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A B S T R A C T

In this paper, we present an azimuth and elevation constant-beamwidth (CB) differential beamforming
approach for cube arrays. We decompose a global cube beamformer into a Kronecker-product (KP) of three
sub-beamformers: two constant-beamwidth beamformers along the y and z axes, and a tunable super-directive
(SD) beamformer along the x-axis. We propose two design methods to derive cube beamformers whose either
white noise gain (WNG) or directivity factor (DF) may be set by design. We show that the CB threshold
frequency with respect to the azimuth and elevation angles, and the WNG and DF performance, can be
controlled by the number of microphones along each axis. In addition, we focus on the particular case of merely
a single microphone along the x-axis, which yields a rectangular azimuth and elevation CB beamformer. We
demonstrate that its CB threshold frequencies are controlled by the number of microphones along the y and z
axes, and show that the WNG and DF performance measures are maximized when the two axes are equal in
size. Finally, we analyze the performance of the proposed beamformers through simulations of speech signals
in various reverberant scenarios, including deviations in the desired speech signal’s direction of arrival (DOA).
We show that the proposed beamformers outperform previously-presented beamformers and the traditional
SD and delay-and-sum (DS) beamformers, particularly in terms of the intelligibility of their corresponding
time-domain enhanced signals.
1. Introduction

In the past few decades, beamforming design has been a fruitful
research topic yielding a variety of approaches for numerous possible
applications. The primary objective is to estimate signals of interest
out of noisy observations simultaneously sampled in different loca-
tions in space (Benesty et al., 2018; Johnson and Dudgeon, 1992;
Van Trees, 2004). Directly applied to the noisy observations, time-
domain beamformers are the easiest to implement, yet they typically
generate a single speech sample estimate at a time. Indeed, it is possi-
ble to estimate a vector of successive speech samples simultaneously.
However, such beamformers tend to suffer from high computational
complexity (Benesty et al., 2018; Buchris et al., 2019).

Frequency-domain beamformers, as in Buchris et al. (2018), Itzhak
et al. (2019), Jin et al. (2021) and Itzhak et al. (2021), are typically
formulated on a frame basis, implying that the noisy observations are
first transformed into the frequency (or time–frequency) domain by
invoking the short-time Fourier transform (STFT), processed, and then
transformed back to the time domain to obtain an enhanced version of
the sampled noisy observations. Such beamformers generate a frame of
enhanced time-domain samples at a time, making them more efficient
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than time-domain beamformers and hence more appealing for practical
applications.

Typically, beamforming is designed and applied to arrays whose
geometries are relatively simple, such as uniform linear arrays (ULAs),
as their properties are the easiest to control and analyze. Nevertheless,
their simple nature results in inherent drawbacks. For example, the
phase difference between every two adjacent microphones is identical.
This implies that a ULA may only sense the desired signal from a single
perspective.

More sophisticated array geometries have been proposed to enhance
the beamforming sensing perspective in either two-dimensional (2-
D) (Benesty et al., 2015; Huang et al., 2018) or three-dimensional
(3-D) (Rafaely, 2015; Wang et al., 2021) layouts. In particular, uniform
rectangular arrays (URAs) have been shown valuable for direction of
arrival (DOA) estimation methods (Zoltowski et al., 1996; Heidenreich
et al., 2012), and in the context of differential beamforming, that
is, when the interelement spacing (along both axes) is small (Itzhak
et al., 2021, 2022). In contrast, 3-D geometries are known to allow
further spatial sensing capabilities. For example, spherical arrays were
shown to enable DOA estimation with respect to both the azimuth
and elevation angles (Khaykin and Rafaely, 2009; Moore et al., 2017)
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as well as direct control over a beampattern’s main-lobe width and
maximum side lobe level (Koretz and Rafaely, 2009).

The concept and application of KP beamforming have significantly
evolved in the past few years. It enables flexible design approaches
in which a global beamformer is decomposed into a KP of indepen-
dent sub-beamformers that may be individually designed and opti-
mized (Abramovich et al., 2010; Ribeiro et al., 2016; Benesty et al.,
2019; Cohen et al., 2019; Itzhak et al., 2021; Wang et al., 2021).
Each sub-beamformer is potentially optimized according to a different
criterion, yielding a global beamformer that is ‘‘optimized’’ according to
all requirements. The portion of each optimization criterion is typically
determined by the relative sizes of the corresponding sub-beamformers.

Broadband applications (e.g., communication and speech signals)
suffer from a frequency-varying spatial array response. In practical
scenarios, this might lead to distortion of the desired signal as its
DOA is not necessarily known in advance with high precision. To
address this issue, several approaches have been proposed. One possible
approach suggests defining a region of interest (ROI) and optimizing
the beamformer considering a continuous range of possible DOAs rather
than a single direction, either by array geometry optimization (Konforti
et al., 2022) or using a feedback loop to align the desired signal
before the beamforming (Zhuang et al., 2019). Alternatively, to avoid
undesirable distortion, it is common to employ CB beamformers which
maintain a fixed beamwidth over a wide frequency range, typically
above a threshold frequency which is a function of the array aperture
and the beamforming design technique (Parra, 2006; Tourbabin et al.,
2012; Rosen et al., 2017; Long et al., 2019).

We have recently presented a differential, and CB beamforming
approach based on KP beamforming with URAs (Itzhak and Cohen,
2022). We have demonstrated the proposed approach to outperform the
linear CB beamformer in terms of the array directivity, particularly in
high frequencies, and to outperform the linear SD beamformer in terms
of robustness to spatially white noise. Nevertheless, this approach may
only attain the CB property with respect to a single (e.g., the azimuth)
angle.

In this paper, we present an azimuth and elevation CB differen-
tial beamforming approach for cube arrays. We decompose a global
cube beamformer into a KP of three sub-beamformers: two constant-
beamwidth beamformers along the 𝗓 and 𝗒 axes, respectively, and an
SD beamformer along the 𝗑-axis. At some level, this approach may
be seen as a 3-D generalization of the approach suggested in Itzhak
and Cohen (2022). We propose two design methods to derive global
cube beamformers whose either WNG or DF may be set by design. We
show that the CB threshold frequency with respect to the azimuth and
elevation angles, and the WNG and DF performance, can be controlled
by the number of microphones along each axis. In addition, we focus
on the particular case of merely a single microphone along the 𝗑-axis,
which yields a rectangular azimuth and elevation CB beamformer. We
demonstrate that its CB threshold frequencies are controlled by the
number of microphones along the 𝗒 and 𝗓 axes, and show that its
WNG and DF measures are maximized when the two axes are equal
in size. Finally, we analyze the performance of the proposed beam-
formers through simulations of speech signals in various reverberant
scenarios, including deviations in the desired speech signal’s DOA. We
show that the proposed beamformers outperform previously-presented
beamformers as well as the traditional SD and DS beamformers, partic-
ularly in terms of the intelligibility of their corresponding time-domain
enhanced signals.

The rest of the paper is organized as follows. In Section 2, we
present the signal model and notations used throughout the paper. In
Section 3, we briefly discuss the properties of 3-D KP beamforming
and derive the performance measures accordingly. Then, in Section 4,
we derive our proposed beamformers: two types of cube azimuth and
elevation CB differential beamformers and a rectangular azimuth and
elevation CB beamformer. Section 5 demonstrates and analyzes the
properties of the proposed beamformers through design examples as
well as simulations of noisy speech signals in reverberant environments
and with deviations of the speech signals’ DOA. Finally, we summarize
99

this work in Section 6. Φ
2. Signal model

Let us assume that a signal of interest propagates in the shape of
a plane wave from the farfield in an anechoic acoustic environment at
the speed of sound, i.e., 𝑐 = 340 m∕s, in an azimuth angle 𝜙 and an
elevation angle 𝜃. The plane wave impinges on a 3-D microphone cube
rray whose edges define the 𝗑 − 𝗒 − 𝗓 axes of a Cartesian coordinate
ystem. The cube array is composed of 𝑀𝗑, 𝑀𝗒 and 𝑀𝗓 omnidirectional

microphones along the 𝗑-axis, 𝗒-axis and 𝗓-axis, respectively. We denote
the positions of the microphones by (𝑚𝗑, 𝑚𝗒, 𝑚𝗓), with 𝑚𝗑 = 1, 2,… ,𝑀𝗑,
𝗒 = 1, 2,… ,𝑀𝗒 and 𝑚𝗓 = 1, 2,… ,𝑀𝗓. Then, defining the microphone

located in (1, 1, 1) as the origin of the coordinate system, the array
steering vector of length 𝑀𝗑𝑀𝗒𝑀𝗓 is expressed by (Van Trees, 2004):

𝐝𝜃,𝜙 (𝜔) = 𝐜𝜃 (𝜔)⊗ 𝐛𝜃,𝜙 (𝜔)⊗ 𝐚𝜃,𝜙 (𝜔) , (1)

where

𝐚𝜃,𝜙 (𝜔) =
[

1 𝑒𝚥𝜛𝜃,𝜙,𝗑(𝜔) ⋯ 𝑒𝚥(𝑀𝗑−1)𝜛𝜃,𝜙,𝗑(𝜔)
]𝑇 (2)

is the steering vector associated with the 𝗑-axis,

𝐛𝜃,𝜙 (𝜔) =
[

1 𝑒𝚥𝜛𝜃,𝜙,𝗒(𝜔) ⋯ 𝑒𝚥(𝑀𝗒−1)𝜛𝜃,𝜙,𝗒(𝜔)
]𝑇 (3)

s the steering vector associated with the 𝗒-axis,

𝜃 (𝜔) =
[

1 𝑒𝚥𝜛𝜃,𝗓(𝜔) ⋯ 𝑒𝚥(𝑀𝗓−1)𝜛𝜃,𝗓(𝜔)
]𝑇 (4)

s the steering vector associated with the 𝗓-axis,

𝜛𝜃,𝜙,𝗑 (𝜔) =
𝜔𝛿𝗑 sin 𝜃 cos𝜙

𝑐
,

𝜛𝜃,𝜙,𝗒 (𝜔) =
𝜔𝛿𝗒 sin 𝜃 sin𝜙

𝑐
,

𝜛𝜃,𝗓 (𝜔) =
𝜔𝛿𝗓 cos 𝜃

𝑐
,

𝛿𝗑, 𝛿𝗒, and 𝛿𝗓 are interelement spacings along the 𝗑-axis, 𝗒-axis and the
𝗓-axis, respectively, the superscript 𝑇 denotes the transpose operator,
⊗ is the KP operator, 𝚥 =

√

−1 is the imaginary unit, 𝜔 = 2𝜋𝑓 is the
angular frequency, and 𝑓 > 0 is the temporal frequency.

Exploiting the steering vector in (1), the observed signal vector of
length 𝑀𝗑𝑀𝗒𝑀𝗓 of the cube array can be expressed in the frequency
domain as (Benesty et al., 2018):

𝐲 (𝜔) =
[

𝐲𝑇1 (𝜔) 𝐲𝑇2 (𝜔) ⋯ 𝐲𝑇𝑀𝗓
(𝜔)

]𝑇

= 𝐱 (𝜔) + 𝐯 (𝜔)

= 𝐝𝜃,𝜙 (𝜔)𝑋 (𝜔) + 𝐯 (𝜔) , (5)

where 𝑋 (𝜔) is the zero-mean desired source signal, 𝐯 (𝜔) is the zero-
ean additive noise signal vector,

𝑚𝗓
(𝜔) =

[

𝐲𝑇𝑚𝗓 ,1
(𝜔) 𝐲𝑇𝑚𝗓 ,2

(𝜔) ⋯ 𝐲𝑇𝑚𝗓 ,𝑀𝗒
(𝜔)

]𝑇

= 𝐱𝑚𝗓
(𝜔) + 𝐯𝑚𝗓

(𝜔) , (6)

s the observed signal vector of length 𝑀𝗑 ×𝑀𝗒 for a given value of 𝑚𝗓

nd

𝑚𝗓 ,𝑚𝗒
(𝜔) =

[

𝑌𝑚𝗓 ,𝑚𝗒 ,1 (𝜔) ⋯ 𝑌𝑚𝗓 ,𝑚𝗒 ,𝑀𝗑
(𝜔)

]𝑇

= 𝐱𝑚𝗓 ,𝑚𝗒
(𝜔) + 𝐯𝑚𝗓 ,𝑚𝗒

(𝜔) , (7)

s the observed signal vector of length 𝑀𝗑 for given values of 𝑚𝗓 and
𝗒. Denoting the desired signal incident angle by (𝜃0, 𝜙0) and dropping

he dependence on 𝜔, (5) becomes:

=
(

𝐜𝜃0 ⊗ 𝐛𝜃0 ,𝜙0 ⊗ 𝐚𝜃0 ,𝜙0
)

𝑋 + 𝐯, (8)

here 𝐜𝜃0 ⊗𝐛𝜃0 ,𝜙0 ⊗ 𝐚𝜃0 ,𝜙0 = 𝐝𝜃0 ,𝜙0 is the steering matrix at (𝜃0, 𝜙0), and
he covariance matrix of 𝐲 is:

( 𝐻) 𝐻

𝐲 = 𝐸 𝐲𝐲 = 𝑝𝑋𝐝𝜃0 ,𝜙0𝐝𝜃0 ,𝜙0 +Φ𝐯, (9)
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where 𝐸(⋅) denotes mathematical expectation, the superscript 𝐻 is the
conjugate-transpose operator, 𝑝𝑋 = 𝐸

(

|𝑋|

2) is the variance of 𝑋, and
Φ𝐯 = 𝐸

(

𝐯𝐯𝐻
)

is the covariance matrix of 𝐯. Assuming that the variance
of the noise is approximately the same at all sensors, we can express
(9) as:

Φ𝐲 = 𝑝𝑋𝐝𝜃0 ,𝜙0𝐝
𝐻
𝜃0 ,𝜙0

+ 𝑝𝑉 Γ𝐯, (10)

where 𝑝𝑉 is the variance of the noise at the reference microphone
(i.e., the origin of the Cartesian coordinate system) and Γ𝐯 = Φ𝐯∕𝑝𝑉 is
the pseudo-coherence matrix of the noise. From (10), we deduce that
the input signal-to-noise ratio (SNR) is:

iSNR =
tr
(

𝑝𝑋𝐝𝜃0 ,𝜙0𝐝
𝐻
𝜃0 ,𝜙0

)

tr
(

𝑝𝑉 Γ𝐯
) =

𝑝𝑋
𝑝𝑉

, (11)

where tr(⋅) denotes the trace of a square matrix. In the case of the
spherically isotropic (diffuse) noise field, (10) becomes:

Φ𝐲 = 𝑝𝑋𝐝𝜃0 ,𝜙0𝐝
𝐻
𝜃0 ,𝜙0

+ 𝑝𝑉 Γd, (12)

where 𝑝𝑉 is the variance of the diffuse noise and Γd is the 𝑀𝗑𝑀𝗒𝑀𝗓 ×
𝑀𝗑𝑀𝗒𝑀𝗓 pseudo-coherence matrix of the diffuse noise. We have

Γd =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Γd;1 ⋯ Γd;𝑀𝗓−1
Γd;𝑀𝗓

Γd;2 ⋯ Γd;𝑀𝗓−2 Γd;𝑀𝗓−1
⋮ ⋱ ⋮ ⋮

Γd;𝑀𝗓−1 ⋯ Γd;1 Γd;2
Γd;𝑀𝗓

⋯ Γd;2 Γd;1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

where

Γd;𝑚𝗓
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Γd;𝑚𝗓 ,1 ⋯ Γd;𝑚𝗓 ,𝑀𝗒−1 Γd;𝑚𝗓 ,𝑀𝗒

Γd;𝑚𝗓 ,2 ⋯ Γd;𝑚𝗓 ,𝑀𝗒−2 Γd;𝑚𝗓 ,𝑀𝗒−1

⋮ ⋱ ⋮ ⋮
Γd;𝑚𝗓 ,𝑀𝗒−1 ⋯ Γd;𝑚𝗓 ,1 Γd;𝑚𝗓 ,2

Γd;𝑚𝗓 ,𝑀𝗒
⋯ Γd;𝑚𝗓 ,2 Γd;𝑚𝗓 ,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

is a symmetric block Toeplitz matrix of size 𝑀𝗑𝑀𝗒 × 𝑀𝗑𝑀𝗒, 𝑚𝗓 =
1, 2,… ,𝑀𝗓, and the elements of the 𝑀𝗒 symmetric Toeplitz matrices
Γd;𝑚𝗓 ,𝑚𝗒

, 𝑚𝗒 = 1, 2,… ,𝑀𝗒 (of size 𝑀𝗑 × 𝑀𝗑) are given by (Van Trees,
2004):
(

Γd;𝑚𝗓 ,𝑚𝗒

)

𝑖𝑗

= sinc

⎡

⎢

⎢

⎢

⎣

𝜔
√

(𝑖 − 𝑗)2𝛿2𝗑 +
(

𝑚𝗒 − 1
)2 𝛿2𝗒 +

(

𝑚𝗓 − 1
)2 𝛿2𝗓

𝑐

⎤

⎥

⎥

⎥

⎦

, (15)

with 𝑖, 𝑗 = 1, 2,… ,𝑀𝗑 and sinc(𝑥) = sin 𝑥∕𝑥.

3. Kronecker-product beamforming

We would like to design a global cube beamformer 𝐟 of length
𝑀𝗑𝑀𝗒𝑀𝗓 as a KP of three linear sub-beamformers designed with
respect to each one of the axes of the cube array. Hence, 𝐟 is of the
form:

𝐟 = 𝐮⊗ 𝐰⊗ 𝐡, (16)

where 𝐡 is a differential sub-beamformer of length 𝑀𝗑, 𝐰 is a con-
stant beamwidth sub-beamformer of length 𝑀𝗒 and 𝐮 is a constant
beamwidth sub-beamformer of length 𝑀𝗓. Such a structure enables a
flexible design in which three independent criteria or array attributes
may be considered simultaneously. Due to the cube array’s 3-D geom-
etry, 𝐟 is a typically long beamformer. Then, the beamformer output
signal is:

𝑍 = 𝐟𝐻𝐲 = 𝑋fd + 𝑉rn, (17)

where 𝑍 is the estimate of 𝑋,

𝑋 =
(

𝐮𝐻𝐜
)(

𝐰𝐻𝐛
)(

𝐡𝐻𝐚
)

𝑋 (18)
100

fd 𝜃0 ,𝜙0 𝜃0 ,𝜙0 𝜃0 ,𝜙0
Fig. 1. Illustration of the proposed global cube differential CB beamformer 𝐟 as well
as the three linear sub-beamformers it is composed of: 𝐡, 𝐰 and 𝐮. (a) The three linear
sub-beamformers and (b) the global cube differential CB beamformer. Illustrated array
size is (𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓) = (3, 5, 5).

is the filtered desired signal, and

𝑉rn = (𝐮⊗ 𝐰⊗ 𝐡)𝐻 𝐯 (19)

is the residual noise. As a result, the variance of 𝑍 is:

𝜙𝑍 = 𝐟𝐻Φ𝐲𝐟 = 𝜙𝑋fd
+ 𝜙𝑉rn , (20)

where 𝜙𝑋fd
= 𝑝𝑋

|

|

|

𝐮𝐻𝐜𝜃0 ,𝜙0
|

|

|

2
|

|

|

𝐰𝐻𝐛𝜃0 ,𝜙0
|

|

|

2
|

|

|

𝐡𝐻𝐚𝜃0 ,𝜙0
|

|

|

2
and 𝜙𝑉rn =

(𝐮⊗ 𝐰⊗ 𝐡)𝐻 Φ𝐯 (𝐮⊗ 𝐰⊗ 𝐡). In addition, it is clear that a distortionless
constraint is given by (see Fig. 1):

𝐡𝐻𝐚𝜃0 ,𝜙0 = 1, 𝐰𝐻𝐛𝜃0 ,𝜙0 = 1, 𝐮𝐻𝐜𝜃0 ,𝜙0 = 1. (21)

Next, we relate the most prominent performance measures corre-
sponding to 𝐟 . The output SNR and the gain in SNR are, respectively,

oSNR (𝐟 ) =
𝑝𝑋
𝑝𝑉

×
|

|

|

𝐟𝐻𝐝𝜃0 ,𝜙0
|

|

|

2

𝐟𝐻Γ𝐯𝐟
, (22)

and

 (𝐟 ) = oSNR (𝐟 )
iSNR

=
|

|

|

𝐟𝐻𝐝𝜃0 ,𝜙0
|

|

|

2

𝐟𝐻Γ𝐯𝐟
, (23)

from which we deduce the WNG:

 (𝐟 ) =
|

|

|

𝐟𝐻𝐝𝜃0 ,𝜙0
|

|

|

2

𝐟𝐻 𝐟

=
|

|

|

𝐮𝐻𝐜𝜃0 ,𝜙0
|

|

|

2

𝐜𝐻𝐮
×

|

|

|

𝐰𝐻𝐛𝜃0 ,𝜙0
|

|

|

2

𝐰𝐻𝐰
×

|

|

|

𝐡𝐻𝐚𝜃0 ,𝜙0
|

|

|

2

𝐡𝐻𝐡
=  (𝐮) × (𝐰) × (𝐡) , (24)

and the DF:

 (𝐟 ) =
|

|

|

𝐟𝐻𝐝𝜃0 ,𝜙0
|

|

|

2

𝐟𝐻Γd𝐟
. (25)

We end by defining the beampattern by:

𝜃,𝜙 (𝐟 ) = 𝐟𝐻𝐝𝜃,𝜙
=
(

𝐮𝐻𝐜𝜃,𝜙
) (

𝐰𝐻𝐛𝜃,𝜙
) (

𝐡𝐻𝐚𝜃,𝜙
)

= 𝜃,𝜙 (𝐮)𝜃,𝜙 (𝐰)𝜃,𝜙 (𝐡) , (26)
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where 𝜃,𝜙 (𝐮) = 𝐮𝐻𝐜𝜃,𝜙 may be seen as the beampattern of 𝐮, 𝜃,𝜙 (𝐰) =
𝐰𝐻𝐛𝜃,𝜙 may be seen as the beampattern of 𝐰 and 𝜃,𝜙 (𝐡) = 𝐡𝐻𝐚𝜃,𝜙 may
be seen as the beampattern of 𝐡.

4. Optimal constant-beamwidth beamforming

Assume we are interested in deriving a cube version of the super-
directive beamformer (Benesty et al., 2018), which is not necessarily a
KP beamformer. That is, we would like to solve

min
𝐟

𝐟𝐻Γd𝐟 s. t. 𝐟𝐻𝐝𝜃0 ,𝜙0 = 1, (27)

whose solution is obtained by

𝐟SD =
Γ−1
d 𝐝𝜃0 ,𝜙0

𝐝𝐻𝜃0 ,𝜙0Γ
−1
d 𝐝𝜃0 ,𝜙0

=

[

𝛴𝑀𝗓−1
𝑞=1 𝛴

𝑀𝗒−1
𝑝=1 𝐉𝑀𝗓 ,𝑞 ⊗ 𝐉𝑀𝗒 ,𝑝 ⊗ Γd;𝑞,𝑝

]−1
𝐝𝜃0 ,𝜙0

𝐝𝐻𝜃0 ,𝜙0Γ
−1
d 𝐝𝜃0 ,𝜙0

, (28)

where
(

𝐉𝑀𝗒 ,𝑝

)

𝑖𝑗
=
{

1 |𝑖 − 𝑗| = 𝑝
0 |𝑖 − 𝑗| ≠ 𝑝

, (29)

s a binary matrix of size 𝑀𝗒 × 𝑀𝗒 with ones on the −𝑝th and 𝑝th
iagonals and zeros elsewhere, and 𝐉𝑀𝗓 ,𝑞 is a binary matrix of size

𝑀𝗓 × 𝑀𝗓 defined similarly. In particular, 𝐉𝑀𝗒 ,0 = 𝐈𝑀𝗒
and 𝐉𝑀𝗓 ,0 =

𝐈𝑀𝗓
, which are the identity matrices of size 𝑀𝗒 × 𝑀𝗒 and 𝑀𝗓 × 𝑀𝗓,

respectively. Now, assuming
𝛿𝗒
𝛿𝗑

> 𝑀𝗑 − 1,

𝛿𝗓
𝛿𝗑

> 𝑀𝗑 − 1, (30)

(28) may be approximated by

𝐟SD ≈ 𝜅
(

𝐈𝑀𝗓
⊗ 𝐈𝑀𝗒

⊗ Γ−1
d;1,1

)

𝐝𝜃0 ,𝜙0

= 𝜅
(

𝐈𝑀𝗓
⊗ 𝐈𝑀𝗒

⊗ Γ−1
d;1,1

)(

𝐜𝜃0 ,𝜙0 ⊗ 𝐛𝜃0 ,𝜙0 ⊗ 𝐚𝜃0 ,𝜙0
)

= 𝜅
(

𝐈𝑀𝗓
𝐜𝜃0 ,𝜙0

)

⊗
(

𝐈𝑀𝗒
𝐛𝜃0 ,𝜙0

)

⊗
(

Γ−1
d;1,1𝐚𝜃0 ,𝜙0

)

= 𝜅𝐮̄DS ⊗ 𝐰̄DS ⊗ 𝐡̄SD, (31)

where 𝜅 constitutes a normalization factor, 𝐰̄DS and 𝐮̄DS are the (un-
normalized) linear DS beamformers which operate on the 𝗒 and 𝗓

axes, respectively, and 𝐡̄SD is the (unnormalized) linear SD beamformer
which operates on the 𝗑-axis. In addition, the condition in (30) implies
that the latter should be designed as differential beamformers, that
is, with a small interelement spacing 𝛿𝗑, whereas the interelement
spacing along the 𝗒 and 𝗓 axes, 𝛿𝗒 and 𝛿𝗓, should be larger. We note
that the approximation in (31) is particularly more accurate in higher
frequencies. An illustration of the proposed global cube beamformer is
depicted in Fig. 1.

Since the optimal cube SD beamformer can be decomposed into a
KP of three linear beamformers, with merely one of which optimized
with respect to the array directivity, we may adapt the complementary
beamformer to attain another array attribute. For example, to obtain
constant-beamwidth beamformers, 𝐰̄DS and 𝐮̄DS may be replaced by the
modified rectangular window beamformer of Rosen et al. (2017). Fur-
thermore, 𝐰̄ and 𝐮̄ may be designed as any of the linear window-based
constant-beamwidth beamformers suggested in Long et al. (2019).
Assuming the desired signal (speaker) is located on the 𝗑 − 𝗒 plane in
the endfire direction, i.e., 𝜃0 = 𝜋∕2, 𝜙0 = 0, this implies that

𝐟SD∕CB∕CB = 𝜅𝐮rect ⊗ 𝐰rect ⊗ 𝐡̄SD

=
𝐮rect ⊗ 𝐰rect ⊗

(

Γ−1
d;1,1𝐚𝜋∕2,0

)

𝐻 −1
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𝐚𝜋∕2,0Γd;1,1𝐚𝜋∕2,0
= 𝐮rect ⊗ 𝐰rect ⊗ 𝐡SD, (32)

with 𝐰rect and 𝐮rect being the taps of the (normalized) linear modi-
fied rectangular window-based constant-beamwidth sub-beamformers
of lengths 𝑀𝗒 and 𝑀𝗓, respectively,

𝐡SD =
Γ−1
d;1,1𝐚𝜋∕2,0

𝐚𝐻𝜋∕2,0Γ
−1
d;1,1𝐚𝜋∕2,0

, (33)

nd

𝜋∕2,0 =
[

1 𝑒𝚥𝜔𝛿𝗑∕𝑐 ⋯ 𝑒𝚥𝜔(𝑀𝗑−1)𝛿𝗑∕𝑐
]𝑇 . (34)

In many cases, it is desirable to explicitly set either the WNG or
F of the global beamformer. Therefore, we take advantage of the KP
eamforming structure, and the approach suggested in Berkun et al.
2015) in the context of ULAs, and modify 𝐡SD accordingly.

Let us start with the WNG measure and let 0 be a desirable
requency-dependent WNG value of the global beamformer. Noting that

𝐻
SD∕CB∕CBΓd𝐟SD∕CB∕CB = 𝐡𝐻SDΓd,𝐮𝐰𝐡SD, (35)

here

d,𝐮𝐰 =
(

𝐮rect ⊗ 𝐰rect ⊗ 𝐈𝑀𝗑

)𝐻
Γd

(

𝐮rect ⊗ 𝐰rect ⊗ 𝐈𝑀𝗑

)

, (36)

e may exploit the approach suggested in Berkun et al. (2015) and
efine the tunable super-directive beamformer by

SD,𝜖 =

[

Γ−1
d,𝐮𝐰,𝜖 + 𝛼𝐈𝑀𝗑

]

𝐚𝜋∕2,0

𝐚𝐻𝜋∕2,0
[

Γ−1
d,𝐮𝐰,𝜖 + 𝛼𝐈𝑀𝗑

]

𝐚𝜋∕2,0
, (37)

here

=
𝐚𝐻𝜋∕2,0Γ

−1
d,𝐮𝐰,𝜖𝐚𝜋∕2,0
𝑀𝗑

⎡

⎢

⎢

⎣

√

̄0

𝑀𝗑 − ̄0

|

|

tan𝜑𝜖
|

|

− 1
⎤

⎥

⎥

⎦

, (38)

Γd,𝐮𝐰,𝜖 = Γd,𝐮𝐰 + 𝜖𝐈𝑀𝗑
, (39)

and 𝜖 = 10−7 being a frequency-independent regularization factor. In
addition, tan𝜑𝜖 may be extracted from

cos𝜑𝜖 =
𝐚𝐻𝜋∕2,0Γ

−1
d,𝐮𝐰,𝜖𝐚𝜋∕2,0

√

𝑀𝗑

√

𝐚𝐻𝜋∕2,0Γ
−2
d,𝐮𝐰,𝜖𝐚𝜋∕2,0

, (40)

nd ̄0 is given by

̄ 0 = 0∕
(

𝐰rect
)

∕
(

𝐮rect
)

. (41)

hen, the WNG of

SD∕CB∕CB,𝜖 = 𝐮rect ⊗ 𝐰rect ⊗ 𝐡SD,𝜖 (42)

s guaranteed to be 0. Clearly, invoking (24), we have

0 ≤ 
(

𝐮rect
)

×
(

𝐰rect
)

× max ̄0

= 
(

𝐮rect
)

×
(

𝐰rect
)

×𝑀𝗑

= max,𝐮𝐰, (43)

where

̄0 ≤ 𝑀𝗑, (44)

with its maximum obtained for 𝛼 ⟶ ∞ as 𝐡SD,𝜖 ⟶ 𝐡DS, and 𝐡DS is
the DS beamformer.

Similarly, we may wish to set a desirable DF level of the global
beamformer by substituting Γd with Γd,𝐮𝐰 in equations (57)–(59)
in Berkun et al. (2015) to obtain 𝐡̃SD,𝜖 . Then, it is straightforward to
show that the DF of the following beamformer

̃
𝐟SD∕CB∕CB,𝜖 = 𝐮rect ⊗ 𝐰rect ⊗ 𝐡SD,𝜖 , (45)
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equals a desirable frequency-dependent value 0. Clearly, we have

0 ≤
[

𝐡̃𝐻SD,𝜖,maxΓd,𝐮𝐰,𝜖𝐡SD,𝜖,max

]−1

= max,𝐮𝐰,𝜖 , (46)

where

𝐡SD,𝜖,max =
Γ−1
d,𝐮𝐰,𝜖𝐚𝜋∕2,0

𝐚𝐻𝜋∕2,0Γ
−1
d,𝐮𝐰,𝜖𝐚𝜋∕2,0

. (47)

Let us now assume we are interested in deriving 2-D beamformers
whose DF is less important than the azimuth and elevation constant-
beamwidth property and the WNG. Hence, we set 𝑀𝗑 = 1, which
implies that the designed beamformers in this part are not differential.
We begin by deriving the global optimal rectangular beamformer in
terms of the WNG, and as before, we do not restrict the solution to KP
beamformers solely. That is, we are interested in solving

min
𝐟

𝐟𝐻 𝐟 s. t. 𝐟𝐻𝐝𝜃0 ,𝜙0 = 1. (48)

The solution is obtained by

𝐟DS =
𝐝𝜃0 ,𝜙0

𝐝𝐻𝜃0 ,𝜙0𝐝𝜃0 ,𝜙0

=
𝐜𝜃0 ,𝜙0

𝐜𝐻𝜃0 ,𝜙0𝐜𝜃0 ,𝜙0
⊗

𝐛𝜃0 ,𝜙0
𝐛𝐻𝜃0 ,𝜙0𝐛𝜃0 ,𝜙0

= 𝐮DS ⊗ 𝐰DS, (49)

which is axis-separable without any further approximations. As with
the SD beamformer, we may now replace any of the linear DS beam-
formers with a linear constant-beamwidth beamformer. For example,
we may employ the modified rectangular window-based constant-
beamwidth beamformer along the 𝗒- and 𝗓-axes. This implies that
qs. (2) and (3) are modified accordingly. We note that the speaker
s still assumed to be located on the (positive) 𝗑-axis, that is, (𝜃0, 𝜙0) =
𝜋∕2, 0). We therefore have

CB∕CB = 𝐮rect ⊗ 𝐰rect , (50)

hich is regarded as the rectangular azimuth and elevation constant-
eamwidth beamformer. We note that 𝐟CB∕CB may be seen as a special
ase of 𝐟SD∕CB∕CB with 𝑀𝗑 = 1, and in contrast to the former case, the
nterelement spacing 𝛿𝗒 and 𝛿𝗓 may take any value. In particular, nei-
her should be very small as none of the linear beamformers involved
s differential.

It is worthwhile addressing the computational complexity of the
roposed beamformers, which is typically determined by the number
f multiplications required to derive and apply the beamformers. The
erivation of the linear CB sub-beamformers is in the order of (1) as
t merely requires a small finite number of multiplications independent
f the number of microphones. This implies that the derivation of 𝐰rect
nd 𝐮rect is of order (1). Still, the KP operation applied to generate
CB∕CB requires (𝑀𝗒𝑀𝗓) multiplications (although in practice this
ay be reduced as most values are constant). On the contrary, the
erivation of either 𝐡̃SD,𝜖 or 𝐡SD,𝜖 requires (𝑀3

𝗑𝑀
2
𝗒𝑀

2
𝗓 ) to derive the

matrix Γd,𝐮𝐰 and another (𝑀3
𝗑 ) multiplications to compute its inverse.

The application of these three beamformers to the noisy observations
vector is simply in the order of the length of the beamformer, that is,
(𝑀𝗑𝑀𝗒𝑀𝗓) multiplications (with 𝑀𝗑 = 1 for 𝐟CB∕CB). For comparison,
the derivation of the cube SD beamformer 𝐟SD is in the order of
(𝑀3

𝗑𝑀
3
𝗒𝑀

3
𝗓 ) due to the computation of Γ−1

d (Householder, 2013),
and the derivation of the cube DS beamformer 𝐟DS is of order (𝑀𝗑).
The application to the noisy observations vector (roughly, without any
implementation optimization) is similar to the proposed beamformers,
which lower bounds the computational complexity by (𝑀𝗑𝑀𝗒𝑀𝗓).
Table 1 summarizes the computational complexity of the discussed
102

beamformers.
Table 1
Computational complexity comparison of the proposed beamformers and the cube SD
and DS beamformers.
𝐟̃SD∕CB∕CB,𝜖 (𝑀3

𝗑𝑀
2
𝗒𝑀

2
𝗓 )

𝐟SD∕CB∕CB,𝜖 (𝑀3
𝗑𝑀

2
𝗒𝑀

2
𝗓 )

𝐟CB∕CB (𝑀𝗒𝑀𝗓)
𝐟SD (𝑀3

𝗑𝑀
3
𝗒𝑀

3
𝗓 )

𝐟DS (𝑀𝗑𝑀𝗒𝑀𝗓)

We end this part by comparing the proposed approach to the
approaches suggested in Wang et al. (2021), and Itzhak and Cohen
(2022), respectively. In essence, all three approaches take advantage of
the KP beamforming framework to design flexible global beamformers
composed of linear sub-beamformers of different kinds. However, while
the approach in Wang et al. (2021) a priori considers fully-separable
global beamformers and does not directly address the interelement
spacing along the three axes (and is arbitrarily taken as identical
along all axes), the proposed approach and the approach suggested
in Itzhak and Cohen (2022) are shown to resemble the traditional
SD beamformer better (implying better array directivity) when certain
design conditions are satisfied (30). Hence, they are designed with
a differential sub-beamformer along the 𝗑-axis whose interelement
spacing is small, and wider-spaced sub-beamformers along the 𝗒 and
𝗓 axes. In addition, the work in Wang et al. (2021) does not consider
some of the array attributes this work considers, e.g., the CB property
and direct control of either the WNG or DF. Relating the work presented
in Itzhak and Cohen (2022), it merely focuses on the CB property with
respect to azimuth angle and takes advantage of URAs. In contrast, the
proposed approach strives to attain a constant main-lobe beamwidth
with respect to both the azimuth and elevation angles by using cube
arrays. Thus, the latter may be regarded as a generalization of the
former. Additionally, we propose the 𝐟CB∕CB beamformer, for which
no comparable beamformer is suggested in Itzhak and Cohen (2022).
Finally, the analysis performed in this work is much deeper, considering
the computational complexity of the proposed beamformers as well as
desired speech signals impinging on the array from varying incident
angles in space and not necessarily from the 𝗑 − 𝗒 plane. This will
be thoroughly evaluated and discussed in the next section from both
the beampattern and main-lobe beamwidth perspectives, as well as the
quality and intelligibility of enhanced speech signals.

5. Simulations

5.1. Design examples

We begin by providing some design examples of 𝐟̃SD∕CB∕CB,𝜖 and
𝐟SD∕CB∕CB,𝜖 . Considering 𝑀 = 105 as a fixed number of microphones
in the array, we are interested in investigating the impact of the values
of 𝑀𝗑, 𝑀𝗒 and 𝑀𝗓 on the beamformer’s properties. According to the
previous part, we first set the values of 𝑀𝗒 and 𝑀𝗓; then, we use Rosen
et al. (2017) to obtain 𝐰rect and 𝐮rect , respectively. Next, we design
the differential sub-beamformer along the 𝗑-axis using either 𝐡SD,𝜖 or
𝐡SD,𝜖 , which are of length 𝑀𝗑 = 𝑀∕𝑀𝗒∕𝑀𝗓, to set either the DF or
the WNG of the cube array. Clearly, with 𝐟SD∕CB∕CB,𝜖 , as long as (43)
is satisfied we may set 0 arbitrarily; and with 𝐟̃SD∕CB∕CB,𝜖 , as long as
(46) is satisfied we may set 0 arbitrarily. Figs. 2 and 3 demonstrate
the WNG and DF with 𝐟SD∕CB∕CB,𝜖 and 𝐟̃SD∕CB∕CB,𝜖 , respectively. In each,
we depict the three possible ULAs which serve as a reference, that
is, a tunable super-directive beamformer along the 𝗑-axis and two CB
beamformers along the 𝗒 and 𝗓 axes, respectively. In addition, we plot
three distinct examples of the proposed cube beamformers. We note
that while in Itzhak and Cohen (2022) it was suggested to set 0
and 0 as either frequency-invariant values or as reduced values of
their respective maximum, in this work we strictly set 0 = max,𝐮𝐰

with 𝐟SD∕CB∕CB,𝜖 , which is therefore denoted as 𝐟SD∕CB∕CB,𝜖,max, whereas



Speech Communication 149 (2023) 98–107G. Itzhak and I. Cohen

̃
̃

𝐟SD∕CB∕CB,𝜖 is designed with 0 = max,𝐮𝐰,𝜖 and is therefore denoted as
𝐟SD∕CB∕CB,𝜖,max. In addition, we set 𝛿𝗑 = 5 mm, 𝛿𝗒 = 𝛿𝗓 = 4 cm, and the
main-lobe beamwidths with respect to both angles are set to 𝛥𝜙 = 𝛥𝜃 =
40◦. Addressing 𝐟SD∕CB∕CB,𝜖 , we observe that, indeed, the higher the
value of 𝑀𝗑 the better the WNG, in particular in high frequencies. The
reason for that is double: (a) since 0 = max,𝐮𝐰 the sub-beamformer
along the 𝗑-axis is the WNG-optimal DS beamformer and (b) unlike
the CB sub-beamformers the length of the DS sub-beamformer does
not reduce as the frequency increases. The latter also explains the DF
performance in high frequencies: the higher 𝑀𝗑, the larger the array
size and its directivity. Addressing 𝐟̃SD∕CB∕CB,𝜖 , it is clear that the higher
𝑀𝗑 the better the DF, which is a consequence of setting 0 = max,𝐮𝐰,𝜖 .
On the contrary, and unlike with the other beamformer, the higher
𝑀𝗑, the worse the WNG, which is a consequence of the very low WNG
nature of the SD beamformer.

Next, in Fig. 4, we analyze the 2-D azimuth and elevation beampat-
terns with 𝐟̃SD∕CB∕CB,𝜖 as a function of the frequency. We note that in
the 2-D elevation beampatterns, the 𝜃-angle is measured with respect
to the 𝗑 − 𝗒 plane. It is evident that when 𝑀 is fixed, increasing
𝑀𝗒 and 𝑀𝗓 lowers the CB threshold frequency with respect to the
azimuth and elevation angles, respectively. In contrast, increasing ei-
ther of them with the other remains fixed, implies that 𝑀𝗑 drops, and
accordingly, so does the directivity of the global beamformer, which
is expressed by significant side lobes. It is worthwhile noting that a
similar behavior and tradeoff exist with the 𝐟SD∕CB∕CB,𝜖 beamformer as
well. Consequently, addressing both beamformers, we infer that 𝑀𝗒 and
𝑀𝗓 determine the CB threshold frequencies, whereas 𝑀𝗑 sets the WNG
and DF measures of the global beamformer: with 𝐟̃SD∕CB∕CB,𝜖 , increasing
𝑀𝗑 maximizes the DF but deteriorates the WNG; with 𝐟SD∕CB∕CB,𝜖
increasing 𝑀𝗑 maximizes the WNG and the DF improves as well. This
is particularly emphasized in higher frequencies.

We move on to investigating the 𝐟CB∕CB beamformer, with the WNG
and DF of six of its design examples depicted in Fig. 5. We set 𝑀 =
𝑀𝗒𝑀𝗓 = 45 and keep all other settings identical to the previous part.
We immediately note that the ULAs, that is, when either 𝑀𝗒 or 𝑀𝗓

equal 1, exhibit inferior performance in terms of both measures. In fact,
we observe that the closer the values of 𝑀𝗒 and 𝑀𝗓 the better the
performance. This is a consequence of the larger effective array size
of the global rectangular beamformer: as the frequency increases, the
effective length (the number of non-zero taps) of each sub-beamformer
drops. For any frequency above the CB threshold frequency, this effec-
tive length does not depend on the physical number of microphones
in the sub-beamformer (that is, 𝑀𝗒 or 𝑀𝗓) but rather it depends
on the frequency, the interelement spacing, and the desired main-
lobe beamwidth. This means that the more balanced the axes of the
rectangular beamformer, the fewer physical microphones are zeroed
and the larger the effective array size (for frequencies above the CB
threshold frequency). This also explains why both the WNG and DF
measures remain identical upon interchanging the values of 𝑀𝗒 and
𝑀𝗓, that is, by effectively rotating the beamformer. Finally, we point
out a clear performance drop in edge frequencies in which the effective
length of the sub-beamformers drops. This behavior was previously
reported in Rosen et al. (2017) and Itzhak and Cohen (2022).

We end this part by addressing the azimuth and elevation
beamwidths with the same six variations of the 𝐟CB∕CB beamformer. The
beamwidths are depicted in Fig. 6; to compute them we define the zeros
of the beampatterns as at least 30 dB weaker than the maximal gain. It is
clear that, as with the two cube beamformers, the larger 𝑀𝗒, the lower
the CB threshold frequency with respect to the azimuth angle, and the
larger 𝑀𝗓, the lower the CB threshold frequency with respect to the
elevation angle. In particular, when either 𝑀𝗒 or 𝑀𝗓 equal 1 constant
beamwidth is obtained with respect to merely a single angle. We infer
that when the constant beamwidth property is of equal importance with
respect to both angles, 𝑀𝗒 and 𝑀𝗓 should be roughly equal, which is
also the optimal choice in terms of the WNG and DF measures. On the
contrary, When the CB property is of a higher interest with respect to a
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Fig. 2. WNG and DF with 𝐟SD∕CB∕CB,𝜖 for different values of 𝑀𝗑𝑀𝗒𝑀𝗓 = 105. (a) WNG
and (b) DF.

single angle, the corresponding sub-beamformer size should be larger.
However, this increases the CB threshold frequency with respect to the
complementary angle and deteriorates both the WNG and DF.

5.2. Speech signals simulations in reverberant environments

Next, we analyze the performance of the proposed beamformers
with noisy speech signals in reverberant environments and examine
their tolerance to deviations in the speech signals’ DOA. The rever-
berant simulations are performed as follows. We use a room impulse
response (RIR) generator (Habets, 2008) to simulate the reverberant
noise-free signal received in a beamformer consisting of 𝑀𝗑 × 𝑀𝗒 ×
𝑀𝗓 = 75 microphones in four different settings: (𝑀𝗑,𝑀𝗒,𝑀𝗓) = (3, 5, 5),
(5, 3, 5), (5, 1, 15) and (1, 5, 15). For each of the settings, we design each
of the three proposed beamformers, that is, 𝐟̃SD∕CB∕CB,𝜖 , 𝐟SD∕CB∕CB,𝜖 and
𝐟CB∕CB, as well as the referred cube SD and DS beamformers, that is,
𝐟SD and, 𝐟DS, respectively. Additionally, we design the 𝐡̄aMDF∕MWNG,1
and 𝐡̄aMDF∕MWNG,2 beamformers proposed in Wang et al. (2021) with
an interelement spacing of 𝛿 = 𝛿𝗑 = 𝛿𝗒 = 𝛿𝗓 = 1.5 cm which was found
optimal for our scenarios through simulations. While this is a relatively
large number of array microphones, it cannot be reduced greatly due to
the cube nature of the array. This implies that the proposed approach
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Fig. 3. WNG and DF with 𝐟̃SD∕CB∕CB,𝜖 for different values of 𝑀𝗑𝑀𝗒𝑀𝗓 = 105. (a) WNG
and (b) DF.

is less likely to fit physically small or low-cost appliances but could
be used in studios, for conference room calls, or potentially any non-
portable application. In each of the four settings, the array is located
on the 𝑧 = 2 m plane and centered around the (𝑥, 𝑦) = (4 m, 4 m)
coordinate, with 𝛿𝗑 = 5 mm and 𝛿𝗒 = 𝛿𝗓 = 4 cm. The RIR generator is
based on the image method of Allen and Berkley (1979). We simulate
three distinct scenarios in a 6 × 6 × 5 m room, which differ by
the location of the desired speech signal source in the room, which
corresponds to three distinct DOAs: (𝜃0, 𝜙0): (𝜋∕2, 0) (no deviation),
50 deviation with respect to the azimuth and elevation angles, and
a 100 deviation with respect to the azimuth and elevation angles. In
all scenarios, we set 𝑇60 = 250 msec, where 𝑇60 is defined by Sabin-
Franklin’s formula (Pierce, 2019). In addition, two simulated noise
fields are present: a white thermal Gaussian noise and a spherically-
isotropic diffuse noise, with the latter being 30 dB more powerful than
the former; overall, the input SNR is set to iSNR = −5 dB. The desired
speech signal, 𝑥 (𝑡), is a concatenation of 24 speech signals (12 speech
signals per gender) with varying dialects that are taken from the TIMIT
database (DARPA, 1993). It is sampled at a sampling rate of 𝑓s = 1∕𝑇s =
16 kHz within the signal duration 𝑇 .

The noisy observations signal is transformed into the STFT domain
using 75% overlapping time frames and a Hamming analysis window
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Fig. 4. Azimuth and elevation beampattern analysis with 𝐟̃SD∕CB∕CB,𝜖 for different values
of 𝑀𝗑𝑀𝗒𝑀𝗓 = 105 as a function of the frequency. The 𝜃-angle in the 2-D elevation
beampatterns is measured with respect to the 𝗑 − 𝗒 plane. (a) Azimuth beampatterns
with 𝑀𝗑 = 7,𝑀𝗒 = 5,𝑀𝗓 = 3, (b) elevation beampatterns with 𝑀𝗑 = 7,𝑀𝗒 = 5,𝑀𝗓 = 3,
(c) azimuth beampatterns with 𝑀𝗑 = 5,𝑀𝗒 = 7,𝑀𝗓 = 3, (d) elevation beampatterns
with 𝑀𝗑 = 5,𝑀𝗒 = 7,𝑀𝗓 = 3, (e) azimuth beampatterns with 𝑀𝗑 = 3,𝑀𝗒 = 7,𝑀𝗓 = 5,
(f) elevation beampatterns with 𝑀𝗑 = 3,𝑀𝗒 = 7,𝑀𝗓 = 5, (g) azimuth beampatterns with
𝑀𝗑 = 1,𝑀𝗒 = 15,𝑀𝗓 = 7, and (h) elevation beampatterns with 𝑀𝗑 = 1,𝑀𝗒 = 15,𝑀𝗓 = 7.

of length 256 (16 msec). The discrete Fourier-transform length is set to
256 as well. Next, rectangular differential beamformers with different
configurations are independently applied to the noisy signal to yield
clean signal estimates in the STFT domain, followed by an inverse STFT
to obtain time-domain enhanced signals.

We analyze and compare the average PESQ (Rix et al., 2001) and
STOI (Taal et al., 2011) scores of the time-domain enhanced signals
in each of the three aforementioned scenarios and with each of the
seven aforementioned beamformers (the three proposed beamformers,
the SD beamformer and the DS beamformer, and 𝐡̄aMDF∕MWNG,1 and
𝐡aMDF∕MWNG,2 of Wang et al. (2021)). Each beamformer is designed and
applied to the noisy observations in each of the four array settings
described above. The results are shown in Tables 2–4, respectively,
including the PESQ and STOI scores of the noisy signals as received
by the reference (first) microphone. We note that each of the scenarios
is characterized by a different reverberation pattern (as the location
of the speech signal source varies) and hence the scenarios cannot be
directly compared but rather individually analyzed. In addition, inap-

̃
plicable array settings are marked by gray table cells: with 𝐟SD∕CB∕CB,𝜖



Speech Communication 149 (2023) 98–107G. Itzhak and I. Cohen

̃

̄

Fig. 5. WNG and DF with 𝐟CB∕CB for different values of 𝑀𝗒𝑀𝗓 = 45. (a) WNG and (b)
DF.

and 𝐟SD∕CB∕CB,𝜖 we always have 𝑀𝗑 > 1, whereas with 𝐟CB∕CB we
always have 𝑀𝗑 = 1. To begin with, we observe that without any
deviation of the desired signal’s DOA (first scenario; Table 2) the
𝐟SD∕CB∕CB,𝜖 beamformer outperforms all other beamformers in terms
of both scores. This may be explained by its ability to attenuate both
the white noise as well as the diffuse noise and reverberations. This is
resulted in by its construction- each of the linear sub-beamformers it is
composed of is either optimal (SD; diffuse noise and reverberations) or
nearly optimal (CB; white noise) with respect to one of the simulated
noise fields. We note that in some sense it is similar by design to
𝐡aMDF∕MWNG,1, however, the latter considers an identical interelement
spacing along all axes and the linear sub-beamformers it is composed
of are independently designed, as opposed to 𝐟̃SD∕CB∕CB,𝜖 with which
Γd,𝐮𝐰 is considered and its interelement spacings along the different
axes are not all equal and chosen to comply with (30). In addition,
as both 𝑀𝗒 and 𝑀𝗓 are larger than 1, the 𝐟̃SD∕CB∕CB,𝜖 beamformer
exhibits a constant beamwidth with respect to both the azimuth and
elevation angles. This may also explain its STOI score performance,
which is superior in all three scenarios. Focusing on 𝐟SD∕CB∕CB,𝜖 and
𝐟CB∕CB, we observe that both exhibit very similar performance to the
DS beamformer 𝐟 in terms of both scores. Clearly, this is expected
105

DS
Fig. 6. Azimuth and elevation beamwidths with 𝐟CB∕CB for different values of 𝑀𝗒𝑀𝗓 =
45. (a) Azimuth-angle beamwidths and (b) elevation-angle beamwidths.

as for every frequency below the CB threshold frequency the linear
rectangular window-based sub-beamformers 𝐮rect and 𝐰rect converge
to the linear DS beamformer whose all taps equal, and for every
frequency above the CB threshold frequency merely two taps out of
the entire beamformer differ from the rectangular window all-equal
taps pattern. Therefore, in future work, we suggest replacing the linear
modified rectangular CB beamformers of 𝐟SD∕CB∕CB,𝜖 and 𝐟CB∕CB by
an alternative linear CB sub-beamformer (for example, a Kaiser- or a
Chebyshev-window based beamformer) whose directivity is potentially
preferable and its length does not decrease as the frequency increases.
Nevertheless, the approach suggested in Section 4 clearly remains valid
regardless of the linear CB sub-beamformer at hand. Addressing the SD
beamformer 𝐟SD, we note that it performs well when no DOA deviation
exists as it is able to attenuate the diffuse noise and reverberations
to the largest extent, however, its STOI scores performance degrades
in the two complementary scenarios in which DOA deviations exist
(Tables 3 and 4). In some cases, the intelligibility of the enhanced
speech signals is even worse than the noisy speech signals. This is a
consequence of the frequency-dependent beamwidth of the SD beam-
former which considerably distorts the desired signal when its DOA
deviates from its expected direction- in particular in high frequencies.
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Table 2
Average PESQ and STOI scores of the enhanced signals with the three proposed beamformers, the traditional SD and DS
beamformers, and the 𝐡̄aMDF and 𝐡̄aMDF∕MWNG,1 beamformers proposed in Wang et al. (2021). The simulations are carried out
in four distinct array settings (𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓), and with no deviation of the desired speech signal’s DOA. The PESQ score of the
noisy signal is 1.84 and its corresponding STOI score is 0.78.
(𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓) PESQ STOI

(3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15) (3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15)

𝐟̃SD∕CB∕CB,𝜖 3.51 3.09 2.89 0.96 0.86 0.93
𝐟SD∕CB∕CB,𝜖 2.29 2.19 2.10 0.83 0.81 0.79
𝐟CB∕CB 2.36 0.84
𝐟SD 2.63 2.21 2.80 2.56 0.92 0.86 0.92 0.90
𝐟DS 2.30 2.19 2.17 2.42 0.84 0.82 0.81 0.85
𝐡̄aMDF∕MWNG,1 (Wang et al.,
2021)

2.54 2.78 2.74 2.08 0.88 0.92 0.88 0.80

𝐡̄aMDF∕MWNG,2 (Wang et al.,
2021)

2.34 2.18 2.00 2.21 0.83 0.77 0.73 0.84
Table 3
Average PESQ and STOI scores of the enhanced signals with the three proposed beamformers, the traditional SD and DS
beamformers, and the 𝐡̄aMDF and 𝐡̄aMDF∕MWNG,1 beamformers proposed in Wang et al. (2021). The simulations are carried out
in four distinct array settings (𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓), and with a 5◦ deviation of the desired speech signal’s DOA in both the azimuth
and elevation angles, respectively. The PESQ score of the noisy signal is 1.74 and its corresponding STOI score is 0.75.
(𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓) PESQ STOI

(3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15) (3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15)

𝐟̃SD∕CB∕CB,𝜖 2.34 2.32 2.35 0.72 0.79 0.87
𝐟SD∕CB∕CB,𝜖 2.22 2.09 1.95 0.82 0.80 0.77
𝐟CB∕CB 2.24 0.82
𝐟SD 2.10 1.93 2.11 2.46 0.70 0.68 0.82 0.71
𝐟DS 2.21 2.09 2.01 2.30 0.83 0.80 0.79 0.83
𝐡̄aMDF∕MWNG,1 (Wang et al.,
2021)

1.93 2.58 2.10 2.03 0.81 0.81 0.79 0.79

𝐡̄aMDF∕MWNG,2 (Wang et al.,
2021)

1.89 1.87 1.90 2.13 0.72 0.71 0.71 0.81
Table 4
Average PESQ and STOI scores of the enhanced signals with the three proposed beamformers, the traditional SD and DS
beamformers, and the 𝐡̄aMDF and 𝐡̄aMDF∕MWNG,1 beamformers proposed in Wang et al. (2021). The simulations are carried out
in four distinct array settings (𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓), and with a 10◦ deviation of the desired speech signal’s DOA in both the azimuth
and elevation angles, respectively. The PESQ score of the noisy signal is 1.71 and its corresponding STOI score is 0.70.
(𝑀𝗑 ,𝑀𝗒 ,𝑀𝗓) PESQ STOI

(3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15) (3, 5, 5) (5, 3, 5) (5, 1, 15) (1, 5, 15)

𝐟̃SD∕CB∕CB,𝜖 2.42 2.31 2.29 0.79 0.85 0.87
𝐟SD∕CB∕CB,𝜖 2.22 2.14 2.07 0.82 0.79 0.76
𝐟CB∕CB 2.31 0.81
𝐟SD 2.10 1.77 2.03 2.37 0.72 0.64 0.70 0.81
𝐟DS 2.22 2.15 2.14 2.35 0.82 0.79 0.75 0.80
𝐡̄aMDF∕MWNG,1 (Wang et al.,
2021)

2.22 2.33 1.81 2.09 0.75 0.80 0.72 0.80

𝐡̄aMDF∕MWNG,2 (Wang et al.,
2021)

1.89 1.94 1.99 2.28 0.73 0.72 0.72 0.84
Finally, relating the 𝐡̄aMDF∕MWNG,2 beamformer, we note it is generally
outperformed by all other beamformers and in all array settings, except
when (𝑀𝗑,𝑀𝗒,𝑀𝗓) = (1, 5, 15) in which its STOI scores are comparable
or even superior in the 100 deviation scenario).

. Conclusions

We have presented an azimuth and elevation CB differential beam-
orming approach for 3-D cube arrays. Assuming the ratios between
he interelement spacing along the 𝗒 and 𝗑 axes, and the interele-
ent spacing along the 𝗓 and 𝗑 axes, are larger than the number of
icrophones along the 𝗑-axis, the cube SD beamformer is shown to

e approximated by a KP of a linear DS sub-beamformer along the
-axis, a linear DS sub-beamformer along the 𝗒-axis and a linear SD sub-
eamformer along the 𝗑-axis. Then, we replace the DS sub-beamformers
ith CB sub-beamformers and propose two design methods to derive
lobal cube beamformers whose either WNG or DF may be set by
esign. We show that by tuning the values of 𝑀𝗒, 𝑀𝗓 and 𝑀𝗑 we are
ble to control the tradeoff between the CB threshold frequency with
106
respect to the azimuth and elevation angles, respectively, and the WNG
or DF performance. In addition, we focus on the special case of 𝑀𝗑 = 1
and show that a rectangular azimuth and elevation CB beamformer
may be obtained by applying a KP decomposition to the rectangular
DS beamformer and replacing the linear DS sub-beamformers with
linear CB sub-beamformers. The azimuth and elevation CB threshold
frequencies with this rectangular CB beamformer are controlled by the
values of 𝑀𝗒 and 𝑀𝗓, respectively, with a lower threshold frequency
obtained for a larger corresponding sub-beamformer size. The WNG and
DF measures are shown to be maximized when 𝑀𝗒 and 𝑀𝗓 are equal.
Finally, we analyze the performance of the proposed beamformers
through speech signals simulations in various reverberant scenarios
and array settings, and with deviations of the DOA. We show that the
proposed beamformers outperform previously-presented beamformers
and the traditional SD and DS beamformers, particularly in terms of the
intelligibility of their corresponding time-domain enhanced signals. In
future work, we may replace the 𝐰rect sub-beamformer with another lin-
ear CB beamformer to potentially avoid the WNG and DF performance
drops in edge frequencies and better differentiate between the proposed
𝐟 and 𝐟 beamformers and the traditional DS beamformer.
SD∕CB∕CB,𝜖 CB∕CB



Speech Communication 149 (2023) 98–107G. Itzhak and I. Cohen
CRediT authorship contribution statement

Gal Itzhak: Conceptualization, Methodology, Formal analysis, In-
vestigation, Writing – original draft, Writing – review & editing. Israel
Cohen: Conceptualization, Methodology, Formal analysis, Investiga-
tion, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article

References

Abramovich, Y.I., Frazer, G.J., Johnson, B.A., 2010. Iterative adaptive Kronecker
MIMO radar beamformer: Description and convergence analysis. IEEE Trans. Signal
Process. 58 (7), 3681–3691.

Allen, J.B., Berkley, D.A., 1979. Image method for efficiently simulating small-room
acoustics. J. Acoust. Soc. Am. 65 (4), 943–950.

Benesty, J., Chen, J., Cohen, I., 2015. Design of Circular Differential Microphone Arrays.
Springer-Verlag, Switzerland.

Benesty, J., Cohen, I., Chen, J., 2018. Fundamentals of Signal Enhancement and Array
Signal Processing. Wiley-IEEE Press, Singapore.

Benesty, J., Cohen, I., Chen, J., 2019. Array Processing - Kronecker Product
Beamforming. Springer-Verlag, Switzerland.

Berkun, R., Cohen, I., Benesty, J., 2015. Combined beamformers for robust broadband
regularized superdirective beamforming. IEEE/ACM Trans. Audio Speech Lang.
Process. 23 (5), 877–886.

Buchris, Y., Cohen, I., Benesty, J., 2018. Frequency-domain design of asymmetric
circular differential microphone arrays. IEEE/ACM Trans. Audio Speech Lang.
Process. 26 (4), 760–773.

Buchris, Y., Cohen, I., Benesty, J., 2019. On the design of time-domain differential
microphone arrays. Appl. Acoust. 148, 212–222.

Cohen, I., Benesty, J., Chen, J., 2019. Differential Kronecker product beamforming.
IEEE/ACM Trans. Audio Speech Lang. Process. 27 (5), 892–902.

1993. DARPA TIMIT acoustic phonetic continuous speech corpus.
Habets, E.A.P., 2008. Room impulse response (RIR) generator.
Heidenreich, P., Zoubir, A.M., Rubsamen, M., 2012. Joint 2-D DOA estimation and

phase calibration for uniform rectangular arrays. IEEE Trans. Signal Process. 60
(9), 4683–4693.

Householder, A.S., 2013. The Theory of Matrices in Numerical Analysis. Dover
Publications, New York.

Huang, G., Chen, J., Benesty, J., 2018. On the design of differential beamformers
with arbitrary planar microphone array geometry. J. Acoust. Soc. Am. 144 (1),
EL66–EL70.

Itzhak, G., Benesty, J., Cohen, I., 2019. Nonlinear Kronecker product filtering for
multichannel noise reduction. Speech Commun. 114, 49–59.

Itzhak, G., Benesty, J., Cohen, I., 2021. On the design of differential Kronecker product
beamformers. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 1397–1410.

Itzhak, G., Benesty, J., Cohen, I., 2021. Quadratic beamforming for magnitude es-
timation. In: Proc. 29th European Signal Processing Conference. EUSIPCO, pp.
251–255.

Itzhak, G., Benesty, J., Cohen, I., 2022. Multistage approach for steerable differential
beamforming with rectangular arrays. Speech Commun. 142, 61–76.
107
Itzhak, G., Cohen, I., 2022. Differential and constant-beamwidth beamforming with
uniform rectangular arrays. In: Proc. 17th International Workshop on Acoustic
Signal Enhancement, IWAENC-2022.

Itzhak, G., Cohen, I., Benesty, J., 2021. Robust differential beamforming with
rectangular arrays. In: Proc. 29th European Signal Processing Conference,
EUSIPCO-2021.

Jin, J., Huang, G., Wang, X., Chen, J., Benesty, J., Cohen, I., 2021. Steering study
of linear differential microphone arrays. IEEE/ACM Trans. Audio Speech Lang.
Process. 29, 158–170.

Johnson, D.H., Dudgeon, D.E., 1992. Array Signal Processing: Concepts and Techniques.
Simon and Schuster, Inc., USA.

Khaykin, D., Rafaely, B., 2009. Coherent signals direction-of-arrival estimation using
a spherical microphone array: Frequency smoothing approach. In: 2009 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics. pp.
221–224.

Konforti, Y., Cohen, I., Berdugo, B., 2022. Array geometry optimization for region-of-
interest broadband beamforming. In: Proc. 17th International Workshop on Acoustic
Signal Enhancement, IWAENC-2022.

Koretz, A., Rafaely, B., 2009. Dolph–Chebyshev beampattern design for spherical arrays.
IEEE Trans. Signal Process. 57 (6), 2417–2420.

Long, T., Cohen, I., Berdugo, B., Yang, Y., Chen, J., 2019. Window-based constant
beamwidth beamformer. Spec. Issue Sensors Speech Acoust. Audio Signal Process.
Appl. Sens. 19, 1–20.

Moore, A.H., Evers, C., Naylor, P.A., 2017. Direction of arrival estimation in the
spherical harmonic domain using subspace pseudointensity vectors. IEEE/ACM
Trans. Audio Speech Lang. Process. 25 (1), 178–192.

Parra, L.C., 2006. Steerable frequency-invariant beamforming for arbitrary arrays. J.
Acoust. Soc. Am. 119 (6), 3839–3847.

Pierce, A., 2019. Acoustics: An Introduction to its Physical Principles and Applications.
Springer International Publishing, Switzerland.

Rafaely, B., 2015. Fundamentals of Spherical Array Processing. Springer-Verlag Berlin
Heidelberg, Berlin.

Ribeiro, L.N., de Almeida, A.L.F., Mota, J.C.M., 2016. Tensor beamforming for mul-
tilinear translation invariant arrays. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing. ICASSP, pp. 2966–2970.

Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P., 2001. Perceptual evaluation of
speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. In: 2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings, Vol. 2. pp. 749–752.

Rosen, O., Cohen, I., Malah, D., 2017. FIR-based symmetrical acoustic beamformer with
a constant beamwidth. Signal Process. 130, 365–376.

Taal, C.H., Hendriks, R.C., Heusdens, R., Jensen, J., 2011. An algorithm for intelligibil-
ity prediction of time–frequency weighted noisy speech. IEEE Trans. Audio Speech
Lang. Process. 19 (7), 2125–2136.

Tourbabin, V., Agmon, M., Rafaely, B., Tabrikian, J., 2012. Optimal real-weighted
beamforming with application to linear and spherical arrays. IEEE Trans. Audio
Speech Lang. Process. 20, 2575–2585.

Van Trees, H., 2004. Optimum Array Processing: Part IV of Detection, Estimation, and
Modulation Theory. In: Detection, Estimation, and Modulation Theory, Wiley, New
York.

Wang, X., Benesty, J., Chen, J., Huang, G., Cohen, I., 2021. Beamforming with cube
microphone arrays via Kronecker product decompositions. IEEE/ACM Trans. Audio
Speech Lang. Process. 29, 1774–1784.

Wang, X., Huang, G., Cohen, I., Benesty, J., Chen, J., 2021. Kronecker product adaptive
beamforming for microphone arrays. In: 2021 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC). pp. 49–54.

Zhuang, B., Rohling, R., Abolmaesumi, P., 2019. Region-of-interest-based closed-loop
beamforming for spinal ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 66 (8), 1266–1280.

Zoltowski, M.D., Haardt, M., Mathews, C.P., 1996. Closed-form 2-D angle estimation
with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE
Trans. Signal Process. 44 (2), 316–328.

http://refhub.elsevier.com/S0167-6393(23)00043-2/sb1
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb1
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb1
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb1
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb1
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb2
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb2
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb2
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb3
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb3
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb3
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb4
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb4
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb4
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb5
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb5
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb5
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb6
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb6
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb6
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb6
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb6
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb7
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb7
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb7
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb7
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb7
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb8
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb8
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb8
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb9
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb9
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb9
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb10
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb11
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb12
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb12
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb12
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb12
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb12
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb13
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb13
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb13
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb14
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb14
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb14
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb14
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb14
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb15
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb15
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb15
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb16
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb16
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb16
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb17
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb17
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb17
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb17
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb17
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb18
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb18
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb18
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb19
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb19
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb19
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb19
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb19
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb20
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb20
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb20
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb20
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb20
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb21
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb21
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb21
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb21
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb21
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb22
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb22
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb22
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb23
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb24
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb24
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb24
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb24
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb24
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb25
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb25
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb25
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb26
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb26
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb26
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb26
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb26
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb27
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb27
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb27
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb27
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb27
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb28
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb28
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb28
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb29
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb29
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb29
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb30
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb30
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb30
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb31
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb31
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb31
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb31
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb31
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb32
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb33
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb33
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb33
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb34
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb34
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb34
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb34
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb34
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb35
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb35
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb35
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb35
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb35
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb36
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb36
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb36
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb36
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb36
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb37
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb37
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb37
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb37
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb37
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb38
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb38
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb38
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb38
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb38
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb39
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb39
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb39
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb39
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb39
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb40
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb40
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb40
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb40
http://refhub.elsevier.com/S0167-6393(23)00043-2/sb40

	Differential constant-beamwidth beamforming with cube arrays
	Introduction
	Signal Model
	Kronecker-product Beamforming
	Optimal Constant-Beamwidth Beamforming
	Simulations
	Design Examples
	Speech Signals Simulations in Reverberant Environments

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


