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ABSTRACT

This paper presents a differential and constant-beamwidth (CB)
beamforming approach, which is based on Kronecker-product (KP)
beamforming with uniform rectangular arrays (URAs). We de-
compose a global rectangular beamformer into a KP of two sub-
beamformers: a constant-beamwidth beamformer along the y-axis
and a super-directive (SD) beamformer along the x-axis. We propose
two design methods to derive global rectangular beamformers whose
either white noise gain (WNG) or directivity factor (DF) may be set
by design. We show that the proposed rectangular beamformers ex-
hibit improved directivity with respect to the linear CB beamformer,
particularly in high frequencies, and improved robustness to spatially
white noise with respect to the linear SD beamformer. Finally, the
proposed rectangular beamformers exhibit the constant-beamwidth
property, with an inherent tradeoff between the constant-beamwidth
threshold frequency and the array directivity, which is tuned by the
number of microphones along each axis.

Index Terms— Microphone arrays, constant-beamwidth beam-
former, differential beamforming, uniform rectangular arrays.

1. INTRODUCTION

Beamforming design in the frequency domain has been an active
area of research in the past few decades, aiming to exploit spatial in-
formation to retrieve signals of interest while attenuating undesirable
background noise [1–3]. Most commonly in the literature, beam-
forming is designed and applied with uniform linear arrays (ULAs)
due to their simplicity and easy-to-analyze nature [4]. Nevertheless,
they suffer from inherent drawbacks. For example, the phase dif-
ference between every two adjacent microphones is identical. This
implies that a ULA may only sense the desired signal from a single
perspective.

To enrich the beamforming sensing perspective, more sophis-
ticated array geometries have been proposed [5–10]. In particular,
URAs have been shown valuable for direction of arrival (DOA) es-
timation methods [11, 12], and in the context of differential beam-
forming, that is, when the interelement spacing (along both axes)
is small [13, 14]. These approaches either enable improvements in
the array robustness to spatially white noise or allow high directiv-
ity beamforming even when the desired signal significantly deviates
from the endfire direction.

The concept of KP beamforming has been extensively utilized
in recent years. It allows a flexible design in which a global beam-
former is decomposed into a KP of independent sub-beamformers
that may be individually designed and optimized [15–19]. Each sub-
beamformer may be optimized by a different criterion, yielding a

This work was supported by the Pazy Research Foundation.

global beamformer that is “optimized” according to all requirements.
The portion of each optimization criterion is typically determined by
the relative sizes of the corresponding sub-beamformers.

Broadband applications (e.g., involving communication and
speech signals) tend to suffer from a frequency-varying spatial array
response. In particular, the variance of the main-lobe beamwidth
across different frequencies is usually of the highest interest. To
minimize this variance, it is common to employ CB beamformers
that maintain a fixed beamwidth over a wide frequency range, typ-
ically above a threshold frequency which is a function of the array
aperture and the beamforming design technique [20–22].

In this paper, we present a differential and constant-beamwidth
beamforming approach, which is based on KP beamforming with
URAs. We decompose a global rectangular beamformer into a KP
of two sub-beamformers: a CB beamformer along the y-axis and
an SD beamformer along the x-axis. We propose two design meth-
ods to derive global rectangular beamformers whose either WNG or
DF may be set by design. We show that the proposed rectangular
beamformers exhibit improved directivity with respect to the linear
CB beamformer, particularly in high frequencies, and improved ro-
bustness to spatially white noise with respect to the linear SD beam-
former. Finally, the proposed rectangular beamformers exhibit the
constant-beamwidth property, with an inherent tradeoff between the
constant-beamwidth threshold frequency and the array directivity,
which is tuned by the number of microphones along each axis.

2. SIGNAL MODEL

Consider a signal of interest propagating in the shape of a plane wave
from the farfield in an anechoic acoustic environment at the speed of
sound, i.e., c = 340 m/s, in an azimuth angle ϕ and an elevation
angle θ. The plane wave impinges on a two-dimensional (2-D) mi-
crophone array located on the x-y plane which is composed of Mx

and My omnidirectional microphones along the x-axis and y-axis, re-
spectively. We denote the positions of the microphones by (mx,my),
with mx = 1, 2, . . . ,Mx and my = 1, 2, . . . ,My. Then, defining
the microphone located in (1, 1) as the origin of the Cartesian coor-
dinate, the array steering vector of length MxMy is expressed by [2]:

dθ,ϕ (ω) =
[
Bθ,ϕ,1 (ω)a

T
θ,ϕ (ω) · · · Bθ,ϕ,My (ω)a

T
θ,ϕ (ω)

]T
= bθ,ϕ (ω)⊗ aθ,ϕ (ω) , (1)

where

aθ,ϕ (ω) =
[
Aθ,ϕ,1 (ω) Aθ,ϕ,2 (ω) · · · Aθ,ϕ,Mx (ω)

]T
=

[
1 eȷϖθ,ϕ,x(ω) · · · eȷ(Mx−1)ϖθ,ϕ,x(ω)

]T
(2)
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is the steering vector associated with the x axis,

bθ,ϕ (ω) =
[
Bθ,ϕ,1 (ω) Bθ,ϕ,2 (ω) · · · Bθ,ϕ,My (ω)

]T
=

[
1 eȷϖθ,ϕ,y(ω) · · · eȷ(My−1)ϖθ,ϕ,y(ω)

]T
(3)

is the steering vector associated with the y axis,

ϖθ,ϕ,x (ω) =
ωδx sin θ cosϕ

c
,

ϖθ,ϕ,y (ω) =
ωδy sin θ sinϕ

c
,

the superscript T denotes the transpose operator, ⊗ is the KP op-
erator, ȷ =

√
−1 is the imaginary unit, ω = 2πf is the angular

frequency, and f > 0 is the temporal frequency.
Exploiting the steering vector in (1), the observed signal vec-

tor of length MxMy of the URA can be expressed in the frequency
domain as [4]:

y (ω) =
[
yT
1 (ω) yT

2 (ω) · · · yT
My (ω)

]T
= x (ω) + v (ω)

= dθ,ϕ (ω)X (ω) + v (ω) , (4)

where X (ω) is the zero-mean desired source signal, v (ω) is the
zero-mean additive noise signal vector, and

ymy (ω) =
[
Ymy,1 (ω) Ymy,2 (ω) · · · Ymy,Mx (ω)

]T
= xmy (ω) + vmy (ω)

= Bθ,ϕ,my (ω)aθ,ϕ (ω)X (ω) + vmy (ω) , (5)

for my = 1, 2, . . . ,My, is the observed signal vector of length Mx

of the myth ULA parallel to the x axis. Denoting the desired signal
incident angle by (θ0, ϕ0) and dropping the dependence on ω, (4)
becomes:

y = (bθ0,ϕ0 ⊗ aθ0,ϕ0)X + v, (6)

where bθ0,ϕ0 ⊗ aθ0,ϕ0 = dθ0,ϕ0 is the steering matrix at (θ0, ϕ0),
and the covariance matrix of y is

Φy = E
(
yyH

)
= pXdθ0,ϕ0d

H
θ0,ϕ0

+Φv, (7)

where E(·) denotes mathematical expectation, the superscript H is
the conjugate-transpose operator, pX = E

(
|X|2

)
is the variance of

X , and Φv = E
(
vvH

)
is the covariance matrix of v. Assuming

that the variance of the noise is approximately the same at all sensors,
we can express (7) as

Φy = pXdθ0,ϕ0d
H
θ0,ϕ0

+ pV Γv, (8)

where pV is the variance of the noise at the reference micro-
phone (i.e., the origin of the Cartesian coordinate system) and
Γv = Φv/pV is the pseudo-coherence matrix of the noise. From
(8), we deduce that the input signal-to-noise ratio (SNR) is

iSNR =
tr
(
pXdθ0,ϕ0d

H
θ0,ϕ0

)
tr (pV Γv)

=
pX
pV

, (9)

where tr(·) denotes the trace of a square matrix.

3. KRONECKER-PRODUCT BEAMFORMING

We would like to design a global rectangular beamformer f of length
MxMy as a KP of two linear sub-beamformers designed with respect
to each one of the axes of the URA. Hence, f is of the form:

f = w ⊗ h, (10)

where h is a linear sub-beamformer of length Mx and w is a linear
sub-beamformer of length My. Then, the beamformer output signal
is

Z = fHy = Xfd + Vrn, (11)

where Z is the estimate of X ,

Xfd =
(
wHbθ0,ϕ0

)(
hHaθ0,ϕ0

)
X (12)

is the filtered desired signal, and

Vrn = (w ⊗ h)H v (13)

is the residual noise. In addition, it is clear that a distortionless con-
straint is given by

hHaθ0,ϕ0 = 1, wHbθ0,ϕ0 = 1. (14)

Next, we relate the most prominent performance measures cor-
responding to f . The output SNR and the gain in SNR are, respec-
tively,

oSNR (f) =
pX
pV

×
∣∣fHdθ0,ϕ0

∣∣2
fHΓvf

, (15)

and

G (f) =
oSNR (f)

iSNR
=

∣∣fHdθ0,ϕ0

∣∣2
fHΓvf

, (16)

from which we deduce the WNG:

W (f) =

∣∣fHdθ0,ϕ0

∣∣2
fHf

=

∣∣wHbθ0,ϕ0

∣∣2
wHw

×
∣∣hHaθ0,ϕ0

∣∣2
hHh

= W (w)×W (h) , (17)

and the DF:

D (f) =

∣∣fHdθ0,ϕ0

∣∣2
fHΓdf

, (18)

where Γd is the pseudo-coherence matrix of the spherically isotropic
(diffuse) noise field [1, 14].

We end by defining the beampattern by

Bθ,ϕ (f) = fHdθ,ϕ

=
(
wHbθ,ϕ

)(
hHaθ,ϕ

)
= Bθ,ϕ (w)Bθ,ϕ (h) , (19)

where Bθ,ϕ (w) = wHbθ,ϕ may be seen as the beampattern of w
and Bθ,ϕ (h) = hHaθ,ϕ may be seen as the beampattern of h.



4. OPTIMAL CONSTANT-BEAMWIDTH BEAMFORMING

Assume we are interested in deriving a rectangular version of the SD
beamformer [4], which is not necessarily a KP beamformer. That is,
we would like to solve

min
f

fHΓdf s. t. fHdθ0,ϕ0 = 1, (20)

whose solution is obtained by

fSD =
Γ−1

d dθ0,ϕ0

dH
θ0,ϕ0

Γ−1
d dθ0,ϕ0

=

[
Σ

My−1
p=1 JMy,p ⊗ Γd,p

]−1

dθ0,ϕ0

dH
θ0,ϕ0

Γ−1
d dθ0,ϕ0

, (21)

where Γd,p is the pth Mx ×Mx block in the top block row of Γd and(
JMy,p

)
ij

=

{
1 |i− j| = p
0 |i− j| ̸= p

, (22)

is a binary matrix of size My × My with ones on the −pth and pth
diagonals and zeros elsewhere. In particular, JMy,0 = IMy , which is
the identity matrix of size My ×My. Now, assuming

δy

δx
> Mx − 1, (23)

(21) may be approximated by

fSD ≈ κ
(
IMy ⊗ Γ−1

d,1

)
dθ0,ϕ0

= κ
(
IMy ⊗ Γ−1

d,1

)
(bθ0,ϕ0 ⊗ aθ0,ϕ0)

= κ
(
IMybθ0,ϕ0

)
⊗

(
Γ−1

d,1aθ0,ϕ0

)
= κw̄DS ⊗ h̄SD, (24)

where κ constitutes a normalization factor, Γd,1 is the top-left block
of Γd of size Mx×Mx, w̄DS is the (unnormalized) linear delay-and-
sum (DS) beamformer which operates on the ULAs in the y-axis and
h̄SD is the (unnormalized) linear SD beamformer which operates on
the ULAs in the x-axis. In addition, the condition in (23) implies
that the latter should be designed as differential beamformers, that
is, with a small interelement spacing δx, whereas the interelement
spacing in the y-axis, δy, should be larger. We note that the approxi-
mation in (24) is particularly more accurate in higher frequencies.

Since the optimal rectangular SD beamformer can be decom-
posed into a KP of two linear beamformers, with merely one of
which optimized with respect to the array directivity, we may
adapt the complementary beamformer to attain another array at-
tributes. For example, to obtain CB beamformers, w̄DS may be
replaced by the modified rectangular window of [20], however,
w̄ may be designed in general as any of the linear window-based
CB beamformers suggested in [21]. Assuming the desired signal
(speaker) is located on the x-y plane in the endfire direction, i.e.,
θ0 = π/2, ϕ0 = 0, this implies that

fSD/CB = κwrect ⊗ h̄SD

=
wrect ⊗

(
Γ−1

d,1aπ/2,0

)
aH
π/2,0Γ

−1
d,1aπ/2,0

, (25)

with wrect being the linear modified rectangular window-based CB
beamformer of length My and

aπ/2,0 =
[
1 eȷωδx/c · · · eȷω(Mx−1)δx/c

]T
. (26)

We refer to fSD/CB as the rectangular super-directive constant-
beamwidth (SD-CB) beamformer.

In many cases, it is desirable to explicitly set either the WNG or
DF of the global beamformer. Therefore, we take advantage of the
KP beamforming structure and the approach suggested in [23] in the
context of ULAs, and modify h̄SD accordingly.

Let us start with the WNG measure and let W0 be a desirable
frequency-dependent WNG value of the global beamformer. Ex-
ploiting [23], we define the super-directive beamformer by

hSD,ϵ =

[
Γ−1

d,1,ϵ + αIMx

]
aπ/2,0

aH
π/2,0

[
Γ−1

d,1,ϵ + αIMx

]
aπ/2,0

, (27)

where

α =
aH
π/2,0Γ

−1
d,1,ϵaπ/2,0

Mx

√ W̄0

Mx − W̄0
|tanφϵ| − 1

 , (28)

Γd,1,ϵ = Γd,1 + ϵIMx , (29)

with ϵ = 10−7 being a frequency-independent regularization factor,

cosφϵ =
aH
π/2,0Γ

−1
d,1,ϵaπ/2,0

√
Mx

√
aH
π/2,0Γ

−2
d,1,ϵaπ/2,0

, (30)

and W̄0 is given by

W̄0 = W0/W (wrect) . (31)

Then, the WNG of

fSD/CB,ϵ = wrect ⊗ hSD,ϵ, (32)

to which we refer as the rectangular SD-CB beamformer of the first
kind, is guaranteed to be W0. Clearly, we have

W0 ≤ W (wrect)×max W̄0

= W (wrect)×Mx

= Wmax,w, (33)

where

W̄0 ≤ Mx, (34)

with its maximum obtained for α −→ ∞ as hSD,ϵ −→ hDS, and
hDS is the DS beamformer.

Similarly, we may wish to set a desirable DF level of the global
beamformer. Noting that

fHSD/CBΓdfSD/CB = h̄H
SDΓd,wh̄SD (35)

where

Γd,w = (wrect ⊗ IMx)
H Γd (wrect ⊗ IMx) , (36)

we may substitute Γd with Γd,w in equations (57)-(59) in [23] to
obtain h̃SD,ϵ. Then, it is straightforward to show that the DF of the
rectangular SD-CB beamformer of the second kind, which is given
by

f̃SD/CB,ϵ = wrect ⊗ h̃SD,ϵ, (37)



(a)

(b)

Fig. 1: WNG and DF measures for different values of W0, D0, Mx

and My with M = 35. (a) WNG and (b) DF.

equals a desirable frequency-dependent value D0. Clearly, we have

D0 ≤
[
h̃H
SD,ϵ,maxΓd,wh̃SD,ϵ,max

]−1

= Dmax,w, (38)

where

h̃SD,ϵ,max =
Γ−1

d,waπ/2,0

aH
π/2,0Γ

−1
d,waπ/2,0

. (39)

5. DESIGN EXAMPLES

Let us provide some design examples of f̃SD/CB,ϵ and fSD/CB,ϵ.
According to the previous part, we first set the value of My and
use [20] to obtain wrect. Considering M as the total number of
microphones in the URA, we immediately have Mx = M/My.
Next, we may design either hSD,ϵ or h̃SD,ϵ, of length Mx, to set
the either DF or the WNG of the URA. Clearly, with fSD/CB,ϵ,
as long as (33) is satisfied we may set W0 arbitrarily; and with
f̃SD/CB,ϵ, as long as (38) is satisfied we may set D0 arbitrar-
ily. Fig 1 demonstrates the WNG and DF for two different val-
ues of W0 and D0: W0 = {−10dB,Wmax,w − 20dB}, and
D0 = {10dB,Dmax,w−3dB}, with varying values of MxMy = 35
microphones, δx = 5 mm, δy = 4 cm and ∆ϕ = 40o. In terms of
notations, fSD/CB,ϵ,max−20dB, for example, stands for the fSD/CB,ϵ

beamformer with W0 = Wmax,w − 20dB.
To begin with, we note that the two rectangular beamformers

whose WNG or DF is designed constant exhibit the desired value,
with a performance deterioration in the complementary measure in
edge frequencies in which the effective length of wrect drops [20].

(a) (b)

(c) (d)

Fig. 2: Beampatterns as a function of the frequency and the az-
imuth angle ϕ for different values of Mx and My with M = 35.
(a) hSD,ϵ,max; Mx = 35,My = 1 , (b) fSD/CB,ϵ,max−20dB;
Mx = 7,My = 5, (c) fSD/CB,ϵ,max−20dB; Mx = 5,My = 7,
and (d) wrect; Mx = 1,My = 35.

Addressing the six remaining beamformers, we observe that the lin-
ear SD and CB beamformers exhibit superior DF and WNG per-
formance, respectively. When both Mx and My are larger than 1
and with both types of the SD-CB beamformers, increasing Mx im-
proves the DF in high frequencies but potentially worsens the DF
in low frequencies. Addressing the WNG measure, the performance
is improved upon increasing Mx in high frequencies with fSD/CB,ϵ;
in low frequencies and with f̃SD/CB,ϵ there is no significant perfor-
mance difference.

To investigate the constant-beamwidth property, we plot the
beampatterns of four presented beamformers in Fig 2. It is evident
that increasing My lowers the threshold frequency above which the
constant-beamwidth property is obtained. In addition, we note that
in frequencies larger than f = 5 kHz and My > 1 the side lobes
are considerably amplified. This is a by-product of the effective
length drop of the linear modified rectangular window beamformer.
We infer that the higher Mx, the better the DF in high frequencies,
whereas the higher My, the lower the constant-beamwidth threshold
frequency.

6. CONCLUSIONS

We have presented a differential and CB beamforming approach with
URAs. Assuming the ratio between the interelement spacing along
the y and x axes is larger than the number of microphones along
the x-axis, the rectangular SD beamformer is shown to be approx-
imated by a KP of a linear DS beamformer along the y-axis and a
linear SD beamformer along the x-axis. Then, we replace the DS
beamformer with a CB beamformer and propose two design meth-
ods to derive global rectangular beamformers whose either WNG
or DF may be set by design. The proposed beamformers exhibit
improved directivity with respect to the linear CB beamformer, par-
ticularly in high frequencies, and improved robustness to spatially
white noise with respect to the linear SD beamformer. Finally, the
proposed rectangular beamformers exhibit the constant-beamwidth
property, with an inherent tradeoff between the constant-beamwidth
threshold frequency and the array directivity, tuned by the number
of microphones along each axis.
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