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ABSTRACT

Speech dereverberation algorithms based on multichannel lin-

ear prediction (MCLP) are effective under various acoustic

conditions. This paper proposes a bilinear form for the MCLP

based dereverberation, where the MCLP filter is expressed

as a Kronecker product of a spatial filter and a temporal fil-

ter. Then, a recursive least-squares (RLS)-based algorithm is

derived for adaptive speech dereverberation. Compared with

the original MCLP-based adaptive algorithm, the advantages

of the proposed method are twofold: (1) the computational

complexity is significantly reduced and is more suitable for

dynamic scenarios, since fewer parameters have to be esti-

mated per signal-block observation; and (2) it is more robust

to noise by optimizing the spatial filter as a weighted mini-

mum power distortionless response (wMPDR) beamformer.

Simulation results validate the advantages of the proposed al-

gorithm.

Index Terms— Dereverberation, multichannel linear pre-

diction, beamforming, Kronecker product filtering, recursive

least-squares (RLS) algorithm.

1. INTRODUCTION

Reverberation adversely affects the intelligibility and quality

of speech signals [1–5]. Therefore, effective and robust dere-

verberation methods are in high demand. In the past couple

of decades, dereverberation has been extensively studied and

numerous techniques have been developed [5–11]. Among

those, the methods based on multichannel linear prediction

(MCLP) have been intensively studied, where the desired

signal is recovered by subtracting late reverberation compo-

nents estimated using delayed prediction filters from the mi-

crophone signals [5]. This principle can be formulated ei-

ther in the time domain or in the short-time Fourier trans-

form (STFT) domain [12], resulting in different algorithms,
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among which the so-called weighted-prediction-error (WPE)

algorithm has demonstrated great potential [13, 14].

While the WPE method exhibits promising performance

for dereverberation, the computational complexity is high

and, therefore, renders implementation in some real-time em-

bedded or edge computing devices difficult. Another problem

arises when the acoustic environment contains additive noise

since it will affect the correlations between observation sig-

nals and, therefore, will degrade the dereverberation perfor-

mance. For the purpose of joint denoising and dereverber-

ation, various beamforming techniques, including differen-

tial microphone arrays (DMAs) [15], the generalized sidelobe

canceller (GSC) [16,17], the minimum variance distortionless

response (MVDR) beamformer [18], and the weighted min-

imum power distortionless response (wMPDR) beamformer

[19, 20] have been combined with MCLP-based dereverber-

ation in a cascaded or a unified manner. However, while

they effectively improve the dereverberation performance in

a noisy environment, such combined methods are computa-

tionally even more expensive to implement.

In [21], a new framework is proposed to decompose

the MCLP filter into a wMPDR beamformer and a tempo-

ral (linear prediction) filter. This decomposition is benefi-

cial for adaptive processing, e.g., improving computational

efficiency, which is a crucial factor to be considered in on-

line processing applications [22–29]. In this paper, a bilinear

form of the MCLP model is derived, which decomposes the

MCLP model into a combination of beamformer and linear

prediction filter. Various adaptive algorithms can be applied

in the proposed framework, among which the recursive least-

squares (RLS) algorithm is used in this work to derive the

joint online dereverberation and noise reduction algorithm.

Compared with the original MCLP based algorithm, the pro-

posed method achieves better performance in computational

efficiency, statistics tracking, and noise reduction ability.

2. SIGNAL MODEL

Consider an acoustic scenario where M microphones cap-

ture a single speech source in a reverberant and noisy en-

vironment. In the STFT domain, the signal received by the
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mth microphone can be denoted by Ym,n,k with n and k in-

dexing the time frame and frequency bin, respectively. We

describe the stacked microphone signal vector as yn,k =

[Y1,n,k · · · YM,n,k]
T
∈ CM , which can be formulated as

yn,k = Sn,kdk + rn,k + vn,k, (1)

where Sn,k is the STFT coefficient of the desired signal at

the reference microphone, dk ∈ CM is the (assumed time-

invariant) signal propagation vector corresponding to the de-

sired signal at the reference microphone, and rn,k and vn,k

are vectors of the reverberant components and the additive

noise, respectively, defined analogously to yn,k.

Then, the task of joint dereverberation and noise reduc-

tion is to estimate Sn,k from yn,k in a blind manner while

suppressing the late reverberation and noise. To simplify the

notation in the following, we do not include the dependency

on the frequency index k.

3. BILINEAR FORMS OF DEREVERBERATION

In this section, a dereverberation model expressed by a bilin-

ear form is proposed, which combines a spatial filter and a

temporal filter using the Kronecker product [30]. The desired

signal is first estimated by applying a complex-valued beam-

forming filter, h ∈ CM , to the observation signal vector, i.e.,

Zh,n = hHyn

= hHdSn + hH (rn + vn) , (2)

where the superscript H is the conjugate-transpose operator,

and the distortionless constraint hHd = 1 is needed.

Then, dereverberation is accomplished by subtracting the

reverberant signal components estimated by a prediction filter

of length L from the spatially filtered signal, i.e.,

Ŝn = Zh,n −
∆+L−1
∑

l=∆

G∗

l Zn−l

= Zh,n − gHzh,n−∆, (3)

where {Gl}
∆+L−1
∆ is the prediction filter coefficient, the

superscript ∗ is the complex-conjugate operator, g =
[G∆ · · · G∆+L−1]

T
∈ CL is the prediction filter, zh,n−∆ =

[Zh,n−∆ · · · Zh,n−∆−L+1]
T

∈ CL contains beamforming

output from the previous consecutive frames with Zh,n−l =
hHyn−l and ∆ is a prediction delay to avoid the removal of

the correlation between the samples of the clean speech sig-

nals and prevent the excessive whitening problem. To further

exploit the relationship between the beamformer and the dere-

verberation filter, we deduce that

Ŝn = Zh,n −

∆+L−1
∑

l=∆

G∗

l

(

hHyn−l

)

= Zh,n − hHYn−∆g
∗, (4)

where Yn−∆ = [yn−∆ · · · yn−∆−L+1] ∈ C
M×L.

Obviously, the second term in (4) is bilinear in h∗ and g∗,

i.e., for every fixed h∗, it is a linear function of g∗, and vice

versa [31]. Moreover, we can write (4) as

Ŝn = Zh,n − tr
(

g∗hHYn−∆

)

= Zh,n − vecH
(

hgH
)

vec (Yn−∆)

= Zh,n − (g⊗ h)
H
ȳn−∆, (5)

where tr (·) denotes the trace of a square matrix, vec (·)
is the vectorization operation which converts a matrix into

a vector, ⊗ denotes the Kronecker product, and ȳn−∆ =
vec (Yn−∆) ∈ CML.

It should be noted that these two linear filters can be de-

coupled for the following optimization process by [32]

g ⊗ h = (IL ⊗ h)g (6)

= (g⊗ IM )h, (7)

where IM ∈ RM×M and IL ∈ RL×L are the identity matri-

ces. Therefore, by using the relationship in (6), the derever-

berated signal in (5) can be written as

Ŝn = Zh,n − gH (IL ⊗ h)
H
ȳn−∆

= Zh,n − gH ȳ[h],n−∆, (8)

where ȳ[h],n−∆ = (IL ⊗ h)
H
ȳn−∆ ∈ CL is the observation

signal vector filtered by h.

Similarly, we can also write (5) based on (7) as

Ŝn = hHyn − hH (g ⊗ IM )
H
ȳn−∆

= hH ȳ[g],n−∆, (9)

where ȳ[g],n−∆ = yn − (g⊗ IM )
H
ȳn−∆ ∈ CM is the ob-

servation signal vector filtered by g.

As seen, the MCLP-based dereverberation problem can be

reformulated as a problem of optimizing two shorter filters,

whose coefficients are combined according to (5).

4. RLS-BASED ADAPTIVE DEREVERBERATION OF

BILINEAR FORM

In this section, we derive an online dereverberation algorithm

with the RLS algorithm [23] based on the proposed derever-

beration model.

The two adaptive filters, hn and gn, can be iteratively op-

timized by defining the following weighted cost functions:

J [gn|hn−1] =
n
∑

i=1

αn−i
|Z[hn−1],i − gH

n ȳ[hn−1],i−∆|
2

λi

,

(10)

J [hn|gn−1] =

n
∑

i=1

αn−i
|hH

n ȳ[gn−1],i−∆|
2

λi

, (11)

where λi = |Ŝi|
2 is the variance of the a priori estimate of

the desired signal, i.e., Ŝi = hH
n−1ȳ[gn−1],i−∆, i = 1, . . . , n,

and α is the forgetting factor.



The solution for the temporal filter gn can be obtained

from the minimization of J [gn|hn−1]. We get

gn = R−1
h,nph,n, (12)

where

Rh,n =
n
∑

i=1

αn−i
ȳ[hn−1],i−∆ȳ

H
[hn−1],i−∆

λi

= αRh,n−1 +
ȳ[hn−1],n−∆ȳ

H
[hn−1],n−∆

λn

(13)

is the weighted covariance matrix of ȳ[hn−1],n−∆, and

ph,n =

n
∑

i=1

αn−i
ȳ[hn−1],i−∆Z

∗

[hn−1],i

λi

(14)

is the weighted correlation vector between ȳ[hn−1],n−∆and

Z[hn−1],n.

The spatial beamformer can be optimized by minimizing

J [hn|gn−1] with the distortionless constraint [20]:

min
hn

J [hn|gn−1] s.t. hH
n d = 1, (15)

whose solution is the wMPDR beamformer [19, 20]:

hn =
R−1

g,nd

dHR−1
g,nd

, (16)

with

Rg,n =

n
∑

i=1

αn−i
ȳ[gn−1],i−∆ȳ

H
[gn−1],i−∆

λi

= αRg,n−1 +
ȳ[gn−1],n−∆ȳ

H
[gn−1],n−∆

λn

(17)

being the weighted covariance matrix of ȳ[gn−1],n−∆.

Using the matrix inversion lemma [33], the updates of

R−1
h,n and R−1

g,n are obtained by

R−1
h,n =

IL − kh,nȳ
H
[hn−1],n−∆

α
R−1

h,n−1, (18)

R−1
g,n =

IM − kg,nȳ
H
[gn−1],n−∆

α
R−1

g,n−1, (19)

where

kh,n =
R−1

h,n−1ȳ[hn−1],n−∆

αλn + ȳH
[hn−1],n−∆R

−1
h,n−1ȳ[hn−1],n−∆

, (20)

kg,n =
R−1

g,n−1ȳ[gn−1],n−∆

αλn + ȳH
[gn−1],n−∆R

−1
g,n−1ȳ[gn−1],n−∆

(21)

are the Kalman gains.

Therefore, the temporal filter can be updated using the

derived Kalman gain:

gn = gn−1 + kh,nŜ
∗

n, (22)

Algorithm 1 The RLS-KP-WPE algorithm.

Initialization: g0, h0, Rg,0, Ryh,0

1: for n = 1, 2, . . . do

2: ȳ[gn−1],n−∆ = yn − [gn−1 ⊗ IM ]
H
ȳn−∆

3: ȳ[hn−1],n−∆ = [IL ⊗ hn−1]
H
ȳn−∆

4: λn = |hH
n−1ȳ[gn−1],n−∆|

2

5: ug,n = R−1
g,n−1ȳ[gn−1],n−∆

6: uh,n = R−1
h,n−1ȳ[hn−1],n−∆

7: kg,n =
ug,n

αλn+ȳH
[gn−1],n−∆

ug,n

8: kh,n =
uh,n

αλn+ȳH
[hn−1],n−∆

uh,n

9: R−1
g,n =

R
−1
g,n−1−kg,nu

H
g,n

α

10: R−1
h,n =

R
−1
h,n−1−kh,nu

H
h,n

α

11: gn = gn−1 + kh,nŜ
∗

n

12: hn =
R−1

g,nd

dHR
−1
g,nd

13: end for

and the beamformer can be updated using (16), where the co-

variance matrix is inverted by (19) and (21). The RLS-based

dereverberation algorithm of bilinear forms, which we term

as “RLS-KP-WPE,” is summarized in Algorithm 1.

We also analyze the computational complexity of the pro-

posed RLS-KP-WPE method and RLS-based WPE (RLS-

WPE) method [34,35]. Table 1 shows the computational com-

plexity of the RLS-KP-WPE and RLS-WPE methods in terms

of the number of complex-valued multiplications. It can be

seen that the computational complexity is reduced by a fac-

tor of approximately (M2L2)/(M2 + L2) by the proposed

method as compared to RLS-WPE.

Table 1. Computational complexity of RLS-KP-WPE and

RLS-WPE methods.

Number of multiplications

RLS-KP-WPE 4M2 + 3L2 + 2ML+ 5M + 3L+ 8

RLS-WPE 3(ML)2 + 4ML+ 5

5. SIMULATIONS

In this section, we study the performance of the proposed

dereverberation method. The clean speech signals were taken

from the TIMIT database with a sampling rate of 16 kHz,

where the clean signals are concatenated such that the length

of each signal exceeded 30 seconds. A small uniform linear

array of 8 omnidirectional microphones with an interelement

spacing of 2 cm is used. The source is placed at the endfire

direction and 2 m away from the array center. The acous-

tic channel impulse responses from the source to the micro-

phones are generated using the image model method with a

room of size 6 m × 5 m × 4 m [36]. The dereverberation algo-

rithm is implemented in the STFT domain. The observation

signals are divided into overlapping frames of 512 samples

using 75% overlap using a Kaiser window with a window-

shape parameter of 1.9π. The evaluation is performed in two
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Fig. 1. Segmental performance, ∆PESQ, of the RLS-WPE,

RLS-KP-WPE, and RLS-wMPDR in a reverberant and noise-

free environment: (a) REVB1 and (b) REVB2.
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Fig. 2. Segmental performance, ∆PESQ, of the RLS-WPE,

RLS-KP-WPE, and RLS-wMPDR in reverberant and noisy

environment (SNR = 20 dB): (a) REVB1 and (b) REVB2.

different reverberation conditions with the reverberation time

T60 being 300 ms and 400 ms, which are labeled as REVB1

and REVB2, respectively. The background noise is diffuse

noise generated according to [37]. We compare the perfor-

mance of RLS-WPE, RLS-KP-WPE, and RLS-based wM-

PDR (RLS-wMPDR) in terms of the perceptual evaluation of

speech quality (PESQ) [38, 39]. In our implementation, the

prediction delay was set as D = 2. For REVB1 and REVB2,

the length of the prediction filters are set as L ∈ {12, 10, 8}
and L ∈ {16, 14, 12}, respectively, for frequency ranges from

0 to 1, 1 to 3 and 3 to 8 kHz. The temporal filter and the spatial

filter are initialized as a zero vector and a delay-and-sum filter,

i.e., g0 = [0 0 · · · 0]
T

and h0 = d/M , respectively. Since

the source is placed at the endfire direction and the spacing

between the two microphones is known, the steering vector

d was calculated accordingly (as a free-field steering vector).

The covariance matrices are initialized as Rg,0 = δgIM and
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Fig. 3. Segmental performance, ∆PESQ, of the RLS-WPE,

RLS-KP-WPE, and RLS-wMPDR for REVB1 in noise free

and noisy environment: (a) noise-free and (b) noisy with SNR

= 20 dB.

Rh,0 = δhIL, with δh = 10−4 and δg = 10−2. The forget-

ting factor is set as α = 0.993.

To assess how the performance varies with time, we di-

vide the signal into overlapping segments (each segment is

1 s long and the overlapping rate is 50%) and evaluate the per-

formance for each segment. Figure 1 presents the segmental

performance improvement in PESQ, i.e., ∆PESQ, of the three

studied methods in a reverberant and noise-free environment.

The RLS-KP-WPE and RLS-wMPDR methods achieve bet-

ter performance than the RLS-WPE in the first few seconds.

After convergence, the RLS-KP-WPE and RLS-WPE have a

better performance than the RLS-wMPDR method. Figure 2

presents the ∆PESQ of the three studied methods in a rever-

berant and noisy environment with an SNR level of 20 dB. It

is seen that the RLS-KP-WPE method performs better than

other methods in the presence of noise.

To further highlight the advantage of the RLS-KP-WPE,

we add another set of simulations where the position of the

source signal changes abruptly to the opposite direction at

12.5 seconds (assume the time of the position change is

known). Figure 3 plots the ∆PESQ of the three studied meth-

ods under reverberant only and reverberant-plus-noise envi-

ronments. It is seen that the RLS-KP-WPE achieves the best

performance in all cases.

6. CONCLUSIONS

This paper presents a bilinear framework for adaptive speech

dereverberation by combining beamforming and linear pre-

diction. In such a framework, the MCLP filter is expressed

as a Kronecker product of a spatial filter and a temporal filter.

Based on this formulation, an iterative RLS-based algorithm

is derived for speech dereverberation. Compared with the

original MCLP-based adaptive WPE algorithm, the presented

method exhibits better dereverberation performance and ro-

bustness to additive noise and involves a much lower compu-

tational complexity.
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S. Ciochină, “Recursive least-squares algorithms for the identification

of low-rank systems,” IEEE Trans. Audio, Speech, Lang. Process.,

vol. 27, no. 5, pp. 903–918, May. 2019.

[24] C. Paleologu, J. Benesty, and S. Ciochină, “Linear system identifica-
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linear forms with the Wiener filter,” IEEE Signal Process. Lett., vol. 24,

pp. 653–657, 2017.

[32] D. A. Harville, “Matrix algebra from a statistician’s perspective,” New

York: Springer-Verlag,1997.

[33] S. Haykin, Adaptive filter theory. 4th ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[34] T. Yoshioka, “Speech enhancement in reverberant environments,” Ky-
oto University, 2010.

[35] T. Xiang, J. Lu, and K. Chen, “Multi-channel adaptive dereverberation
robust to abrupt change of target speaker position,” J. Acoust. Soc. Am.,

vol. 145, no. 3, pp. EL250–EL256, 2019.

[36] J. Allen and D. Berkley, “Image method for efficiently simulating

small-room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943–950,

1979.

[37] E. A. Habets and S. Gannot, “Generating sensor signals in isotropic

noise fields,” J. Acoust. Soc. Am., vol. 122, no. 6, pp. 3464–3470, 2007.

[38] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures

for speech enhancement,” IEEE Trans. Audio, Speech, Lang. Process.,

vol. 16, no. 1, pp. 229–238, Jan. 2007.

[39] K. Kinoshita, et al., “A summary of the reverb challenge: state-of-

the-art and remaining challenges in reverberant speech processing re-

search,” EURASIP J. Adva. Signal Process., vol. 2016, no. 1, p. 7, Jan.

2016.


