
Citation: Liu, C.; Cohen, I.; Vishinkin,

R.; Haick H. Nanomaterial-Based

Sensor Array Signal Processing and

Tuberculosis Classification Using

Machine Learning. J. Low Power

Electron. Appl. 2023, 13, 39. https://

doi.org/10.3390/jlpea13020039

Academic Editor: Andrea Calimera

Received: 6 March 2023

Revised: 5 May 2023

Accepted: 24 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Nanomaterial-Based Sensor Array Signal Processing and
Tuberculosis Classification Using Machine Learning
Chenxi Liu 1, Israel Cohen 1,* , Rotem Vishinkin 2 and Hossam Haick 2

1 Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion–Israel Institute of
Technology, Haifa 3200003, Israel; mailtoliuchenxi@gmail.com

2 Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion–Israel Institute
of Technology, Haifa 3200003, Israel

* Correspondence: icohen@ee.technion.ac.il

Abstract: Tuberculosis (TB) has long been recognized as a significant health concern worldwide.
Recent advancements in noninvasive wearable devices and machine learning (ML) techniques
have enabled rapid and cost-effective testing for the real-time detection of TB. However, small
datasets are often encountered in biomedical and chemical engineering domains, which can hinder
the success of ML models and result in overfitting issues. To address this challenge, we propose
various data preprocessing methods and ML approaches, including long short-term memory (LSTM),
convolutional neural network (CNN), Gramian angular field-CNN (GAF-CNN), and multivariate
time series with MinCutPool (MT-MinCutPool), for classifying a small TB dataset consisting of
multivariate time series (MTS) sensor signals. Our proposed methods are compared with state-of-the-
art models commonly used in MTS classification (MTSC) tasks. We find that lightweight models are
more appropriate for small-dataset problems. Our experimental results demonstrate that the average
performance of our proposed models outperformed the baseline methods in all aspects. Specifically,
the GAF-CNN model achieved the highest accuracy of 0.639 and the highest specificity of 0.777,
indicating its superior effectiveness for MTSC tasks. Furthermore, our proposed MT-MinCutPool
model surpassed the baseline MTPool model in all evaluation metrics, demonstrating its viability for
MTSC tasks.

Keywords: tuberculosis; multivariate time series classification; sensor signal processing; graph
convolution network; Laplacian matrix

1. Introduction

Tuberculosis (TB) is an ancient, chronic disease caused by the bacillus Mycobacterium
tuberculosis, which threatens an estimated 25% of the world’s population, with a 5–10%
lifelong risk of developing into TB disease. It usually affects the lungs and can spread from
person to person through the air. Pulmonary TB symptoms include a chronic cough, weight
loss, chest pain, weakness, fatigue, night sweats, and fever [1]. TB has affected humanity
for over 4000 years, and over 10 million people become infected annually. Therefore, it
remains one of the leading causes of morbidity and mortality worldwide, especially in
developing countries.

Early recognition of TB and prompt detection of drug resistance is critical to reducing
its global burden. To overcome this problem, Vishinkin et al. [2] proposed a novel diagnostic
pathway to detect TB in a noninvasive, reliable, and rapid manner. They developed a new
biomedical apparatus containing a wearable and flexible polymer pouch for collecting
and storing TB-specific volatile organic compounds (VOCs) that can be detected and
quantified from the air above the skin (the skin’s headspace). An abnormal pattern of
VOC concentrations that deviates from the healthy pattern may indicate either TB infection
or a high risk of infection with TB. The collected VOCs will then be fed into a set of

J. Low Power Electron. Appl. 2023, 13, 39. https://doi.org/10.3390/jlpea13020039 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea13020039
https://doi.org/10.3390/jlpea13020039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-2556-3972
https://doi.org/10.3390/jlpea13020039
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea13020039?type=check_update&version=1

J. Low Power Electron. Appl. 2023, 13, 39 2 of 26

specially-designed nanomaterial-based sensors capable of detecting a variety of skin-based
TB VOCs [3–6]. Finally, the sensors will translate these collected VOCs into the time series
of resistance signals. Ultimately, the output multivariate time series (MTS) sensor signals
will be used as feature inputs in ML models for the final discrimination between positive
TB cases and healthy controls.

Machine learning (ML) has gained much popularity in recent years. Neural networks
(NNs) have achieved considerable success in many tasks, such as computer vision (CV),
speech, and natural language processing (NLP). The main characteristics that favored the
rise of these algorithms are (i) the use of large annotated datasets and (ii) networks with
deep structures [7]. However, the first requirement cannot be fulfilled in some natural
settings, such as medicine, biology, and chemical engineering, for several reasons. First,
the resources can be limited. Obtaining and labeling data can be costly and might take an
extended period. Therefore, it is unrealistic to have large datasets under such conditions.
Secondly, the standard deeper structure means a model with higher complexity and a
more significant number of trainable parameters. This is highly prone to cause overfitting
problems and poor results, especially when the trainable samples are limited. Finally, some
standard ML systems and deep neural networks are unsuitable for small data settings
compared to big data scenarios since insufficient training samples can compromise the
learning success [8]. Therefore, learning from a small dataset is highly challenging, and
many unresolved problems still need to be solved in small dataset scenarios.

Recent studies have shown that several sub-domains of MLs are trying to solve the
small dataset problem from different perspectives [8]. One is by attempting to mitigate the
necessity of big training data, such as transfer learning, which aims to learn representations
from one domain and then transfer the learned features to a similar and closely related
domain [7]. Another approach is using surrogate data, which can be generated from
random numbers to imitate the distribution of the original dataset [9]. The first approach
is more prevalent in CV and NLP tasks since many large datasets can be used to train the
models. The second approach is more common in time series analysis.

The diagnosis of TB is an example of the application of ML to small dataset problems.
In this paper, our study builds upon prior work [2] and draws inspiration from existing
low-power deep learning models [10,11]. Our primary objective is to develop several low-
power ML-based networks to classify the input from nanomaterial-based sensor signals
accurately and predict their corresponding labels for diagnosing TB disease. This study
also seeks to expand the range of viable options for domains that cannot employ or depend
on conventional ML models that typically have high computational resource requirements
and power consumption. Finally, our research strives to offer more effective and suitable
model options for low-power ML applications in multivariate time series classification
(MTSC) tasks or similar domains. Our main contributions can be summarized as follows:

• We utilize multiple data preprocessing techniques, such as sensor signal extraction,
data normalization, data calibration, and sensor selection, which apply to similar tasks
involving MTS sensor signals.

• We propose various ML-based models, namely long short-term memory (LSTM),
convolutional neural network (CNN), Gramian angular field-CNN (GAF-CNN), and
multivariate time series with MinCutPool (MT-MinCutPool), to classify the small TB
dataset, where the proposed low-power model features a simplified and shallow net-
work architecture, incorporating a limited number of parameters. This design results
in lowered computational complexity and effectively reduces power consumption. We
then compare the performance of our proposed models with several state-of-the-art
methods commonly used in MTSC tasks.

• To encourage further research on MTSC with small-dataset problems, we provide an
open-source of our work, which is accessible on 5 March 2023 at: https://github.com/
ChenxiLiu6/TB-Classification.git.

The structure of this paper is as follows. In Section 2, we introduce the related work
on nanomaterial-based sensors for disease diagnosis by using disease-related VOCs, and

https://github.com/ChenxiLiu6/TB-Classification.git
https://github.com/ChenxiLiu6/TB-Classification.git

J. Low Power Electron. Appl. 2023, 13, 39 3 of 26

describe the sensors we used and their working mechanisms. In Section 3, we provide
background information on MTSC tasks and describe some state-of-the-art approaches for
solving MTSC tasks. Next, in Section 4, we present the dataset we use in our study and the
data preprocessing methods we employed. Then, in Section 5, we propose four different
classification methods, namely LSTM, CNN, GAF-CNN, and MT-MinCutPool, which are
appropriate for small TB dataset classification problems. In Section 6, we introduce the
evaluation metrics used in this study and the experimental setup for each model. In
Section 7, we present the results and performance of each model in terms of accuracy,
sensitivity, specificity, and AUC, and compare our proposed methods with some state-of-
the-art MTSC methods. Finally, in Section 8, we discuss the conclusions and future work
based on our findings.

2. Related Work

Traditional detection methods for TB, including sputum microscopy, culture test, radi-
ology, drug susceptibility testing, whole genome sequencing, and clinical signs/symptoms,
have proven effective in acid-fast bacilli detection, point-of-care diagnosis, and cost ef-
ficiency. However, these approaches exhibit shortcomings, such as low sensitivity, time
consumption, and poor efficacy, which may produce false-negative results, lack of dif-
ferentiation between various bacterial strains, the inability to detect bacterial viability,
and unsuitability for resource-limited settings [12–14]. These limitations may delay TB
diagnosis, which may further exacerbate infection severity, raise mortality risk, and enable
bacilli transmission in the healthy population. Moreover, erroneous diagnosis can result in
imprecise treatment, eventually leading to the development of drug resistance in affected
patients [15]. Therefore, the World Health Organization (WHO) has stated that there is an
urgent need for a rapid, cost-effective, and sputum-free triage test to detect TB in real-time.

In addition, the importance of developing new diagnostic and detection technologies
for the growing number of clinical challenges is rising each year. The analysis of disease-
related VOCs represents a new frontier in medical diagnostics due to its noninvasive and
inexpensive nature for illness detection. Specific VOC species and their concentration
changes for each disease are unique and, thus, make them valuable biomarkers for disease
detection [16,17]. Spectrometry and spectroscopy techniques have demonstrated their
efficacy in detecting VOCs directly from the headspace of the disease-related cells via
urine, blood, skin, or exhaled breath. However, despite their effectiveness, these techniques
are often hindered by their high costs, the level of expertise, and the time required to
operate the sophisticated equipment necessary for sample analysis [18,19]. To overcome
these challenges, some researchers have proposed a novel pathway that enables the use
of sensor matrices based on nanomaterials as a clinical and point-of-care diagnostic tool.
Nanomaterials have several advantages, including high sensitivity, fast response and
recovery time, and synergetic properties when combined. Furthermore, nanomaterial-based
sensors can be integrated into portable, low-cost devices through mass manufacturing,
enabling noninvasive, easy-to-use, personalized disease diagnosis, and follow-ups. Existing
studies [3,16,17] have shown the potential of nanomaterial-based sensors for VOC-based
disease diagnosis.

Paper [16] reviewed two complementary approaches to profiling disease-related VOCs
by nanomaterial-based sensors: selective and cross-reactive sensing. Our research is
based on work [2], where the authors utilized the cross-reactive approach. This method
broadly responds to various TB-specific VOCs emitted from the skin’s headspace. The VOC
selectivity is gained through pattern recognition by obtaining information on the vapor’s
identity, properties, and concentration exposed to the sensor array.

In [3], the authors reported an artificially intelligent nanoarray for the noninvasive
diagnosis and classification of 17 diseases based on exhaled breath VOCs; reference [2]
employed a similar type of sensor, consisting of chemiresistive films containing spherical
gold nanoparticles (GNPs; core diameter 3–4 nm) capped with different organic ligands, 2D
random networks of single-walled carbon nanotubes (RN-SWCNTs) capped with different

J. Low Power Electron. Appl. 2023, 13, 39 4 of 26

organic layers, and polymeric composites. The inorganic nanomaterials within the films
are responsible for electric conductivity. In contrast, the organic component provides sites
for VOC adsorption. Upon VOC exposure, they are either absorbed onto the sensing
surface or diffused into the sensing film, reacting with the organic phase or functional
groups that cap the inorganic nanomaterials. This reaction/interaction results in the volume
expansion/shrinkage of the nanomaterial film, causing changes in the conductivity between
the inorganic nanomaterial blocks. For a sample collection, 40 sensors were employed, each
with different functional groups capping the inorganic nanomaterial. This ensured that
each sensor yielded a distinct response to individual or patterned VOCs within the sample,
generating a full metabolic profile of the tested state, resulting in a pattern of resistance
changes detected by the sensor array to a given vapor.

Previous studies primarily concentrated on developing nanomaterial-based sensors
for accurately detecting disease-related VOC patterns. However, they did not furnish
comprehensive details on the applied classification procedures that procured the results.
Furthermore, the dependability and progress of discriminant data classifiers cannot be
ensured. Moreover, existing ML approaches are more prevalent in large dataset scenarios.
However, approaches such as transfer learning are widely used in small dataset settings, as
introduced in Section 1; there is currently a deficiency in similar and extensive datasets that
can be utilized as source domains in transfer learning for our task. Therefore, it is critical to
develop dependable and suitable ML models pertinent to data-deficient problems that can
be combined with other domains and foster their development.

3. Background
3.1. Time Series Classification

The rapid expansion of data availability has led to the development of time series
classification (TSC) in a wide range of fields, ranging from human recognition [20] and
electronic health records [21] to acoustic scene classification [22] and stock market pre-
diction [23]. Thus, TSC has attracted the attention of a large number of researchers. The
definition of a TSC task can be categorized into two types:

Definition 1. A univariate time series X = {x1, x2, · · · , xT} is an ordered set of real values with
timestamps. The length of X equals the number of real values T.

Definition 2. A dataset D = {(X1, Y1), (X2, Y2), · · · , (XN , YN)} consists of a collection of N
pairs of (Xi, Yi), where (Xi, Yi) is the ith sample and Xi is either a univariate or multivariate time
series accompanied by Yi as its one-hot label vector.

The TSC task aims to train a classifier over dataset D to map from the time series
inputs to a probability distribution over class labels. Our task can be categorized as an
instance of the MTSC problem, where each sample comprises a set of MTS inputs (denoted
as X) and a single corresponding label (represented as Y).

3.2. Encoding Time Series as Images by Gramian Angular Field (GAF)

The Gramian angular field (GAF) is one of the most widely used frameworks for
encoding univariate time series as 2D images [24]. This approach has recently gained
popularity due to its ability to capture cyclical patterns and correlations present in the
original time series data, thus enabling researchers to take advantage of the success of
deep learning architectures in CV and transfer it into the time series domain. The GAF
transformation mainly involves two steps: encoding the univariate time series into polar
coordinates and then computing the Gramian matrix of the encoded data.

Before the GAF transformation, the input time series X = {x1, x2, ..., xn} first needs to
be normalized within the interval [−1, 1] by

x̃i =
(xi −max(X) + (xi −min(X)))

max(X)−min(X)
. (1)

J. Low Power Electron. Appl. 2023, 13, 39 5 of 26

In the first step, the normalized time series X̃ = {x̃1, x̃2, ..., x̃n} of n real-valued time
steps can be represented in polar coordinates by encoding the value as the angular cosine
and the time stamp as the radius, using{

φ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃ ,

r =
ti
N

, ti ∈ N .
(2)

The equation presented above defines the value of the time stamp ti and incorporates
a constant factor N to regulate the range of the polar coordinate system. In the second step,
pairs of angular values from the polar coordinate representation are taken, and their outer
products are calculated as follows:

G =

cos(φ1 + φ1) cos(φ1 + φ2) · · · cos(φ1 + φn)
cos(φ2 + φ1) cos(φ2 + φ2) · · · cos(φ2 + φn)

...
...

. . .
...

cos(φn + φ1) cos(φn + φ2) · · · cos(φn + φn)

 (3)

These outer products are then aggregated to form a Gramian matrix, which can
be visualized as a 2D image. The resulting GAF image is a compact and information-
rich representation of the original time series data. It captures the cyclical patterns and
correlations present in the data and allows for the application of a wide range of image-
processing techniques for subsequent analysis.

3.3. The Long Short-Term Memory (LSTM) Network

A recurrent neural network (RNN) is a neural network that can simulate discrete-time
dynamical systems with an input xt, a hidden state ht, and an output yt [25]. The dynamical
systems can be defined by:

ht = fh(xt, ht−1) = tanh(Wht−1 + Ixt) (4)

yt = fo(ht) = softmax(Wht) (5)

where the subscript t represents the time step. fh, fo are the state update function, and
output function, respectively. where fh can use the hyperbolic tangent function tanh(·),
while the output function can usually use the softmax(·) function that can output a valid
probability distribution as the model prediction. W, I represent the recurrent weight matrix
and the projection matrix, respectively, which serve as the parameters of the functions.

However, RNNs are often faced with vanishing gradient problems. Long short-
term memory is an improved version of RNN [26], incorporating gating functions in the
dynamical system to overcome this problem [27]. In a typical LSTM architecture, a memory
vector {m, an LSTM hidden state vector h, and the input x are employed to update the state
and generate output at every time step, which can be expressed more precisely according
to [28] by

gu = σ(Wuht−1 + Iuxt)

g f = σ(W f ht−1 + I f xt)

go = σ(Woht−1 + Ioxt)

gc = tanh(Wcht−1 + Icxt)

mt = g f ⊗mt−1 + gu ⊗ gc

ht = tanh(go ⊗mt)

(6)

where W, I, g denote the recurrent weight matrices, projection matrices, and activation
vectors, respectively, and the superscripts {u, f , o, c} represent the input, forget, output, and
the cell state gates. The activation function includes the hyperbolic tangent denoted by tanh

J. Low Power Electron. Appl. 2023, 13, 39 6 of 26

(·), and the logistic sigmoid function σ(·). ⊗ represents the element-wise multiplication.
The computation pipeline for the LSTM network is depicted in Figure 1.

Figure 1. The structure of the LSTM network.

3.4. The Graph Neural Network Model

Graph neural networks (GNNs) are a general framework for modeling deep neural
networks using graph information, such as nodes, edges, and graph structures. The goal
with GNNs is to generate representations of nodes based on the graph structure and
any feature information of the graph. In recent years, GNNs have become increasingly
popular due to their ability to capture complex relationships and dependencies among
elements in the graph. It has been successfully applied to various problems, such as node
classification, graph classification, etc. In Section 5.4, we first transformed the MTS signal
into graph-structured nodes and then employed GNN to classify the node representation.

Spectral Clustering and MinCutPool

Spectral clustering (SC) is a widely-used technique to identify strongly-connected
communities within a graph [29]. In the context of GNNs, it can be employed to perform
pooling operations that aggregate nodes belonging to the same cluster, which can effectively
reduce the dimensionality of the input graph by replacing groups of nodes with a smaller set
of nodes, each of which represents a cluster of similar nodes. The new coarsened graph can
help to improve computational efficiency while enabling more effective modeling of high-
level graph features. However, most SC relies on the eigendecomposition of the graph’s
Laplacian matrix to project the graph nodes into a lower-dimensional space [30], which
can be very expensive, and the result is also graph-specific. Therefore, to overcome the
limitations of SC, Bianchi et al. [29] proposed a novel graph clustering method that enables
the rapid computation of cluster assignments without the need for spectral decomposition.
Then they applied the generated cluster assignment matrix S as an input to the MinCutPool
layer, which serves to coarsen the graph by aggregating nodes that belong to the same
cluster while preserving the salient features of the original graph.

J. Low Power Electron. Appl. 2023, 13, 39 7 of 26

4. Data Preprocessing
4.1. Dataset Description

In [2], during the sample collected phase, the study included 928 subjects between the
ages of 22 and 60. To establish a robust method for TB detection and eliminate the influence
of environmental factors on the samples, the samples and analysis were conducted in three
different locations, including New Delhi in India, Cape Town in South Africa, and Riga
in Latvia. The study population consisted of 461 healthy controls, including both healthy
volunteers and confirmed non-TB samples, denoted by label 1, and 467 newly diagnosed
and confirmed pulmonary-active TB patients, each represented by label 0.

As TB involves many bodily systems, it is not easy to be diagnosed with only one
unique biomarker when collecting VOCs from the skin’s headspace. To overcome the lack
of specific biomarkers [31], a combination of 40 non-selective nanomaterial-based sensors
is used simultaneously to detect a variety of TB-specific VOCs, providing a comprehensive
metabolic assessment of each sample’s tested state. Then, each sensor will translate the de-
tected VOCs into resistance signals with a duration of T time steps. The raw sensor signal’s
time length T corresponding to each sample may differ. During the sample measurement,
the wearable device is applied directly to the skin on the sample’s chest and anterior arm
regions (Figure 2). The translated 40 original sensor signals corresponding to one sample
are shown in Figure 3, and each raw sensor signal is similar to the one shown in Figure 4.
Figure 5 displays the change in the sensor resistivity (i.e., ∆Rend/Rb) under different storage
conditions, including vacuum, ambient air, and pure nitrogen, respectively, for nine months.
As can be seen, the resistivity change in the room air is the largest (35%), followed by the
vacuum (19%), and pure nitrogen (17%) [2]. Therefore, it supports the observation of the
sensor signal’s characteristics in Section 4.2.

Figure 2. Wearable sensor devices on a volunteer’s chest and anterior arm.

Figure 3. The original 40 sensor signals corresponding to one sample before data preprocessing.

J. Low Power Electron. Appl. 2023, 13, 39 8 of 26

The dataset can be represented by (X, Y), where X ∈ RN×n×T represents the samples,
and Y ∈ RN represents the corresponding labels, which are either 0 or 1. Note that N is the
number of samples, n denotes the number of sensors (or nodes), and T represents the total
time steps of each resistance signal.

0 100 200 300 400 500

3.28

3.29

3.3

3.31

3.32

3.33
10

5

Figure 4. Nanomaterial-based sensor resistance signals. Useful signals are obtained under ambient
air exposure (within the red dotted line).

Figure 5. The change in the sensor resistivity (i.e., ∆Rend/Rb) for different storage conditions at the
starting point (M0) and after 9 months (M9).

4.2. Middle Part Signal Extraction

The multivariate time series sensor signals were recorded under three different condi-
tions, i.e., vacuum, pure N2, and sample exposure [2] (see Figure 4). The sensor’s baseline

J. Low Power Electron. Appl. 2023, 13, 39 9 of 26

responses were recorded for 5 min in a vacuum, 5 min under pure nitrogen (99.999%),
5 min in a vacuum, and 5 min under the sample exposure, followed by a further 3 min
under vacuum conditions [2]. Only the resistance signals obtained under the ambient air
on skin samples were valuable signals that needed to be extracted from the full signals
before applying ML models, which corresponded to the middle peak part of the signal,
where the signal curve presented the characteristics of a flat line, a rising peak, and then a
return to a flat state.

To achieve this, we first computed the three peak points of the entire signal, denoted
by P1, P2, and P3, respectively. Since the length of the middle part of the signal of each
sample varied and could fluctuate within a certain range, setting a fixed length in advance
and moving P2 or P3 separately to intercept the signal was not feasible. To overcome this
problem and obtain the start and end points of the rough middle part signal extracted from
each sample, we moved P2 and P3 to the left by 40 and 10 time steps, respectively.

The reason for the different time steps used to move P2 and P3 was to account for the
varying lengths observed in the roughly extracted middle part signal across samples. To
ensure that the final middle part signal obtained from each sample was of equal length, we
first needed to find the minimum length denoted by lmin among all extracted signals. We
achieved this by shifting P3 to the left by a shorter distance of 10, reserving space for the
final signal interception to a consistent length. Accordingly, the final middle part signal
of each sample was defined as spanning the starting index and the minimum length by
[start, start + lmin]. This was a crucial preprocessing step that helped standardize the signal
features and enhance the accuracy of the subsequent analysis.

4.3. Data Normalization

Data normalization is one of the essential preprocessing approaches [32]. However,
during the signal generation and collection phase, due to different sampling times and the
external environments (e.g., pressure, temperature, humidity, etc.) and the characteristics
of each sensor itself [2], the resistance values measured by each sensor correspond to
each sample having various starting points and large ranges in O(107). Therefore, to
improve the data quality, we need to normalize the data to the same scale and give each
feature a uniform contribution. Inspired by the normalization methods from [32], we use a
transformed median normalization method to preserve better relationships in the resistance
values; the method is defined as follows:

X
′
= X−min(X) (7)

X̂ =
X
′

med(X′
[0,30])

(8)

where X is the input signal, min(·) denotes the minimum resistance value from all times-
tamps, and med(·) denotes the median value of the input. We first shift each X by its
minimum value and obtain X

′
by Equation (7), and then obtain the normalized signal X̂

by dividing X
′

by the median of its first 30 time steps, as shown in Equation (8). After the
data normalization, all signals will have the same minimum point 0, and a smaller scale
between [0, 1]. This step normalizes each sensor signal into the same range.

4.4. Data Calibration

To supervise the sensor’s functionality during the experiment and to overcome the
possible sensor response drift, making the character of the sample resistance curve align
with the original curve of the corresponding sensor, a baseline resistance is measured as a
calibration signal before measuring the sample signals. The way we calibrate each sample
signal is as follows:

X̂ = X̂ · Peak(Ĉ)
Peak(X̂)

(9)

J. Low Power Electron. Appl. 2023, 13, 39 10 of 26

where X̂ and Ĉ are the normalized sample signal and its corresponding normalized cal-
ibration signal. We first compute the range ratio between X̂ and Ĉ. Since the minimum
value for both normalized signals is 0, we only need to consider the peak point of each
signal denoted by Peak(·) in this setting. Then each X̂ is calibrated by multiplying its
corresponding range ratio.

4.5. Sensor Selection by Using the Pearson Correlation Coefficient Matrix

Wearable sensors have become more prevalent in settings that require reliability and
accuracy, such as in healthcare and clinical diagnosis. Several sensors are usually combined
together in order to overcome the relative weaknesses of other sensors, such as sensor
uncertainty, limited spatial coverage, imprecision, and malfunctioning [33], to improve the
overall accuracy, robustness, and reliability of a decision-making process, and enhance the
overall performance of a system [34].

In our case, during the actual sample collection phase, each sample was measured by
40 sensors simultaneously, where some sensors were placed on the subject’s anterior arm,
while others were placed on the subject’s chest, as shown in Figure 2. However, not all
40 sensors have effective and stable signal outputs, as shown in Figure 6. In addition, jagged
signal fluctuations can be seen in some sensors that produce noisy and unstable outputs.
Therefore, we cannot rely on all of the sensors that were used during measurements, and it
is essential to select sensors that can produce stable and clear signal outputs so that we can
have a better representation of the entire system, thus improving the model’s performance
in the subsequent decision-making process.

Figure 6. Representative 40 sensor signals of a sample after middle-part extraction, where the x-axis
of each signal represents the time steps and the y-axis represents the normalized and calibrated
resistance values.

An indicator of a bad sensor is that the output signal is volatile, with large fluctuations
and sawtooth patterns. Therefore, we use the Pearson correlation coefficient [35] to measure
the signal similarities of each sensor in different samples. The similarity coefficient is
expected to be small for bad sensors; for good stable sensors, the similarity coefficient will
be large. To reduce the possible contingency of the selection and obtain a robust selection
result, we aim to avoid excluding sensors that are critical to determining whether a sample
is an active TB patient during the decision-making phase.

In the first step, the samples are divided into two groups, one containing active TB
patients and the other containing healthy controls. Then ten lists of indices are generated
from each group, each with 15 sample indices. Next, we iterate over from the 40 sensors to

J. Low Power Electron. Appl. 2023, 13, 39 11 of 26

compute the Pearson correlation coefficient between different samples randomly selected,
corresponding to each sensor, according to:

Cxy =
∑T

i=1(xi − x̄)(yi − ȳ)√
∑T

i=1(xi − x̄)2 ∑T
i=1(yi − ȳ)2

=
cov(x, y)√

var(x) · var(y)
(10)

where Cxy is the Pearson correlation coefficient between signals x and y. Next, the mean
coefficient values are calculated from the randomly selected samples to represent the
stability of each sensor, where sensors with mean coefficient values lower than 0.65 are
classified as non-stable sensors, while the rest are considered good sensors to retain. The
Pearson correlation coefficient matrices for both the bad sensors and the good sensors can
be seen in Figure 7. In the end, both the active TB and the healthy control groups screened
out the same 11 unstable sensors and kept the same 29 good sensors, as shown in Figure 8.

(a) (b)
Figure 7. Pearson correlation coefficient matrix heat maps for both unstable sensors (a) and good
sensors (b). (a)Unstable sensor matrix heat map. (b) Good sensor matrix heat map.

Figure 8. Selected 29 sensor signals of a sample after middle-part extraction and stable sensor
selection using Pearson’s correlation coefficient, where the x-axis of each signal represents the time
steps, and the y-axis represents the normalized and calibrated resistance values.

The stability of a signal is mainly attributed to the inherent characteristics of the sensor
itself. However, it is essential to note that we cannot rule out the case that when dealing
with a different dataset, denoted as Xb, a sensor set Sa that is considered stable when

J. Low Power Electron. Appl. 2023, 13, 39 12 of 26

used on a particular dataset Xa may not exhibit the same stability when employed on Xb.
Therefore, to ensure a stable sensor selection process that generalizes to new data and
guarantees accurate subsequent classification, it is advisable to calculate the new sensor
stabilization values and choose an alternative set of stable sensors, denoted as Sb when
using only Xb.

In cases when using both Xa and Xb as input, it is feasible to use an intersection of the
stable sensors to achieve reliable classification outcomes. Specifically, Sc = Sa ∩ Sb can be
used to select the common set of sensors shared between the two datasets.

5. Proposed Methods for Multivariate Time Series Classification
5.1. Proposed LSTM Network

The TB samples consist of multivariate time series sensor signals, and LSTMs are
good at learning temporal dependencies [36]. Thus, we first employ the LSTM network
to learn the temporal features from the multivariate time series inputs. The first layer
of the LSTM model architecture consists of an LSTM layer that includes 32 LSTM node
units. The unfolded internal LSTM network structure is shown in Figure 1. Subsequently, a
dropout layer with a dropout rate of 0.2 is applied. Following this, the resulting features are
flattened into a vector, which is then forwarded into a dense layer containing 16 units, and
activated by the ReLU activation function. The final layer is a single-node output-dense
layer, where the predicted labels are generated via the sigmoid activation function. The
proposed LSTM model can be seen in Figure 9.

Large complex architectures with large-sized parameters are very prone to having
overfitting problems when training with small-sized datasets. Therefore, we only use a
small number of units in each layer together with a dropout layer in our model, aiming
to avoid or minimize the overfitting problem during the training phase. Finally, a total of
8481 parameters are included in the whole LSTM model. The detailed layer and parameter
information is shown in Table 1.

Figure 9. The proposed LSTM model architecture.

Table 1. LSTM model layers and parameters.

Layer (Type) Output Shape Activation Parameter Number

lstm_1 (LSTM) (bs, 32) − 7936

dropout_1 (Dropout) (bs, 32) − 0

dense_1 (Dense) (bs, 16) ReLU 528

dense_2 (Dense) (bs, 1) Sigmoid 17

J. Low Power Electron. Appl. 2023, 13, 39 13 of 26

During the training phase, we use the Adam optimizer and the binary cross entropy
(BCE) function as the loss function, which is a widely used loss function for binary classifi-
cation problems and can be expressed as:

BCE = − 1
N

N

∑
i=1

[yi · log(p(yi)) + (1− yi) · log(1− p(yi))] (11)

where N is the total number of input samples, yi is the actual label for sample i, which is either
0 for active TB patients or 1 for non-TB samples in our case, and p(yi) is the corresponding
predicted probability for the positive class. The BCE loss function provides a useful measure
of the discrepancy between the true labels and the predicted probabilities. A lower value
of the BCE loss indicates a better fit between the predicted probabilities and the true labels.
Conversely, the loss will be large if the predicted probability is far from the true label.

The LSTM model input is (X, Y), where X ∈ RN×n×T and Y ∈ RN , the detailed
description of the input dataset can refer to Section 4.1, where T equals 147 after the middle
part extraction, and n equals 29, which represents the number of stable sensors after the
sensor selection.

5.2. Convolution Neural Network (CNN)

In recent years, deep learning (DL) has been successfully applied in various domains,
including image recognition problems, natural language processing tasks, etc. In light
of the tremendous success of DL architectures in these different domains, researchers
have begun adopting them for time series analysis as well [37]. Most deep learning-
based TSC methods can be divided into two types: generative and discriminative [38].
Generative methods, characterized as model-based methods in the TSC community, are
designed to find a suitable time series representation before training a classifier. In contrast,
discriminative methods directly learn the mapping between the raw time series and the
class probability distributions. The implementation of generative models is more complex
than that of discriminative models, while the performance could be better. Thus, the
researchers focus primarily on discriminative models, notably on end-to-end approaches
for TSC classification tasks [39].

According to the recent comprehensive review of DL-based TSC methods in [37],
CNN is the most commonly used structure for TSC tasks due to its robustness and the
fact that it requires less training time compared to other DL architectures. Therefore, we
propose a CNN architecture to classify the MTS sensor signals. The overall architecture of
the proposed CNN is depicted in Figure 10.

Figure 10. The proposed CNN model architecture.

J. Low Power Electron. Appl. 2023, 13, 39 14 of 26

The proposed CNN model takes a set of MTS sensor signals as input, with the shape
of (bs, T, n), where bs is the batch size, T equals 147, which represents the time steps of
each sensor, and n equals 29, which represents the number of sensors used to correspond
to each sample. The proposed model consists of two one-dimensional convolutional layers
with different kernel sizes and output channels. Specifically, the first convolutional layer
has a kernel size of 20 with 16 output channels, and the second convolutional layer has
a kernel size of 2 with 4 output channels. Each CNN layer is followed by batch normal-
ization and a ReLU activation function to model the interactive relationships between
multivariate dimensions and the sequential information of the time series. Furthermore, a
one-dimensional max-pooling layer with a pooling kernel of size 2 is employed to reduce
the spatial dimension of the output from the convolution layer while retaining features
with stronger identification. The outputs of the convolutional layers are then flattened into
a dense vector and then processed with 2 fully connected layers with 16 units and 1 unit,
respectively. Finally, the classification results are obtained by computing the probability
of each class by using the sigmoid activation function after the final fully connected layer.
The detailed parameter setting of the CNN model is shown in Table 2.

Table 2. The parameter settings for the CNN model.

Layer Stride Activation Kernel Input Output Parameter
Size Shape Shape Number

Conv1D_1 1 ReLU 20 (bs, 147, 29) (bs, 128, 16) 9296

Max Pooling1D_1 2 - 2 (bs, 128, 16) (bs, 64, 16) 0

Conv1D_2 2 ReLU 2 (bs, 64, 16) (bs, 32, 4) 2116

Max Pooling1D_2 2 - 2 (bs, 32, 4) (bs, 16, 4) 0

Flatten - - - (bs, 16, 4) (bs, 64) 0

Dense_1 - ReLU - (bs, 64) (bs, 16) 1040

Dense_2 - Sigmoid - (bs, 16) (bs, 1) 17

5.3. GAF-CNN

Inspired by [40], we first encoded the univariate time series sensor signals into polar
coordinates using the amplitude and phase of the time series. This encoding captures
the temporal structure of the time series and allows us to apply the GAF transformation
to create the image representation, which was previously introduced in Section 3.2. The
transformed images have a fixed shape (batch_size, height, width, channels), where the
height and width are equal to the time steps (147), and the input channels are similar to the
number of sensors (29 in this case).

The resulting images are then input to the proposed GAF-CNN model which is shown
in Figure 11, which consists of two 2D convolutional layers, each followed by a ReLU
activation function and a 2D Max Pooling layer. The first and second convolutional layers
have 12 and 6 filters, respectively, where the kernel size for both layers is (5× 5). The
2D max pooling operation uses 2× 2 windows with a stride of 2. After the second max
pooling layer, the output is flattened and passed through a fully connected layer with a
single neuron and a Sigmoid activation function. The resulting output value is between 0
and 1, representing the probability of the corresponding sample belonging to the positive
class. Table 3 shows the model’s detailed parameter settings.

J. Low Power Electron. Appl. 2023, 13, 39 15 of 26

Table 3. The parameter settings for the GAF-CNN model.

Layer Stride Activation Kernel Size Input Shape Output Shape Parameter Number

Conv2D_1 1 ReLU (5, 5) (bs, 147, 147, 29) (bs, 143, 143, 12) 8712

Max
Pooling2D_1 2 - (2, 2) (bs, 143, 143, 12) (bs, 71, 71, 12) 0

Conv2D_2 1 ReLU (5, 5) (bs, 71, 71, 12) (bs, 67, 67,6) 1806

Max
Pooling2D_2 2 - (2, 2) (bs, 67, 67, 6) (bs, 33, 33, 6) 0

Flatten - - - (bs, 33, 33, 6) (bs, 6534) 0

Dense_1 - Sigmoid - (bs, 6534) (bs, 1) 6535

Figure 11. GAF-CNN model architecture.

5.4. MTSC with Graph Laplacian and MinCutPool

In [41], a novel graph pooling-based framework multivariate time series classifica-
tion with variational graph pooling (MTPool) is proposed to obtain an expressive global
representation of MTS. This study is one of the few approaches that use GNN to solve
the MTSC problem from a graph perspective. In contrast, others solve MTSC problems
using transformer-based frameworks (e.g., [42]), ensemble methods that ensemble over
several univariate classifiers independently and then aggregate the predictions from each
classifier to generate a single probability distribution for each TSC task (e.g., [43]), and
variants of recurrent neural networks (e.g., multivariate LSTM fully convolutional network
(MLSTM-FCN) [44]).

J. Low Power Electron. Appl. 2023, 13, 39 16 of 26

This section proposes the MT-MinCutPool framework (Figure 12), a modified MTPool
to solve the MTSC task. The main differences are that we employ the graph’s Laplacian
matrix to construct the graph and use the MinCutPool to cluster similar nodes within a
graph into one cluster to coarsen the graph. This section mainly contains five parts: graph
structure learning using the Laplacian matrix, temporal feature extraction, spatial–temporal
modeling, graph coarsening by MinCutPool, and graph-level embedding classification.

Figure 12. MT-MinCutPool model architecture.

Graph Structure Learning Using Laplacian Matrix

Graph-based representations and algorithms for handling structured data rely heavily
on constructing meaningful graphs. Dong et al. [45] addressed the problem of learning the
graph Laplacian, which is equivalent to learning graph topologies, such that the input data
will be transformed into graph signals with smooth variations in the resulting topology.
Therefore, we also use the graph Laplacian matrix to represent the graph structure in the
first part of the framework.

The dynamic time-warping method (DTW) will likely produce a more reliable similar-
ity assessment between two time series than other distance measurement methods, such
as Euclidean distance, which matches timestamps regardless of feature values. For input
samples X = {x1, x2, · · · , xN} ∈ Rn×T , N, n, T represent the number of samples, sensors,
and total timestamps, respectively. We first use the DTW method to calculate the distance
matrix DTW ∈ RN×n×n between each sensor within MTS samples. Then we will construct
an adjacency matrix A that can be used to calculate the following degree matrix D and the
Laplacian matrix L. In the meantime, to improve the model’s overall training efficiency,
enhance the model’s robustness, and reduce the impact of the noise introduced by the
sensors, a threshold θ is set to make the distance matrix DTW sparse:

Aij =

{
1, if DTW[i, j]< θ ,
0, if DTW[i, j] > θ .

(12)

J. Low Power Electron. Appl. 2023, 13, 39 17 of 26

After having the adjacency matrix A ∈ RN×n×n, the elements of each row in matrix
A are first added up to obtain vector a ∈ RN×n, which is then diagonalized to generate
degree matrix D, and finally, after, having the adjacency matrix A and the degree matrix D.
By definition, the graph Laplacian matrix L can be obtained through D− A. The detailed
process of constructing the graph Laplacian matrix is shown in Algorithm 1.

Algorithm 1: Build the Laplacian adjacency matrix.

// N: # samples, n: # sensors, T: # timestamps
Input: X ∈ RN×n×T , θ
Output: L ∈ RN×n×n

// (1) Build Distance Matrix DTW
DTW← empty matrix with shape RN×n×T

for i = 1 to N do
x← X [i]
distance← empty matrix with shape Rn×n

for j = 1 to n do
for k = 1 to n do

// dtw (·) is the dynamic time warping distance function
distance [j, k]← dtw (x [j], x [k])

end
end
DTW [i]← distance

end
// (2) Build Degree Matrix D
D← empty array with shape RN×n×T

A← int (DTW < θ)
for i = 1 to N do

// diagonal (·) is the diagonalized function
adj← A [i]
D [i]← diagonal (∑n

k=1adj [k, :])
end
// (3) Build Laplacian Matrix L
L = D − A
return L

5.4.1. Temporal Feature Extraction

The purpose of temporal convolution is to extract features along the time axis, as well
as to design a temporal feature matrix XTC ∈ RN×n×d, where d is the dimension of the new
extracted features, which can serve as a strong reference for the subsequent classification
step. When analyzing time series data, it is essential to consider both numerical values and
long-term patterns. Therefore, to extract features from the time dimension and keep as
much of the origin pattern as possible, we adopt the method employed in the prior work
as presented in [41], which employs multiple convolutional neural network channels with
varying kernel sizes:

XTC = ||mi=1 fi = ||mi=1σ(Wi ∗ X + b) (13)

where ||mi=1 denotes the concatenation operation that merges the feature maps generated by
the first to the m-th CNN filters, where subscript i = {1, 2, · · · , m} represents the specific
CNN filter number. Each fi ∈ RN×n×di is the output tensor of each convolution layer
containing the extracted temporal feature. Moreover, it is given by the convolution of the
input tensor X with the learnable filter Wi ∈ Rout×in×ks, where out is the number of output
channels, in is the number of input channels, ks is the kernel size of the filter, followed by
an element-wise bias addition b ∈ Rout, and an activation function σ(·), such as ReLU(·), to
introduce non-linearity into the model. The operator ∗ denotes the convolution operation.

J. Low Power Electron. Appl. 2023, 13, 39 18 of 26

After applying the convolutional layer with a given kernel size ks, the new sequence length
can be computed according to di = (T− ks)/s + 1, where ks and s are the kernel size and
stride step from the learnable filter W, respectively. Finally, we obtain the temporal feature
matrix XTC ∈ RN×n×dTC by concatenating each convolved tensor fi, where dTC = ∑m

i=1 di
is the new sequence dimension. The concatenation of the extracted temporal features from
various time scales provides a reliable reference for the subsequent classification task.

5.4.2. Spatial–Temporal Modeling

Spatial–temporal modeling is an essential task in many applications, such as skeleton-
based action recognition [46], traffic forecasting [47], etc. Graph neural networks (GNNs)
have demonstrated promising results on spatial–temporal modeling tasks. Their ability to
directly apply filters on the graph nodes and their neighbors enables the model to learn
representations that capture both the spatial dependencies and the temporal patterns of
the data.

Graph convolution networks (GCNs) are specific types of GNNs designed to deal
with graph-structured data. Therefore, in this part, we adopt GCN to operate on the input
graph-structured data, typically represented as an adjacency matrix, A, which indicates
whether an edge connects two nodes, and a feature matrix, X, which contains the features
of each node in the graph. The graph convolution operation can be defined as:

X̃ = G(A, XTC, W, b) = σ(A ∗ XTC ∗W + b) (14)

where X̃ is the output feature matrix. G(·) is the graph convolution function, which takes
the adjacency matrix A, the input feature matrix XTC, a learnable weight matrix W of the
convolutional filter, and a bias term b as input.

In the graph convolutional layer, the feature matrix XTC ∈ RN×n×dTC is first multiplied
by the adjacency matrix A ∈ RN×n×n, which in our case is the graph Laplacian matrix, it
allows the information to be propagated from every single node to its neighbors in the
graph. Then the output is linearly transformed by a weight matrix W ∈ RN×n×dout through
another multiplication. After adding the bias term b, the new feature matrix is transformed
using a nonlinear activation function, such as ReLU or tanh, where σ(·) is the activation
function. Moreover, we finally obtain the resulting output X̃ ∈ RN×n×dout . The graph
convolution process updates the graph’s node representation and the output node features
X̃ can be used for the subsequent graph classification task.

5.4.3. Graph Coarsening by MinCutPool

To reduce the computational complexity of the GNN while preserving its expressive
power, we combine the clustering method with the MinCutPool pooling method proposed
in [29] in this part of our framework to coarsen the graph.

Let Ã = D−
1
2 AD−

1
2 ∈ RN×n×n be the symmetrically normalized adjacency matrix,

where D is the degree matrix. The cluster assignment matrix S is computed using a
multilayer perceptron (MLP) activated by a softmax function to map each node feature xi
of the i-th row of matrix S. Specifically, it can be expressed as

X̄ = GNN(X̃, Ã, WGNN) (15)

S = MLP(X̄, WMLP) (16)

where X̃ is the matrix of the node representation generated from the previous graph
convolution layer, and X̄ is the new feature matrix yielded by one or more subsequent
graph convolution layers. WGNN and WMLP are the trainable parameters. Then the cluster
assignment matrix S and the normalized adjacency matrix Ã are fed into the MinCutPool

J. Low Power Electron. Appl. 2023, 13, 39 19 of 26

layer to obtain the pooling node representations of the coarsened graph. The pooling
process is computed as follows:

Apool = ST ÃS; Xpool = STX (17)

where the entry xpool
j,k from Xpool

i ∈ RC×d is the sum of feature k among the items in
cluster j from sample i, which is weighted by the cluster assignment scores from S, where
i = {1, · · · , N} is the sample index, C is the number of clusters, and d is the new feature-
length sequence after the graph convolution. Apool

i ∈ RC×C is the coarsened symmetrical
adjacency matrix, where the matrix element aj,k is the weighted sum of the edges between
cluster j and k. The entries aj,j are the weighted sums of the node edges within a cluster.
Each MinCutPool layer will generate a cut loss term Lu [29], and the weight parameters
WGNN and WMLP are optimized by minimizing Lu during training, thereby increasing the
likelihood of clustering similar nodes together.

5.4.4. Graph-Level Embedding Classification

After obtaining the graph-level embedding from the MinCutPool layer, the resulting
output graph representation Xpool ∈ RN×C×d is flattened into a vector form, referred to as

XN×(C∗d)
dense . Subsequently, Xdense is forwarded to the succeeding fully connected layers for

the final classification.

6. Experiments
6.1. Evaluation Metrics

To evaluate the performance of our proposed models with some state-of-the-art meth-
ods for the MTSC problem, we utilize several widely used binary classification metrics, in-
cluding:

• Accuracy: It measures the proportion of the correct predictions among all of the
predictions made by the models.

• Sensitivity (true positive rate, TPR): It measures the proportion of true positive models
made by the model out of all actual positive samples. It indicates the ability of the
model to correctly identify the positive samples, which is very important for clinical
settings. It indicates the ability of a model to identify negative samples correctly.

• Specificity (true negative rate, TNR): It measures the proportion of true negative
predictions made by the model out of all actual negative samples.

• AUC: (Area under the ROC curve): It considers the performance of a classifier over all
possible threshold values, taking into account both the true positive rate (sensitivity)
and the false positive rate (1—specificity).

The following formulas can express the above metrics:

accuracy =
TP + TN

TP + TN + FP + FN
(18)

sensitivity =
TP

TP + FN
(19)

specificity =
TN

TN + FP
(20)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. A higher value indicates better performance for all of the evaluation
metrics, while a low value indicates poor performance.

6.2. Experimental Setup

During the experiment phase, the dataset (X, Y) was partitioned into training, valida-
tion, and test sets to ensure a reliable evaluation of the model’s performance. Specifically,
80% of the data was used for training and validation, while the remaining 20% was reserved

J. Low Power Electron. Appl. 2023, 13, 39 20 of 26

for testing. This enabled the model to be trained and tuned on a subset of the data, with
the held-out test set serving as an unbiased measure of its performance on unseen data. We
only had a total of 928 samples, which was a relatively small dataset for ML classification
tasks. To efficiently use the existing data to train the model and better represent each
model’s performance, we adopted the widely used technique of stratified cross-validation
for model training and evaluation. Cross-validation presents numerous advantages over
conventional methods, including mitigating overfitting issues, particularly prevalent in
scenarios involving small datasets, improved data utilization, a robust performance eval-
uation, and the capability for hyperparameter tuning. In our experiment, we employed
a rigorous evaluation process to ensure the reliability of our results. Firstly, we set the
number of folds to 5. Then during each training iteration, the model was trained on four
folds, i.e., 80% of the train–validation dataset. At the same time, the remaining held-out
fold, i.e., 20% of the train–validation dataset, was reserved for validation. This process was
repeated for each fold, with a different fold held out as the validation set each time. After
training each fold with a single model, we saved and loaded the models and performed
five-fold cross-validation on the training and validation sets again. Each fold was evaluated
using its corresponding trained model. We then selected the best-performing model based
on its accuracy on the validation dataset and assessed it on the unseen test dataset using
various metrics, including accuracy, sensitivity, specificity, and the AUC score. To further
increase the robustness of our evaluation, we repeated this process ten times, each using
a unique random seed to split the training and validation dataset. Finally, we computed
the mean test accuracies, sensitivities, specificities, and AUCs across the ten rounds to
obtain the final performance of each model. This thorough evaluation process allowed us
to ensure the reliability of our results and provide a more comprehensive understanding
of the performance of each model. The proposed LSTM, CNN, MT-MinCutPool, and
GAF-CNN were trained with 2000, 1000, 500, and 500 epochs, respectively, with a learning
rate of 1× 10−5, 5× 10−5, 1× 10−6, and 1× 10−6. In all cases, the early stopping patience
was set to 50, and a batch size of 32 was used. Each model’s parameters were updated
throughout the training process using the BCE loss and the stochastic gradient descent. In
the case of the MT-MinCutPool model, in addition to the BCE loss, the min-cut loss, which
was generated from the graph coarsen process in Section 5.4.3, was incorporated as an
additional component of the overall loss function.

7. Results and Discussion
7.1. Main Results

The evaluation results of the proposed models and the baseline models are presented
in Tables 4 and 5, respectively. The mean performance of each evaluation metric for both
the proposed and the baseline models are calculated and displayed in the last column
of each table. We highlighted the highest test scores for each metric in bold for both the
baseline models and the proposed models.

Table 4. Train and validation accuracy, sensitivity, specificity, and AUC values for the baseline models.

LSTM CNN GAF-CNN MT-MinCutPool Model Mean

Accuracy
train 0.646 0.916 0.659 0.688 −
valid 0.69 0.687 0.692 0.69 −
test 0.611 0.606 0.639 0.604 0.615

Sensitivity
train 0.618 0.931 0.766 0.76 −
valid 0.675 0.715 0.78 0.756 −
test 0.631 0.694 0.777 0.728 0.71

Specificity
train 0.676 0.901 0.544 0.612 −
valid 0.704 0.658 0.597 0.619 −
test 0.594 0.533 0.532 0.5 0.54

AUC test 0.634 0.657 0.692 0.661 0.661

J. Low Power Electron. Appl. 2023, 13, 39 21 of 26

Our experimental findings reveal that the mean performances of our proposed models
outperform those of the state-of-the-art baseline approaches for all evaluation metrics.
Specifically, the average accuracy, sensitivity, specificity, and AUC score of the proposed
models are all higher than those of the baseline models. GAF-CNN demonstrates the
best overall performance among all proposed models, achieving the highest test accuracy,
sensitivity, and AUC score. The LSTM model exhibits the highest specificity. The GAF-
attention model performs the best among all baseline models, with the highest accuracy,
specificity, and AUC score. Additionally, the MLSTM-FCN model attains the highest
sensitivity score. GAF-CNN has the highest accuracy of 0.639 and the highest sensitivity of
0.777 among all models. In contrast, the GAF-attention model has the highest specificity of
0.637 and the highest AUC score of 0.695.

Table 5. Train and validation accuracy, sensitivity, specificity, and AUC values for the baseline models.

MTPool [41] GAF-Attention [40] MLSTM-FCN [44] Model Mean

Accuracy
train 0.563 0.755 0.733 −
valid 0.577 0.663 0.693 −
test 0.517 0.631 0.586 0.578

Sensitivity
train 0.682 0.78 0.757 −
valid 0.683 0.688 0.733 −
test 0.655 0.622 0.664 0.647

Specificity
train 0.436 0.728 0.709 −
valid 0.464 0.636 0.651 −
test 0.4 0.637 0.521 0.519

AUC test 0.538 0.695 0.648 0.627

We employed the AUC-ROC curve to visualize each model’s performance better. The
ROC is a probability curve that plots the true positive rate (TPR) against the false positive
rate (FPR), and AUC represents the degree of each model’s separability. The higher the
AUC, the better the model distinguishes between positive TB patients and healthy controls.
We can see from Figure 13 that the order of the model performance from high to low (in
terms of AUC-ROC) is as follows: GAF-Attention > GAF-CNN > MT-MinCutPool > CNN
> MLSTM-FCN > LSTM > MTPool.

Figure 13. The receiver operating characteristic (ROC) curve of each model.

The training and validation accuracy and loss curves for each selected model with the
highest accuracy score on the validation dataset are shown in Figures 14–17.

J. Low Power Electron. Appl. 2023, 13, 39 22 of 26

Figure 14. The training and validation accuracy and loss curve for the best LSTM model.

Figure 15. The training and validation accuracy and loss curve for the best CNN model.

Figure 16. The training and validation accuracy and loss curve for the best GAF-CNN model.

Figure 17. The training and validation accuracy and loss curve for the best MT-MinCutPool model.

7.2. Discussion

The MT-MinCutPool model is modified according to the MTPool model. It performs
relatively well compared to the proposed LSTM and CNN models since it has higher
sensitivity and AUC scores. Furthermore, its accuracy, sensitivity, specificity, and AUC

J. Low Power Electron. Appl. 2023, 13, 39 23 of 26

scores are all higher than those obtained using the MTPool model. This might be due to the
following two reasons. Firstly, in MT-MinCutPool, we use the Laplacian matrix to represent
the graph topology, which contains more graph information than the correlation coefficient
matrix employed in MTPool. Secondly, MinCutPool is designed to preserve important
information by retaining highly connected nodes in the graph. Unlike other widely-used
graph pooling approaches, such as GraphSAGE [48], which learns to aggregate feature
information from each node’s nearby neighbors, MinCutPool directly identifies similar
nodes that are strongly connected and aggregates them into one cluster. This approach
ensures that important information is preserved during the pooling process. Thus, by
employing the graph Laplacian to build the graph structure and using MinCutPool to
replace the adaptive pooling layer in MTPool, we obtain a better performance than the
MTPool model.

To better adapt to small datasets in our experiment, the proposed CNN and LSTM are
designed to be lightweight models, with fewer layers, in order to extract adequate input
features. As a result, both models showed an overall superior performance in comparison
to the average performance of the baseline models.

Furthermore, the results of our proposed GAF-CNN model demonstrate superior
performance compared to the baseline GAF-Attention model in terms of accuracy and
sensitivity. Specifically, GAF-CNN achieved an accuracy of 0.639 and the highest sensitivity
of 0.777 among all models, while the GAF-Attention model achieved an accuracy of 0.631
and a sensitivity of 0.622. However, the GAF-attention model had the highest specificity
of 0.637 among all models, and its AUC, i.e., 0.695, was slightly higher than that of GAF-
CNN, i.e., 0.692. These results suggest that both models have their unique strengths and
limitations and may be more suitable for different applications depending on the specific
requirements of the task.

The effectiveness of using GAF image conversion and the GAF-CNN makes us believe
that these methods can be extended to a wider range of contexts and similar applica-
tions beyond our immediate tuberculosis MTSC task. Specifically, we suggest a further
investigation into the following potential areas:

1. Medical diagnosis: GAF image conversion could further assist in identifying a range
of medical conditions, from electrocardiogram (ECG) rhythms to Alzheimer’s signals.
GAF image conversion in these fields may allow for better clinical decision-making
and enhance the accuracy of machine learning models.

2. Financial time-series analysis: GAF image conversion could be leveraged to pre-
dict stock prices and fluctuations in the currency market and further enhance the
effectiveness of ML algorithms in predicting trends and changes.

3. Speech recognition: GAF-based image classification could enable more accurate
identification of speech patterns, phonemes, and speech denoising. The use of images
could be particularly effective in noisy environments where traditional audio inputs
may be challenged.

In conclusion, converting time series into images has excellent potential; further
experimentation and research in these suggested areas are recommended to explore the
full potential of this method.

8. Conclusions

In this study, we propose several ML-based approaches, including LSTM, CNN, GAF-
CNN, and MT-MinCutPool, to tackle the problem of TB classification. The TB dataset
comprises multivariate time series sensor signals and a small dataset with 928 samples.
We first demonstrated a standard pipeline of some data preprocessing approaches. Subse-
quently, we evaluated the proposed models on the TB dataset and compared the results
with several state-of-the-art baseline methods. Our proposed methods exhibit better overall
performance compared to the baseline models. Our observations show that basic and
lightweight models perform better than complex models, which are more appropriate for
large dataset scenarios. The proposed MT-MinCutPool model outperformed MTPool in all

J. Low Power Electron. Appl. 2023, 13, 39 24 of 26

aspects. Thus, it is a viable and effective model for multivariate time series signals, even
for larger datasets. Our work is focused on the TB dataset classification. Therefore, one of
the limitations of our work is that the proposed and baseline models were solely evaluated
on this particular TB dataset. Future work may involve extending our proposed models to
other similar tasks in the field of multivariate time series classification.

Author Contributions: Conceptualization, I.C. and C.L.; methodology, I.C. and C.L.; software,
C.L.; validation, C.L.; formal analysis, C.L.; investigation, I.C. and C.L.; resources, R.V. and H.H.;
data curation, R.V. and C.L.; writing—original draft preparation, C.L.; writing—review and editing,
I.C., C.L., H.H. and R.V.; visualization, C.L.; supervision, I.C.; project administration, I.C. and
H.H.; funding acquisition, H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Phase-II Grand Challenges Explorations award of the
Bill and Melinda Gates Foundation (grant ID: OPP1109493) and Horizon 2020 ICT grant under the
A-Patch project (grant ID: 824270).

Institutional Review Board Statement: The clinical trials received ethical approvals from the Ethical
Committees of the respective hospitals: AIIMS, New Delhi: IEC/NP-103/13.03.2015, RP-39/2015,
and the University of Cape Town: 307/2014.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request. An open-source version of our work is accessible on
5 May 2023 at: https://github.com/ChenxiLiu6/TB-Classification.git.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
BCE binary cross entropy
CNN convolution neural network
CV computer vision
DL deep learning
DTW dynamic time warping
GAF Gramian angular field
GCN graph convolution network
GNN graph neural network
LSTM long short-term memory
MTF Markov transition field
ML Machine Learning
MLSTM-FCN multivariate LSTM fully convolutional network
MT-MinCutPool multivariate time series with MinCutPool
MTPool multivariate time series classification with variational graph pooling
MTS multivariate time series
MTSC multivariate time series classification
NLP natural language processing
NNs neural networks
SC spectral clustering
TB tuberculosis
TSC time series classification
VOC volatile organic compound
WHO World Health Organization

https://github.com/ChenxiLiu6/TB-Classification.git.

J. Low Power Electron. Appl. 2023, 13, 39 25 of 26

References
1. Zaman, K. Tuberculosis: A global health problem. J. Health Popul. Nutr. 2010, 28, 111–113. [CrossRef] [PubMed]
2. Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J.C.; Torrecilla, J.S.; Skenders, G.; et al.

Profiles of volatile biomarkers detect tuberculosis from skin. Adv. Sci. 2021, 8, 2100235. [CrossRef] [PubMed]
3. Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al.

Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 2017,
11, 112–125. [CrossRef] [PubMed]

4. Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between nanomaterials and volatile organic compounds
for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [CrossRef]

5. Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [CrossRef]
[PubMed]

6. Huynh, T.P.; Khatib, M.; Srour, R.; Plotkin, M.; Wu, W.; Vishinkin, R.; Hayek, N.; Jin, H.; Gazit, O.M.; Haick, H. Composites of
polymer and carbon nanostructures for self-healing chemical sensors. Adv. Mater. Technol. 2016, 1, 1600187. [CrossRef]

7. Brigato, L.; Iocchi, L. A Close Look at Deep Learning with Small Data. In Proceedings of the 2020 25th International Conference
on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

8. Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Machine Learning for Predictive Modelling based on
Small Data in Biomedical Engineering. IFAC-PapersOnLine 2015, 48, 469–474. [CrossRef]

9. Hirata, Y.; Katori, Y.; Shimokawa, H.; Suzuki, H.; Blenkinsop, T.A.; Lang, E.J.; Aihara, K. Testing a neural coding hypothesis using
surrogate data. J. Neurosci. Methods 2008, 172, 312–322. [CrossRef]

10. Barton, T.; Yu, H.; Rogers, K.; Fulda, N.; Chiang, S.h.W.; Yorgason, J.; Warnick, K.F. Towards Low-Power Machine Learning
Architectures Inspired by Brain Neuromodulatory Signalling. J. Low Power Electron. Appl. 2022, 12, 59. [CrossRef]

11. Musa, A.; Hassan, M.; Hamada, M.; Aliyu, F. Low-Power Deep Learning Model for Plant Disease Detection for Smart-Hydroponics
Using Knowledge Distillation Techniques. J. Low Power Electron. Appl. 2022, 12, 24. [CrossRef]

12. Chopra, K.; Singh, S. Newer diagnostic tests for tuberculosis, their utility, and their limitations. Curr. Med. Res. Pract. 2020,
10, 8–11. [CrossRef]

13. MacGregor-Fairlie, M.; Wilkinson, S.; Besra, G.S.; Goldberg Oppenheimer, P. Tuberculosis diagnostics: Overcoming ancient
challenges with modern solutions. Emerg. Top. Life Sci. 2020, 4, 435–448.

14. Gill, C.M.; Dolan, L.; Piggott, L.M.; McLaughlin, A.M. New developments in tuberculosis diagnosis and treatment. Breathe 2022,
18. [CrossRef]

15. Santos, J.A.; Leite, A.; Soares, P.; Duarte, R.; Nunes, C. Delayed diagnosis of active pulmonary tuberculosis-potential risk factors
for patient and healthcare delays in Portugal. BMC Public Health 2021, 21, 1–13. [CrossRef] [PubMed]

16. Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013,
8, 785–806. [CrossRef]

17. Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res.
2014, 47, 66–76. [CrossRef]

18. Tisch, U.; Billan, S.; Ilouze, M.; Phillips, M.; Peled, N.; Haick, H. Volatile organic compounds in exhaled breath as biomarkers for
the early detection and screening of lung cancer. Int. J. Clin. Rev. 2012. [CrossRef]

19. Turner, A.P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166. [CrossRef]
20. Nweke, H.F.; Teh, Y.W.; Al-garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]
21. Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N. Scalable and accurate deep learning with electronic health records. NPJ

Digit. Med. 2018, 1, 18. [CrossRef]
22. Nwe, T.L.; Dat, T.H.; Ma, B. Convolutional neural network with multi-task learning scheme for acoustic scene classification. In

Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA
ASC), Aloft Kuala Lumpur Sentral, Malaysia, 12–15 December 2017; pp. 1347–1350.

23. Xiao, D.; Su, J.; Che, H. Research on Stock Price Time Series Prediction Based on Deep Learning and Autoregressive Integrated
Moving Average. Sci. Program. 2022, 2022, 4758698. [CrossRef]

24. Wang, Z.; Oates, T. Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural
Networks. In Proceedings of the Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; Volume 1.

25. Pascanu, R.; Gulcehre, C.; Cho, K.; Bengio, Y. How to construct deep recurrent neural networks. arXiv 2013, arXiv:1312.6026.
26. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access

2018, 6, 1662–1669. [CrossRef]
27. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
28. Kawakami, K. Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D. Thesis, Technical University of Munich,

Munich, Germany, 2008.
29. Bianchi, F.M.; Grattarola, D.; Alippi, C. Spectral clustering with graph neural networks for graph pooling. In Proceedings of the

37th International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 874–883.
30. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2001, 14.

http://doi.org/10.3329/jhpn.v28i2.4879
http://www.ncbi.nlm.nih.gov/pubmed/20411672
http://dx.doi.org/10.1002/advs.202100235
http://www.ncbi.nlm.nih.gov/pubmed/34075714
http://dx.doi.org/10.1021/acsnano.6b04930
http://www.ncbi.nlm.nih.gov/pubmed/28000444
http://dx.doi.org/10.1039/C8CS00317C
http://dx.doi.org/10.1021/cr068121q
http://www.ncbi.nlm.nih.gov/pubmed/18205411
http://dx.doi.org/10.1002/admt.201600187
http://dx.doi.org/10.1016/j.ifacol.2015.10.185
http://dx.doi.org/10.1016/j.jneumeth.2008.05.004
http://dx.doi.org/10.3390/jlpea12040059
http://dx.doi.org/10.3390/jlpea12020024
http://dx.doi.org/10.1016/j.cmrp.2020.01.004
http://dx.doi.org/10.1183/20734735.0149-2021
http://dx.doi.org/10.1186/s12889-021-12245-y
http://www.ncbi.nlm.nih.gov/pubmed/34837969
http://dx.doi.org/10.2217/nnm.13.64
http://dx.doi.org/10.1021/ar400070m
http://dx.doi.org/10.5275/ijcr.2012.07.04
http://dx.doi.org/10.1038/nrmicro823
http://dx.doi.org/10.1016/j.eswa.2018.03.056
http://dx.doi.org/10.1038/s41746-018-0029-1
http://dx.doi.org/10.1155/2022/4758698
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

J. Low Power Electron. Appl. 2023, 13, 39 26 of 26

31. Broza, Y.Y.; Zhou, X.; Yuan, M.; Qu, D.; Zheng, Y.; Vishinkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease detection with molecular
biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817. [CrossRef]

32. Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020,
97, 105524. [CrossRef]

33. Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research
challenges. Inf. Fusion 2017, 35, 68–80. [CrossRef]

34. Brena, R.; Aguileta, A.; Trejo, L.; Molino Minero Re, E.; Mayora, O. Choosing the Best Sensor Fusion Method: A Machine-Learning
Approach. Sensors 2020, 20, 2350. [CrossRef]

35. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer:
Berlin/Heidelberg, Germany, 2009; Chapter 5, pp. 37–40.

36. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks.
In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584.

37. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

38. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.
Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]

39. Wei, C.; Shi, K. Multi-scale Attention Convolutional Neural Network for time series classification. Neural Netw. 2021, 136, 126–140.
40. Sharma, Y.; Coronato, N.; Brown, D.E. Encoding cardiopulmonary exercise testing time series as images for classification using

convolutional neural network. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1611–1614.

41. Duan, Z.; Xu, H.; Wang, Y.; Huang, Y.; Ren, A.; Xu, Z.; Sun, Y.; Wang, W. Multivariate time-series classification with hierarchical
variational graph pooling. Neural Netw. 2022, 154, 481–490. [CrossRef]

42. Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A transformer-based framework for multivariate time
series representation learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
Singapore, 14–18 August 2021; pp. 2114–2124.

43. Ruiz, A.P.; Flynn, M.; Large, J.; Middlehurst, M.; Bagnall, A. The great multivariate time series classification bake off: A review
and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2021, 35, 401–449. [CrossRef] [PubMed]

44. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019,
116, 237–245. [CrossRef] [PubMed]

45. Dong, X.; Thanou, D.; Frossard, P.; Vandergheynst, P. Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE
Trans. Signal Process. 2016, 64, 6160–6173. [CrossRef]

46. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

47. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.
In Proceedings of the International Joint Conferences on Artificial Intelligence Organization, Melbourne, Australia, 19–25
August 2017.

48. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2017, arXiv:1706.02216.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/acs.chemrev.9b00437
http://dx.doi.org/10.1016/j.asoc.2019.105524
http://dx.doi.org/10.1016/j.inffus.2016.09.005
http://dx.doi.org/10.3390/s20082350
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1016/j.patrec.2014.01.008
http://dx.doi.org/10.1016/j.neunet.2022.07.032
http://dx.doi.org/10.1007/s10618-020-00727-3
http://www.ncbi.nlm.nih.gov/pubmed/33679210
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://www.ncbi.nlm.nih.gov/pubmed/31121421
http://dx.doi.org/10.1109/TSP.2016.2602809

	Introduction
	Related Work
	Background
	Time Series Classification
	Encoding Time Series as Images by Gramian Angular Field (GAF)
	The Long Short-Term Memory (LSTM) Network
	The Graph Neural Network Model

	Data Preprocessing
	Dataset Description
	Middle Part Signal Extraction
	Data Normalization
	Data Calibration
	Sensor Selection by Using the Pearson Correlation Coefficient Matrix

	Proposed Methods for Multivariate Time Series Classification
	Proposed LSTM Network
	Convolution Neural Network (CNN)
	GAF-CNN
	MTSC with Graph Laplacian and MinCutPool
	Temporal Feature Extraction
	Spatial–Temporal Modeling
	Graph Coarsening by MinCutPool
	Graph-Level Embedding Classification

	Experiments
	Evaluation Metrics
	Experimental Setup

	Results and Discussion
	Main Results
	Discussion

	Conclusions
	References

