as the following sparse optimization problem:

min .
H(ωj)

‖H(ωj)‖0 s.t.
∑J

j=1

∑P

p=1‖B
θ
q
ds

d (θp)−B(q)(ωj , θp)‖
2 ≤ ǫ

,WNG(H(ωj))≥γ(ωj)
−1,DR(H(ωj))=1, ‖H(ωj)‖0,2≤η

, ∀θqds ∈ Θq , q = 1, . . . , Q,
(6)

where γ(ωj) is a parameter expressing the maximal allowed white
noise output power for frequency ωj . Herein, we propose an ap-
proximated solution to this sparse optimization problem using a
greedy-based algorithm.

3. A GREEDY BASED DESIGN

One of the popular tools for implementing greedy-based search al-
gorithms is the OMP. However, applying the OMP algorithm di-
rectly to our problem is impractical. Hence, we derive a modified
version of the OMP algorithm in the following.

Define the vector d (ωj , θp) of length M containing the
nonzero elements of the matrix D (ωj , θp) arranged in a column
vector. In general, the mainlobe and sidelobe regions may require
different amount of resolution or accuracy. Thus we set P ′ ≤ P di-
rections that cover the mainlobe region Θm, where the subscript m
stands for mainlobe, and the remaining P −P ′ directions that cover
the sidelobe region Θs where the subscript s stands for sidelobe. As
a particular case, one can set P ′ = P and treat the entire azimuthal
space uniformly. Define the M × P ′ matrix

DM,Θm
(ωj) = [d (ωj , θ1) ,d (ωj , θ2) , . . . ,d (ωj , θP ′)] , (7)

and

b
m
d (θds) =

[

B
θds
d (θ1) ,B

θds
d (θ2) , . . . ,B

θds
d (θP ′)

]T

(8)

to be a vector that contains samples of the desired beampattern in
the directions covering the mainlobe. Similarly, define the matrix
DM,Θs

(ωj), and the vector bs
d(θds). Consider the following set of

matrices Dq
ωj

of size P ×M

D
q
ωj

=

[

D
H
M,Θm+θ

q
ds

(ωj)

D
H
M,Θs+θ

q
ds

(ωj)

]

. (9)

We treat the matrices {Dq
ωj
}Qq=1 as dictionaries that contain in each

column one word of length P , also called an atom, which corre-
sponds to one of the M candidate sensors. It is desired to express

B
θds+θ

q
ds

d (θ) with atoms from the dictionary D
q
ωj

by finding vec-

tors
{

h
q (ωj) ∈ C

M
}Q

q=1
with the same support that solve:

D
q
ωj
h
q (ωj) = bd(θds + θqds), (10)

where the desired beampattern is

bd(θds + θqds) =

[

b
m
d (θds + θqds)

b
s
d(θds + θqds)

]

. (11)

Since typically the linear system of equations that Dq
ωj

represents is
underdetermined, (10) has an infinite number of solutions. Among
them, the class of sparse solutions with few nonzero elements is
of great interest because it means that practically few sensors are
required to construct the desired beampattern. Mathematically, the
solution with the fewest nonzero elements can be found by solving
the NP-hard ℓ0-norm problem:

min ‖hq (ωj)‖0 subject to D
q
ωj
h
q (ωj) = bd(θds + θqds), (12)

where ‖x‖0 is the number of nonzero elements in the vector x.
The joint-sparse OMP algorithm contains the following steps.

At first, ∀ωj ∈ Ω, we initialize the vectors

r
(0)
q (ωj) = bd(θds + θqds) , (13)

of length P to be a residual vector, which is supposed to converge
to a zero vector iteratively, and we also initialize the sparse vectors

b
(0)

(g,q) (ωj) = 0P , (14)
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which store the designed desired beampattern after the iterative al-
gorithm converges. Finally, we initialize the M × M diagonal
weighting matrices W(0) = IM and R

(0) = IM and set q = 0. In
each iteration l, the matrix W

(l) is a weighting matrix used to as-
sign low weights to sensors already chosen in the previous iteration
and to their neighbors by multiplying the corresponding indices by
a mask vector. The matrix R

(l) is also a weighting matrix used to
assign priority to sensors belonging to rings already selected in the
previous iterations. Both these matrices are defined later.

In each iteration of the basic standard OMP algorithm, it is de-
sired to find the next atom which has the most contribution in the
reconstruction of the desired vectors, b

(l)

(g,q) (ωj) , ωj ∈ Ω. It is

done by projecting r
(l)
q (ωj) , ωj ∈ Ω, over all the remaining atoms

in the current iteration and taking the maximal projection.
As we are interested in obtaining a sparse array layout that is

joint to all ωj ∈ Ω, we have to consider that in each iteration l when
searching for the sensor with the largest contribution. Moreover, we
want to obtain a rotationally invariant response and minimize the
number of rings. Let the (l− 1)× 1 indication vector that contains
the indices of the selected sensors at the end of iteration l − 1 be
i
l−1. At the lth iteration we find the sensor out of M \ i

l−1 that
maximizes the function:

m∗ = argmax
m∈{1,...,M}\il−1

W
(l−1)
m,· R

(l−1)
J
∑

j=1

|(Dq
ωj
)Hr

(l)
q (ωj) |, (15)

where Wm,· is the mth row of the mask matrix W. The l × 1
indication vector is updated as:

i
(l) = [(i(l−1))T , m∗]T . (16)

Let {Dq
ωj
(i(l))}Qq=1 be matrices of size l × P containing only the

rows of Dq
ωj

whose indices are specified by i
(l), i.e.,

D
q
ωj
(i(l)) = Ts(i

(l))Dq
ωj
, (17)

where Ts(i
(l)) is an l×M selection matrix. We compute the l× 1

projection vectors of the desired beampattern over the chosen atoms
up to the lth iteration for all ωj ∈ Ω as

h
q

l (ωj) = (Dq
ωj
)#bd(θds + θqds), (18)

where X# = (XH
X)−1

X
H is the pseudo-inverse of X. Then (18)

is used to update the following vectors ∀ωj ∈ Ω:

b
(l)

(g,q) (ωj) = (Dq
ωj
(i(l)))Hh

q

l (ωj) , (19)

and

r
(l)
q (ωj) = r

(l−1)
q (ωj)− b

(l)

(g,q) (ωj) . (20)

Regarding the weighting matrices W and R, we proposed the fol-
lowing heuristic way. The masking matrix W

(l) is updated by

W
(l) = W

(l−1)diag(mT
l ), (21)

where ml contains attenuation factors in indices of the neighboring
sensors to the current selected one, and a zero entry for the index
of the selected sensor. Let g(m) be the index of the ring associated

with the mth sensor. The elements of the matrix R
(l) are

[R(l)]m = 1+

√

no. of sensors from i(l−1) on ring g(m)

Mg(m)

.

(22)

As a stopping criterion, we check whether the chosen sensors
up to the lth iteration comply with the constraints specified in the
previous section. To do so, we may solve the following constrained
optimization problem for each ωj ∈ Ω separately:

minimize
hl(ωj)

‖hl (ωj)‖
2
2

subject to

h
H
l (ωj)dl (ωj , θ

q

ds) = 1
∥

∥

∥
(bm

d (θds + θqds))
T− h

H
l (ωj)D

q

l,Θm
(ωj)

∥

∥

∥

2

2
≤ ǫ1(ωj)

∥

∥

∥
(bs

d(θds + θqds))
T− h

H
l (ωj)D

q

l,Θs
(ωj)

∥

∥

∥

2

2
≤ ǫ2(ωj),

(23)

where dl(ωj , θ
q

ds) = Ts(i
(l))d(ωj , θ

q

ds), D
q

l,Θm
(ωj) =

Ts(i
(l))DM,Θm+θ

q
ds
(ωj), D

q

l,Θs
(ωj) = Ts(i

(l))DM,Θs+θ
q
ds
(ωj). If we

get a valid solution to (23) and also ‖hl(ωj)‖
2
2 ≤ γ(ωj), ∀ωj ∈ Ω

then we stop, else, we set q → (q + 1)modQ, and repeat (15).
The OMP algorithm adds only one atom in each iteration, i.e.,

in a forward selection way. Still, previously selected atoms may be
less significant than the current ones. Thus, after selecting several
atoms, we choose the atom with the minimal contribution to the
design and remove it from the selected group of atoms. This process
is sometimes termed a forward-backward selection. Finally, after
obtaining a solution to (23) for all frequencies and directions, the
selected sensors, which are spread across a smaller number of rings,
are used to build the FI and rotationally invariant beampattern.

4. A DESIGN EXAMPLE

We consider a sparse design of concentric circular differential mi-
crophone arrays (CCDMAs) originally designed with a linear ge-
ometry, which combines closely spaced sensors to respond to the
spatial derivatives of the acoustic pressure field. These small-size
arrays yield nearly FI beampatterns and include the well-known su-
perdirective beamformer as a particular case [14]. The general the-
oretical FI beampattern of an N th-order DMA is [31]

B
θds
d (θ) = BN (θds − θ) =

N
∑

n=0

aN,n cos
n(θds − θ), (24)

where {aN,n}
N
n=0 are real coefficients, and the desired signal arrives

from the direction θds. The element spacing δ is required to be small
enough so that δ ≪ λ/2 = πc

ω
, that is, δ ≪ πc

ωmax
for all ω ∈ Ω,

where ωmax is the angular frequency corresponding to the highest
frequency in the bandwidth of interest Ω, and c = 340 m/sec.
Therefore, δ = 1 cm is satisfactory for our example.

The initial array geometry consists of G = 15 rings, where
rg = (g − 1)δ, g = 1, 2, ..., G, and Mg sensors are spread
uniformly across it. The total number of candidate sensors is
M =

∑G

g=1Mg = 234. We design a FI broadband beampat-
tern for the range between flow = 200 Hz and fhigh = 8200 Hz.
Assuming a typical duration of T = 25 msec for the window anal-
ysis used for the corresponding time-domain received signal, the
frequency resolution is ∆f = 1/T = 40 Hz. Thus, the number of
bins is given by J = (fhigh − flow) /∆f = 202.

We design a third-order hypercardioid pattern (i.e., N = 3)
which maximizes the directivity factor (DF), whose theoretical
beampattern for θds = 0◦ is given according to (24) by [11]

BHC
N (θ) = −0.14− 0.57 cos θ+0.57 cos2 θ+1.15 cos3 θ. (25)
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Figure 2: Array layout obtained by the proposed sparse design con-
sisting of 39 sensors, spread over 4 rings. The blue circles are all
the candidate sensors. The red stars are the selected sensors.
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Figure 3: Beampatterns of a third-order hypercardioid for f =
6280 Hz, steered to θds = 70◦ (red) obtained by the greedy sparse
design. Also, we present the beampattern obtained by a uniform
design (black line) where the 39 sensors are spread uniformly over
the entire possible concentric aperture of the M candidate sensors,
and the theoretical beampattern of a third-order hypercardioid (blue
dotted line) steered to θds = 0◦.

The angular axis is uniformly discretized with ∆θ = 2◦. For that
case, we set θP ′ = 60◦, i.e., the mainlobe region in the azimuthal
axis is −60◦ ≤ θ ≤ 60◦. We set initial values for the tolerance pa-
rameters {ǫ1(ωj)}

J

j=1, {ǫ2(ωj)}
J

j=1, and {γ(ωj)}
J

j=1, by applying
the parameters adjustment procedure introduced in [29].

We run the greedy algorithm proposed in Section 3. The result-
ing array layout, presented in Fig 2, consists of 39 sensors spread
over 4 rings. One can see that the sparse design offers some com-
promise between high and low frequencies and rotationally invari-
ant design. The FI beampatterns steered to θds = 0◦(blue) and
θds = 70◦ (red), obtained by the proposed design are presented
in Fig. 3. One can observe the rotation invariance property of the
design. Also, we present a comparison to the case of a uniform
design where the 39 sensors were spread uniformly over the entire
possible concentric aperture of the M candidate sensors. Figure 4
shows that the beampattern versus frequency obtained by the sparse
array is practically FI, especially in the mainlobe region. We also
show the beampattern versus frequency obtained by the uniform de-

Figure 4: Beampatterns versus frequency for the examined design
approaches.

sign. It can be seen that the uniform design achieves a much higher
sidelobes level, especially at higher frequencies.

Even though the proposed solution and the one presented in
[30] are supposed to yield similar performance in terms of sparsity,
robustness, FI, and rotation invariance, the proposed one is more
efficient and elegant. Herein, determining the array layout involves
a greedy search where only one additional sensor is selected in each
iteration. In contrast, the solution in [30] consists of several steps,
including solving iteratively an optimization problem with multiple
constraints on the order of the number of frequency bins, J . This
could be more exhaustive and resource-consuming, especially for a
large number of candidate sensors, M .

5. CONCLUSION

We have presented a greedy sparse design approach for FI beam-
formers with CCAs, which perseveres almost the same directivity
pattern for different frequencies and azimuthal steering directions
using the same sparse CCA layout. The proposed design extends
our recent work on the greedy sparse design of FI beamformers into
a much simpler and elegant iterative greedy algorithm that solves
a constrained optimization problem while incorporating several im-
portant desired properties for FI beamformers. Simulations show
that the proposed design leads to a FI and rotationally invariant di-
rectivity pattern with reasonable computational complexity. Future
research will focus on different array geometries and extensions to
the volumetric arrays.
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