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ABSTRACT
Acoustic system identification, which aims at estimating the channel
impulse response from a source of interest to the microphone posi-
tion, plays an important role in many applications, e.g., echo cancel-
lation for full-duplex speech communication. Generally, an acous-
tic channel impulse response is modeled as a linear finite-impulse-
response (FIR) filter, so the objective of system identification is to
identify it. While much effort has been devoted to this topic over
the last five decades, identifying the room FIR filters accurately with
only a small number of observation data snapshots remains a sig-
nificant challenge. This paper studies this problem and proposes
to model the acoustic impulse response, i.e., the FIR filter, with
a tensor decomposition, which can be expressed as a multidimen-
sional Kronecker product of a series of shorter filters. Then, a par-
tially time-varying model is applied to acoustic system identifica-
tion, where the global filter is decomposed into two parts: a time-
invariant part, which captures the common properties of acoustic
channels, and a time-varying part, which, as its name indicates, rep-
resents the components of acoustic channels that change with time.
During the identification process, the time-invariant filters can be
identified or learned in advance, while the time-varying filters are
optimized through an iterative procedure. Simulation results demon-
strate that the proposed technique can achieve better acoustic system
identification performance with a small number of data snapshots.

Index Terms—Acoustic system identification, Kronecker prod-
uct decomposition, tensor decomposition, Wiener filter, iterative al-
gorithm.

1. INTRODUCTION

Acoustic system identification, studied intensively over the last few
decades, is of great importance in many applications [1–4]. In most
scenarios, the output signal of an acoustic system is a linear convo-
lution between the excitation (input) signal and the room impulse
response, which is generally modeled as a linear finite-impulse-
response (FIR) filter. So, the problem is identifying the acoustic FIR
filter, which is typically achieved by optimizing the mean-squared
error (MSE) criterion [5,6]. While this approach has been around for
decades, achieving accurate and robust estimation with a small num-
ber of observation data snapshots remains a significant challenge.

The Kronecker product approach, which decomposes a long fil-
ter into the sum of several short ones, is very appealing in many ap-
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plications [7–15]. In [16, 17], the authors propose a system identifi-
cation method by exploiting the so-called nearest Kronecker product
decomposition, which can obtain more accurate identification results
with fewer observations as compared to the conventional Wiener so-
lution. Another benefit of this method is that it is computationally
more efficient as the matrices to be inverted are smaller than those
with the conventional approaches [18–20].

Most existing methods model the acoustic impulse responses
from different source positions as separate FIR filters though they
are excited in the same acoustic environment. We find through our
investigation that the impulse responses from adjacent source posi-
tions usually share some common properties even though the mis-
alignments between those impulse responses may be large. Those
common properties would be helpful for acoustic system identifi-
cation, which will be investigated in this work. We first model the
acoustic impulse response with a tensor decomposition [21], where
the existing Kronecker product decomposition can be considered as
a special case, i.e., two-way tensor [17]. Then, we propose a par-
tially time-varying model for acoustic impulse response, where the
global filter is divided into two parts: a time-invariant one and a
time-varying part. The former can be identified or learned in ad-
vance, which we do not discuss in detail here, and can then be used
as a priori information for the time-varying part. The focus of this
work is on the second part, and a method is presented to identify the
time-varying part of the acoustic FIR filter.

The rest of this paper is organized as follows. Section 2 de-
scribes the signal model and system identification problem. Sec-
tion 3 introduces the tensor decomposition of acoustic impulse re-
sponses. Section 4 presents the proposed acoustic system identifi-
cation method with partially time-varying model. Sections 5 and 6
present, respectively, some simulation results and conclusions.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider an acoustic system with an excitation signal x (k), where
k denotes the time index; the output signal is expressed as

y (k) =

L−1∑
l=0

hlx (k − l) + v (k)

= hTx (k) + v (k) , (1)

where hl, l = 0, 1, . . . , L− 1 are the real-valued coefficients of the
acoustic impulse response of length L, v (k) is the corrupting ad-
ditive noise at the output signal, h = [ h0 h1 · · · hL−1 ]

T ,
the superscript T denotes the transpose of a vector or a matrix, and
x (k) = [ x (k) x (k − 1) · · · x (k − L+ 1) ]

T is the ob-
servation signal of length L.
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Linear system identification aims at estimating the impulse re-
sponse, h. Let us denote the modeling filter as ĥ and assume that
its length is also L. Passing the reference signal, i.e., x (k), through
the modeling filter gives an estimate of the system output, and the
resulting estimation error is written as

e (k) = y (k)− ĥTx (k) . (2)

The MSE criterion can then be defined as

J
(
ĥ
)
= E

[
e2 (k)

]
= E

[∣∣∣y (k)− ĥTx (k)
∣∣∣2] , (3)

where E[·] denotes mathematical expectation. The minimization of

J
(
ĥ
)

leads to the well-known Wiener filter:

ĥ = R−1r, (4)

where R = E
[
x (k)xT (k)

]
(of size L× L) is the covariance ma-

trix of the input signal and r = E [x (k) y (k)] (of length L) is the
cross-correlation vector between the input and output signals. Gen-
erally, to avoid ill-conditioned problems, the covariance matrix is
regularized as R+ ϵIL, where ϵ ≥ 0 is the regularization parameter
and IL is the L× L identity matrix.

To evaluate the identification performance, the normalized mis-
alignment (NM) between the true channel impulse response, i.e., h,
and its estimate, i.e., ĥ, is often used, which is defined as [22]

M
(
h, ĥ

)
=

∥h− ĥ∥2

∥h∥2
, (5)

where ∥ · ∥ denotes the Euclidean norm.

3. TENSOR DECOMPOSITION OF ACOUSTIC IMPULSE
RESPONSES

We shape the components of h into a tensor H of size L1 × L2 ×
· · · × LN (where L = L1L2 · · ·LN and, without loss of generality,
we assume that L1 ≥ L2 ≥ · · · ≥ LN ). The tensor H can be
decomposed as the sum of a finite number of rank-1 tensors, given
by [23–25]

H =

R∑
i=1

h1,i ◦ h2,i ◦ · · · ◦ hN,i, (6)

where the symbol ◦ denotes the outer product, hn,i, n =
1, 2, . . . , N, i = 1, 2, . . . , R are filters of length Ln, and R is the
rank of the tensor H. This means that each element of the tensor is
the product of the corresponding vector elements:

(H)l1,l2,...,lN =

R∑
i=1

h1,i,l1h2,i,l2 · · ·hN,i,lN , (7)

where ln = 1, 2, . . . , Ln for n = 1, 2, . . . , N and hn,p,ln is the lnth
element of hn,p.

Because of the structure of acoustic impulse responses, we may
assume that the tensor H can be approximated by a rank-P (P ≤ R)
tensor:

Ĥ =

P∑
p=1

h1,p ◦ h2,p ◦ · · · ◦ hN,p. (8)

Then, an approximation of h can be obtained from the vectorization
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Fig. 1. Experimental setup with the image model, where we consider
a room of size 6 m× 5 m× 3 m, an omnidirectional microphone is
placed at (2.5, 2.0, 2.5), and a source is first located at (3.0, 4.0, 1.5),
and then moved to (3.1, 4.0, 1.5), (3.5, 4.0, 1.5), and (4.0, 4.0, 1.5),
subsequently.
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Fig. 2. Acoustic impulse responses: (a) h(a) from (3.0, 4.0, 1.5), (b)
h(b) from (3.1, 4.0, 1.5), (c) h(c) from (3.5, 4.0, 1.5), and (d) h(d)

from (4.0, 4.0, 1.5). The reverberation time T60 is approximately
300 ms.

of Ĥ as [26]

ĥ = vect
(
Ĥ

)
=

P∑
p=1

hN,p ⊗ hN−1,p ⊗ · · · ⊗ h1,p, (9)

where the symbol ⊗ denotes the Kronecker product and vect(·) is
the vectorization operation, which consists of converting a tensor
into a long vector. Note that the notion of best rank approximation
of a tensor is not well defined as in a matrix [27]; however, this does
not affect the method developed in this paper.

4. ACOUSTIC SYSTEM IDENTIFICATION BASED ON
PARTIALLY TIME-VARYING MODELS

Generally, room acoustic impulse responses, which may consist of
thousands of reflections from surfaces and boundaries, have some
interesting properties. Let us illustrate this with the conventional
image-model method [28]. The simulation setup is as follows. We
consider a room of size 6m×5m×3m, as shown in Fig. 1. For ease
of exposition, the 3-dimensional Cartesian coordinate system is used
to specify the position of a point in the room. An omnidirectional mi-
crophone is placed at (2.5, 2.0, 1.5). To simulate a moving source,
we first place it at (3.0, 4.0, 1.5), and then move it to (3.1, 4.0, 1.5),
(3.5, 4.0, 1.5), and (4.0, 4.0, 1.5) successively. The acoustic chan-
nel impulse responses from the source to the microphones are gener-



Table 1. Normalized misalignment between the impulse responses
from the sound source at different positions to the microphone.

M
(
h(a),h(b)

)
M

(
h(a),h(c)

)
M

(
h(a),h(d)

)
direct 4.16 dB 6.96 dB 4.05 dB

aligned −2.14 dB 3.28 dB 2.77 dB

ated with the image model [28], where the reverberation time, T60, is
approximately 300 ms. Figure 2 plots these impulse responses from
the sound source to the microphone at (3.0, 4.0, 1.5), (3.1, 4.0, 1.5),
(3.5, 4.0, 1.5), and (4.0, 4.0, 1.5), which are represented as h(a),
h(b), h(c), and h(d). As seen, the impulse responses from dif-
ferent source positions look similar. We compute the normalized
misalignment between these impulse responses (both in direct and
aligned ways, where “aligned” means different impulse responses
are aligned based on the direct path). The results are shown in Ta-
ble 1. The normalized misalignments between them are large, which
explains the fact that there is a large difference between these im-
pulses from a qualitative analysis perspective though they seem sim-
ilar.

It could be helpful to consider this “similarity” in acoustic sys-
tem identification. Based on the tensor factorization, we propose a
partially time-varying model for acoustic impulse responses. Let us
express the modeling filter as

ĥ =

P∑
p=1

hN,p ⊗ · · · ⊗ hn+1,p︸ ︷︷ ︸
time-invariant

⊗hn,p ⊗ · · · ⊗ h1,p︸ ︷︷ ︸
time-varying

=

P∑
p=1

hTI,p ⊗ hn,p ⊗ · · · ⊗ h1,p, (10)

where hTI,p = hN,p ⊗ · · ·⊗hn+1,p, p = 1, 2, . . . , P are the time-
invariant filters, which attempt to capture the “similarity” between
different room impulse responses (or common properties of acoustic
channels). In acoustic system identification, the time-invariant filters
can be optimized or learned in advance. So, only time-varying filters
need to be identified and updated in real-time, a method to achieve
this is discussed as follows.

We have the following relationships for the Kronecker product
[17, 29]:

hTI,p ⊗ hn,p ⊗ · · · ⊗ h1,p

= (hTI,p ⊗ hn,p ⊗ · · · ⊗ h2,p ⊗ IL1)h1,p (11a)
= (hTI,p ⊗ hn,p ⊗ · · · ⊗ IL2 ⊗ h1,p)h2,p (11b)

...
= (hTI,p ⊗ ILn ⊗ · · · ⊗ h2,p ⊗ h1,p)hn,p, (11c)

where ILn′ , n′ = 1, 2, . . . , n are identity matrices of sizes Ln′ ×
Ln′ . Substituting (11a)–(11c) into (10), we have

ĥ =

P∑
p=1

hTI,p ⊗ hn,p ⊗ · · · ⊗ h1,p

=

P∑
p=1

(hTI,p ⊗ hn,p ⊗ · · · ⊗ h2,p ⊗ IL1)h1,p

=

P∑
p=1

H1,ph1,p (12a)

...

=

P∑
p=1

Hn,phn,p, (12b)

where

H1,p = hTI,p ⊗ hn,p ⊗ · · · ⊗ h2,p ⊗ IL1 , (13a)

...
Hn,p = hTI,p ⊗ ILn ⊗ · · · ⊗ h2,p ⊗ h1,p (13b)

are matrices of sizes L× L1, . . ., L× Ln, respectively.

Substituting (12a) into (2), the error signal can be rewritten as

e (k) = y (k)− ĥTx (k)

= y (k)−
P∑

p=1

(hTI,p ⊗ hn,p ⊗ · · · ⊗ h1,p)
T x (k)

= y (k)−
P∑

p=1

hT
1,pH

T
1,px (k)

= y (k)−
P∑

p=1

hT
1,px1,p (k)

= y (k)− hT
1 x1 (k) , (14)

where

x1,p (k) = HT
1,px (k) , p = 1, 2, . . . , P,

h1 =
[
hT
1,1 hT

1,2 · · · hT
1,P

]T
,

x1 (k) =
[
xT
1,1 (k) xT

1,2 (k) · · · xT
1,P (k)

]T
.

Similarly, we have

e (k) = y (k)−
P∑

p=1

hT
2,pH

T
2,px (k)

= y (k)−
P∑

p=1

hT
2,px2,p (k)

= y (k)− hT
2 x2 (k) (15a)

...

= y (k)− hT
nxn (k) , (15b)

where

xn′,p (k) = HT
n′,px (k) , p = 1, 2, . . . , P,

hn′ =
[
hT
n′,1 hT

n′,2 · · · hT
n′,P

]T
,

xn′ (k) =
[
xT
n′,1 (k) xT

n′,2 (k) · · · xT
n′,P (k)

]T
,

for n′ = 2, 3, . . . , n.

Substituting (14) and (15b) into (3), the MSE criterion can be
written as

J (h) = E

[∣∣∣y (k)− hT
1 x1 (k)

∣∣∣2]
= σ2

y − 2hT
1 r1 + hT

1 R1h1 (16a)

...

= σ2
y − 2hT

nrn + hT
nRnhn, (16b)



where σ2
y = E

[
y2 (k)

]
and

rn′ =
[
rTHn′,1 rTHn′,2 · · · rTHn′,P

]T
,

Rn′ =


Rn′,11 Rn′,12 · · · Rn′,1P

Rn′,21 Rn′,22 · · · Rn′,2P

...
...

. . .
...

Rn′,P1 Rn′,P2 · · · Rn′,PP


T

, (17)

for n′ = 1, 2, . . . , n, with

Rn′,ij = HT
n′,iRHn′,j , i, j = 1, 2 . . . , P. (18)

Since the n filters are coupled together, it is challenging to op-
timize them simultaneously; but a pragmatic solution can be found
iteratively [17]. Suppose that we first initialize h2, . . ., hn and then
compute h1. Subsequently, the updated h1 and other initialized fil-
ters are used to update h2. Continuing this process, one can obtain
the estimates of all the filters. Every time, when all filters are fixed
except for hn′ , n′ = 2, . . . , n, the MSE criterion is written as

J
(
hn′ |h1, . . . ,hn′−1,hn′+1, . . . ,hn

)
= σ2

y − 2hT
n′rn′ + hT

1 Rn′hn′ , (19)

from which the optimal solution is computed as

hn′ = R−1
n′ rn′ . (20)

The iteration continues until the pre-specified conditions of con-
vergence are met, thereby giving the final solution of hn′ , n′ =

1, 2, . . . , n, and the optimal solution of ĥ is obtained according
to (10).

5. SIMULATIONS

Now, we study the performance of the proposed method with mea-
sured acoustic impulse responses. The impulse responses used are
from the multichannel room impulse responses database [30], which
are measured in a room of size 6 m × 6 m × 2.4 m, and the cor-
responding reverberation time is T60 ≈ 360 ms. The impulse re-
sponses are measured with a uniform linear array consisting of 8
microphones with an inter-distance of 8 cm. The source positions
are 1m away from the microphone array, two impulse responses are
measured at two points on a spatial angle of 0◦ and 15◦, where the
distance between the two points is about 8.33 cm. In our experi-
ment, we use the measurement on the first microphone and assume
the sound source is first at 0◦ and then moves to 15◦. Based on
our previous discussion, we expect that the two impulse responses
share some “similarity” (the normalized misalignment between the
impulse responses at the two points is 3.54 dB). The excitation sig-
nal is an autoregressive (AR) process, generated by filtering a white
Gaussian process with a first-order system 1/(1 − 0.9z−1). The
observation signal is generated by convolving the excitation signal
with the acoustic impulse response, and white Gaussian noise is then
added to control the SNR to be 20 dB. All the signals are sampled
at 8 kHz. We are interested in estimating the truncated impulse re-
sponse with a length of 512 samples since their tails after 512 have
a very small magnitude and can be neglected, so the length of the
modeling filter is set to 512. With the proposed method, the global
filter is factorized as a 3-way tensor of size 8 × 8 × 8, i.e., N = 3
and L1 = L2 = L3 = 8. The covariance matrix, R, and the
cross-correlation vector, r, are estimated using a short-time average
method.

To simulate the process, we applied tensor decomposition of the
impulse response measured at 0◦ to find its rank-P approximation
[31, 32]. Then, h1,p, p = 1, 2, . . . , P are used as the time-invariant
filters, h3,p, p = 1, 2, . . . , P are initialized as [1, 1, · · · , 1]/L3,
based on which we identify the time-varying part of the impulse re-
sponse measured at 15◦. The iteration continues 10 times to obtain
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Fig. 3. NM of the conventional Wiener filter and proposed iterative
tensor Wiener filter for acoustic system identification with: (a) 600
samples observation, (b) 650 samples observation, (c) 700 samples
observation, and (d) 750 samples observation. Conditions: L =
512, L1 = L2 = L3 = 8, and SNR = 20 dB.

the estimates of the final filters. Note that in implementing matrix
inversion, a small regularization parameter is added to the diagonal
elements of the matrices. (As pointed out previously, this paper fo-
cuses on how to decompose an acoustic channel into time-invariant
and time-varying parts and identify the time-varying part, so improv-
ing the estimation of the time-invariant part is worth further study
but beyond the scope of this work.) We evaluate the performance
of the proposed method using NM as the performance metric. Fig-
ure 3 show plots of the NM (averaged over 10 Monte-Carlo runs)
as a function of the order P , where Fig. 3 (a), (b), (c) and (d) with
600, 650, 700, and 750 samples observation, respectively. For com-
parison, we also show the results of the conventional Wiener filter
(a small regularization parameter is also added to the diagonal ele-
ments of the matrix R to implement matrix inversion). The proposed
method achieves better performance with proper values of P (i.e.,
not too small). The results demonstrate that the proposed method
can achieve better acoustic system identification performance with a
small number of observation data.

For the conventional Wiener filter, the computations of the
matrix R−1 have a computational complexity proportional to
O(L3). For the proposed method, the computations of the matri-
ces Rn′ , n′ = 1, 2, has a computational complexity proportional
to O(P 3Ln′L2 + P 4L2

n′L), and the computations of the matrices
R−1

n′ has a computational complexity proportional to O(P 3L3
n′). If

the value of P is small, the proposed method has lower computa-
tional complexity. If the value of P is large, the proposed method
has higher computational complexity than the conventional Wiener
filter.

6. CONCLUSIONS

This paper studied the problem of acoustic channel identification
with a partially time-varying model. Based on the observation that
the acoustic channel impulse responses in the same acoustic envi-
ronment share some common and time-invariant properties, we pro-
posed decomposing the acoustic channel to be identified into a time-
invariant part and a time-varying part under the framework of ten-
sor decompositions. Assuming that the time-invariant part is either
given as the a priori information or can be estimated using, e.g., the
batch method, we developed an iterative technique based on the ten-
sor model to identify the time-varying part of the acoustic system.
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