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Abstract—Recently, we introduced a single-sensor method
for estimating the location and velocity of moving sources.
The obtained state-of-the-art results are valid to slow sources
whose velocities are gradually changing through time. In this
paper, we challenge our algorithm’s fundamental assumption.
We apply the algorithm to sources that have rapid and ran-
dom fluctuations in their velocity. The proposed algorithm is
based on a supervised learning approach, using diffusion maps
with a Euclidean distance-based diffusion kernel. Experimental
results demonstrate the benefits of the proposed single-sensor
localization method for sources with a Brownian motion model
of randomly fluctuating movements.

Index Terms—Source localization, direction finding, single-
sensor, single-site, manifold learning, diffusion maps, passive
sensing, position finding, non-cooperative localization.

I. INTRODUCTION

The task of source localization has attracted research en-
deavors over the past decades. In classic and modern ap-
proaches, the location of a source is determined by a tri-
angulation process. This process is based on variations of
physical attributes between signals acquired by spatial ar-
rays. Advanced spatial array processing approaches consist of
maximum likelihood (ML) based beamformers, and subspace-
based methods. While the former involves parameter estima-
tion using the received signals [1], [2], the latter relies on
measurements-based singular value decomposition (SVD) [3]–
[11]. However, when only a single sensor is available, none of
these approaches is capable of estimating the location of the
source. A method for single-sensor source localization based
on diffusion kernels was presented by Talmon et al. [12]. Using
a training set, this data-driven approach aims at learning the
nonlinear structure of the manifold of the data. Unfortunately,
this method addresses only the localization of static sources.

Recently, we introduced in [13] an extension of [12] for
moving sources, where both their locations and velocities
are recovered by a single sensor. Unlike [12], which relies
on a specially-tailored distance-based kernel that associates
locations with observations, our kernel is Euclidean distance-
based and more practical. Following an iterative process, the
trajectory formed by the movement of the source during
each time frame is approximated by a short linear segment.
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Accordingly, each frame is inspected individually for esti-
mating the location and velocity. This approach’s premise of
recovering the location and velocity values of the sources
relies on its capability to organize the data on the manifold
according to these values. This principle relies on slow sources
whose velocity changes gradually so that an unambiguous
manifold structure to be observed despite movement. The
approach, described in [13], has demonstrated state-of-the-art
localization results for moving sources and stationary sources
alike.

In this work, we investigate a more challenging setting
involving the influence of environmental conditions (e.g.,
vibrations and wind) on the movement of the sources. This
influence is modeled by including a Brownian motion term
in the movement of the sources. By inspecting sources whose
average speed is slow, but the velocity is rapidly and randomly
changing, we examine the impact of violating the fundamental
assumption of [13]: gradual changes of the velocity through
time. In order to do so, we adopt the algorithm framework of
[13] for executing the worst-case scenario. To emphasize the
localization results in this worst-case scenario, the algorithm
is executed just once (i.e., a single frame). Even when the
environmental conditions change dramatically, our algorithm
estimates the average velocity accurately despite failing to
estimate the instantaneous velocity.

The rest of this paper is organized as follows. In Section II,
we formulate the problem. In Section III, we present the com-
putation of the diffusion kernel. In Section IV, we present the
proposed algorithm for single-sensor localization for moving
sources. In Section V, results of the proposed algorithm are
depicted. In Section VI, we present conclusions regarding the
performance of the algorithm.

II. PROBLEM FORMULATION

We consider a standard conference room. The velocity of
moving source as a function of time, denoted by ṗ(t), is
defined as a combination of a deterministic term and a random
term, as follows:

ṗ(t) = a(p(t)) + n(t), (1)

where p(t) is the absolute location of the source at time t;
a(p(t)) is the drift term that describes the deterministic com-



ponent of the velocity at location p(t); a(·) is a deterministic
function which maps p(t) to a velocity ; and n(t) is the
Brownian motion term, which represents rapid and random
perturbations that affect the movement of the sources as a
result of environmental conditions (e.g., enclosure vibrations,
vibrations of source’s mount, and wind). The Brownian motion
term is described by white Gaussian noise (WGN).

One by one, each source transmits a signal during its
movement. The source signal is assumed to be a zero-mean
wide-sense stationary (WSS) process. As speech is a quasi-
stationary process, meaning WSS in short time frames, we
can even comply with such a weaker assumption.

The relative location and the velocity of the ith source at
discrete time index j are denoted by the parameters vector
θi(j) = [ρi(j), ϕi(j), si(j), βi(j)], where: ρi(j) is the dis-
tance (i.e., radius) between the source and the sensor; ϕi(j)
is the azimuth angle; si(j) is the speed of the source; and
βi(j) is the direction of movement of the source. We assume
that the height difference between the source and the sensor
is negligible- meaning the elevation angle is constant.

An acoustic impulse response (AIR), between a source
and the sensor, is based on several aspects: room size and
geometry; locations of the source and the sensor; surfaces’
material; and objects’ presence. Let hθi(j)(n, j) denote an
AIR, which is defined as the response at discrete time index
n to an impulse transmitted at discrete time index j, between
the ith source and the sensor, with respect to θi(j).

The signal received by the sensor is defined by:

yi (n) =

∞∑
j=−∞

hθi(j)(n, j)xi(j), (2)

where xi(n) is the signal transmitted by the ith source. We
note that the system, characterized by the AIR, is time-variant
since the movement of the source influences the AIR. We use
a WGN signal as the source signal, as it fully excites the
frequency response of the AIR. The received signal is recorded
and divided into time frames. The trajectory, formed by the
movement of the source during the frame, is assumed to be
approximated by a linear movement segment. Each frame is
examined individually in order to estimate the location and
velocity.

For each frame, we manage training and test datasets.
For generating the training dataset, we choose arbitrarily
m known locations and velocities of the source Θ ={
θ1(q), . . . ,θm(q)

}
⊂ Rd, where q is a discrete time

index representing a query point along the trajectories of
the sources, and d is the dimension of the parameters vec-
tor (i.e., the number of system’s degrees of freedom). Let
Θ = {θm+1(q), . . . ,θm+M (q)}⊂Rd be a set of M arbitrary
unknown source locations and velocities, corresponding to the
M measurements of the test dataset. The query point q is
defined as the discrete time index corresponding to the midway
point of the trajectory, for minimizing the approximation error
of the true trajectory by the linear segment. Note that the
acoustic environment is fixed between the training and test

stages. In other words, the location and velocity values of the
sources are the only degrees of freedom of the controlling
parameters of the AIR.

III. DIFFUSION KERNEL

A. Feature Vectors

We extract a feature vector from each observation. The
feature vector is defined based on an autocorrelation function
of the observation. This choice is explained by the benefits of
using a second-order statistics measure over the raw observa-
tion. The autocorrelation function expresses the location better,
and is less dependent on the specific random and unknown
signal transmitted by the source. From (2), the time-variant
autocorrelation function of yi(n) is given by substituting the
autocorrelation function of the transmitted WGN signal (i.e.,
cxi

(τ) = σ2
xi
δ(τ)) :

cyi
(n1, n2) = σ2

xi

∞∑
j=−∞

hθi(j)(n1, j)hθi(j)(n2, j). (3)

As indicated by (3), each observation can be represented as a
function of the location and velocity. Given a sufficiently short
time interval, we assume the first two moments of the quasi-
stationary speech signal would not change along the interval.

Indeed, by taking into consideration an additional
assumption- slow speed and gradually varying velocity- we
restrict the AIR to vary slightly along the time frames.
Accordingly, we can acquire the familiar convolution-based
version of (3), as in [12], [14]:

cyi
(τ) = hθi

(τ) ∗ hθi
(−τ) ∗ cxi

(τ). (4)

As implied by (4), the time differences of the autocorrelation
function of the measured signal completely rely upon the
variations of the AIR- meaning, the evolution of the location
and velocity of the ith source.

Let ci denote a feature vector, composed of the first D
elements of the autocorrelation function of the observation yi.
In such a fashion, a feature vector is extracted for each signal
received by the sensor. Let Γ = {ci}Mi=1 and Γ = {ci}mi=1

denote the sets of the feature vectors with respect to the
unlabeled parameters in Θ and the labeled parameters in Θ,
respectively.

B. Diffusion Kernel Computation

Despite the movement of the sources, we assume the
high-dimensional feature vectors lie on a nonlinear and low-
dimensional manifold M of dimension d (d ≪ D). This
hypothesis is justified by the combination of a quasi-stationary
source signal, short time intervals, a slow speed and a gradu-
ally changing velocity of the source, and a fixed sensor. This
combination leads to small variations in the feature vectors
along the intervals, and consequently allows recovery of the
degrees of freedom of the system: the location and velocity
of the sources. The structure of the manifold is assumed
to be locally linear in the vicinity of each observation. For



measuring affinity between observations and complying with
the manifold’s structure, we use Euclidean distance in the
proximity of each observation. Greater distances, on the other
hand, are ignored as the Euclidean distance is unreliable for
large scales. These assumptions are explained in detail in [13].

Let W be an m×m affinity matrix between all the feature
vectors in Γ. The affinity matrix consists of a Gaussian kernel
with a scale parameter ε, and its ijth element is defined by:

W(ij) =

{
exp

{
−∥ci−cj∥2

ε

}
, if ci ∈ N j or cj ∈ N i

0 , otherwise,
(5)

where N j is the set of the k-nearest-neighbors of cj in Γ.

IV. LOCALIZATION BASED ON DIFFUSION MAPPING

A. Manifold Parameterization

By using a diagonal matrix D with D(ii) =
∑m

j=1 W
(ij),

we normalize the affinity matrix W, and obtain the transition
matrix

P = D−1W. (6)

Let {λj}m−1
j=0 and

{
ψj

}m−1

j=0
be the eigenvalues and eigen-

vectors of the transition matrix P. Note that λ0 = 1 and
its corresponding eigenvector ψ0 relate to the trivial case
[15]. The eigenvectors of P are assumed to establish the
reparameterization of the controlling parameters of the m
training observations. Thus, let Ψd be the diffusion mapping of
the training feature vectors into the embedded Euclidean space
Rd, which is spanned by d eigenvectors corresponding to the
d largest eigenvalues (trivial case excluded). Ψd is defined as

Ψd : ci →
[
λ1ψ

(i)
1 , . . . , λdψ

(i)
d

]T
. (7)

B. Extension for New Observations

Given an additional set of M new observations, associated
with unknown locations and velocities of the sources, we
seek to map them as well into the embedded manifold. For
bypassing another spectral decomposition, we add M new
rows to the affinity matrix W as follows:

W(̃ij) =

{
exp

{
−∥ci−cj∥2

ε

}
, if cj ∈ Nĩ

0 , otherwise,
(8)

where ĩ = m+i, and Nĩ is the set of the k-nearest-neighbors of
ci in Γ. As opposed to the construction process of the affinity
matrix in (5), the affinity in (8) is executed with respect to the
training set only. Accordingly, the new entries of the transition
matrix P are given by

P(̃ij) =

 m∑
j=1

W(̃ij)

−1

W(̃ij). (9)

The new entries of the extended eigenvectors can be repre-
sented as a weighted interpolation of the original entries of

the eigenvectors, as follows:

ψ
(ĩ)
l =

1

λl

m∑
j=1

P(̃ij)ψ
(j)
l . (10)

Subsequently, Ψd maps the new feature vectors of the un-
labeled observations to their corresponding representation of
dominating parameters in the embedded manifold:

Ψd : ci →
[
λ1ψ

(ĩ)
1 , . . . , λdψ

(ĩ)
d

]T
. (11)

C. Recovery of the Independent Controlling Parameters

The unknown location and velocity of the test observation
are estimated using its labeled neighbors on the manifold, by
a weighted interpolation:

θ̂i(q) =
∑

j:Ψd(cj)∈Ñi

γj (ci)θj(q), (12)

where Ñi consists of the k̃-nearest training observations cj
of ci, in the embedded space. The interpolation coefficients
{γj}k̃j=1, which satisfy

∑k̃
j=1 γj (ci) = 1, are in proportion

to the distance between Ψd (ci) and each of its embedded
k̃-nearest labeled neighbors:

γj (ci) =
exp

(
−∥Ψd(ci)−Ψd(cj)∥2

εγi

)
∑

l:Ψd(cl)∈Ñi
exp

(
−∥Ψd(ci)−Ψd(cl)∥2

εγi

) , (13)

where εγi
is defined as the minimal distance between Ψd (ci)

and its nearest neighbor. Following the considerations dis-
cussed in [13], we define the normalized estimation error as

e (ci) =
[
e
(1)
i , . . . , e

(d)
i

]
, (14)

where each coordinate is assigned for a different physical
quantity. Its jth element is defined by:

e
(j)
i =

| θ(j)i (q)− θ̂
(j)

i (q) |
| θ(j)i (q) |

. (15)

Note that the recovery of the location and velocity is based
on the midway point, as indicated by (12). As pointed out
by (15), the approximation error of the true trajectory by the
linear segment is minimized based on that point.

D. Accuracy Measure

According to the definition of the estimation error (14), we
define the root mean square error (RMSE) as:

RMSE =

d∑
j=1

αj

√√√√ 1

M

M∑
i=1

(
e
(j)
i

)2

, (16)

where {αj} are weights that represent the significance of
the estimation error for each of the physical quantities (For
simplicity, we define {αj} = 1

d ).



V. EXPERIMENTAL RESULTS

In this section, we demonstrate the capability of the pro-
posed single-sensor localization algorithm for estimating the
location and velocity of an acoustic source, despite the in-
fluence of environmental conditions on the movement of the
sources.

We describe the simulated setup used for conducting the
experimental study, based on the image method [16]. Room
dimensions were defined as 6×5.8×3m3, and an omnidirec-
tional sensor was positioned at (3, 1, 1.8) m. The reverberation
time of the room was set as T60 = 0.3 sec, simulating
moderate reverberation conditions. In each location of the
source, a 1 sec long signal of a zero-mean and unit-variance
WGN, sampled at fs = 16 kHz, is transmitted from the source.
After the convolution of the transmitted signal with the AIR,
it is acquired by the sensor. We obtain a total of m + M
observations, where m out of them are randomly selected for
the training set, and the remaining M samples are allocated
for the test set. The length of the autocorrelation-based feature
vector is fixed to D = 800 lags. The directional standard
deviations of the Brownian motion term are defined in direct
proportion to the Brownian motion coefficient, according to[

σx̃, σỹ

]T
=

[
η · vx̃max

/ξ , η · vỹmax
/ξ

]T
, (17)

where vx̃max and vỹmax are the maximal horizontal and verti-
cal speed components drawn in the experiment, respectively;
η is the Brownian motion coefficient; and ξ = 4 is defined as
the four-sigma confidence level. We position all sources at a
distance of 1 m from the sensor and at an azimuth angle of
45◦. Their movement is initialized with a speed of 0.5m/sec,
in directions of movement which are drawn according to
a uniform distribution U [45, 85] °. Training and test sets of
720 observations each are generated. In each simulation, we
introduce a Brownian motion term to the movement of all
sources. The simulation is repeated each time with a different
Brownian motion coefficient value, ranging from 0.05 to
0.8, followed by a scenario free of Brownian motion (for
comparison to [13]).

All previous movement experiments, described in [13], have
focused on a single degree of freedom. The introduction of the
Brownian motion term to the source’s movement, however,
may lead to independent and random variability in additional
parameters.

Figure 1 illustrates the total estimation error of the pro-
posed algorithm for various Brownian motion conditions, with
respect to three intrinsic dimension d (i.e., the number of
dimensions of the low-dimensional manifold) cases: one (di-
rection), two (direction and speed), or three (direction, radius
and azimuth). As expected, as the Brownian motion term gets
more dominant, the estimation error grows, for all cases. The
reason for the significant estimation error values is the revoke
of our assumption: approximation of the trajectories by short
linear segments. The assumption is no longer valid due to the
rapid and random changes in the movement of the sources.
These changes prevent us from collecting a sufficiently long
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Fig. 1: Performance of the proposed algorithm as a function of
Brownian motion coefficient, for various intrinsic dimension
cases.

enough observation, and consequently a meaningful feature
vector during each time frame.

Regarding the determination of the intrinsic dimension value
based on the various cases, we note that the examined scenario
is unambiguous upon the parameters vector. In addition, the
Brownian motion adds small variability compared to the
significant variability triggered by the direction. Moreover,
there is no case that dominates all the others- all the more so,
the difference between the results is negligible, as depicted in
Fig. 1. Thus, we determine d = 1 as the dimension of the
low-dimensional embedded manifold.

For emphasizing the impact of the Brownian motion, we
elaborate on the scenario of a Brownian motion coefficient of
0.8. The individual RMSE values (composing the total RMSE
all together) that are associated with the velocity (23.99% for
speed, and 25.03% for direction) are colossal. On the other
hand, the individual RMSE values of the location (0.24% for
radius, and 0.32% for azimuth) are negligible.

For demonstrating the localization results of the location
and velocity through time, we focus on an arbitrary source as
a representative example of the aforementioned scenario of a
Brownian motion coefficient of 0.8. The source is character-
ized by a speed of 0.5 m/sec (common to all) and a direction
of about 52◦ (drawn). Figure 2 depicts a comparison through
time between the true and the estimated trajectories of all four
unknown parameters of the source: the radius (a), azimuth
angle (b), speed (c), and direction (d). The true trajectories
of all location and velocity parameters describe fluctuations in
the location and velocity values through time, which reflect
the nature of the Brownian motion.

The estimated trajectories are divided into 3 cases- common
to all is the nearest training neighbors in the manifold, which
are determined according to the midway point. The estimated
trajectories of the radius and the azimuth recover the true
values well despite the Brownian motion. However, the efforts
to recover the instantaneous speed and direction of the source
are unsuccessful. The first estimated trajectory, denoted as LM,
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Fig. 2: Localization results of a moving source through time of each of the unknown parameters for the scenario of Brownian
motion coefficient of 0.8. (a) Radius, (b) azimuth, (c) speed, and (d) direction. Blue represents true values, red represents the
estimated values according to the linear model (LM), yellow represents the estimated values according to a weighted average
of the trajectories (WA), and purple represents the estimated values according to a mean velocity value (MV).

is executed according to the linear model, as described in detail
in Section III. This method demonstrates fair estimation results
of the average velocity.

In the case that the whole trajectories of the nearest train-
ing observations are known, these localization results can
be improved, as suggested by the remaining two estimation
methods. The second estimated trajectory, denoted as WA,
is produced by a weighted average of the trajectories of the
nearest training neighbors. This method mitigates the explicit
random fluctuations in the location and velocity values in
each step. However, the weighted average fairly succeeds to
estimate the average speed and direction values through time.
Another improvement can be achieved by a combination of
the two, by estimating the trajectories according to a linear
model. The constant velocity is determined according to the
mean value of the velocity trajectories of the weighted average
method. This method, denoted as MV, improves both the

accuracy of the estimated location and the estimated average
velocity. It provides an accuracy of less than one percent,
with respect to the average velocity, which is in practice the
Brownian-motion-free instantaneous velocity.

VI. CONCLUSIONS

The problem of single-sensor localization of moving sources
that change their velocity rapidly and randomly has been
addressed. Using diffusion maps, the proposed supervised
algorithm implements a data-driven approach for learning
the nonlinear structure of the manifold of the observations.
The data on the manifold can be arranged on the manifold
according to the location and velocity values of the sources,
in the case that their velocity is slowly changing. While the
algorithm is designated for recovering the location and velocity
of slow sources that change direction and speed gradually, it
is even capable of successfully estimating the location and the



average velocity of sources that change their velocity rapidly
and randomly but their average speed is slow.
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