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Abstract—Automated audio systems, such as speech emotion
recognition, can benefit from the ability to work from another
room. No research has yet been conducted on the effectiveness
of such systems when the sound source originates in a different
room than the target system, and the sound has to travel between
the rooms through the wall. New advancements in room-impulse-
response generators enable a large-scale simulation of audio
sources from adjacent rooms and integration into a training
dataset. Such a capability improves the performance of data-
driven methods such as deep learning. This paper presents the
first evaluation of multiroom speech emotion recognition systems.
The isolating policies due to COVID-19 presented many cases
of isolated individuals suffering emotional difficulties, where
such capabilities would be very beneficial. We perform training,
with and without an audio simulation generator, and compare
the results of three different models on real data recorded in
a real multiroom audio scene. We show that models trained
without the new generator achieve poor results when presented
with multiroom data. We proceed to show that augmentation
using the new generator improves the performances for all
three models. Our results demonstrate the advantage of using
such a generator. Furthermore, testing with two different deep
learning architectures shows that the generator improves the
results independently of the given architecture.

Index Terms—Emotion recognition, acoustics, room impulse
response, multiroom, augmentation.

I. INTRODUCTION

Given an audio segment of speech, the task of detecting
the emotional state of the speaker is called speech emotion
recognition (SER). Such technology can help with customer
support review and analysis, human-machine interaction, men-
tal health monitoring, etc. Mental health monitoring is even
more critical with COVID-19 influences [1], and additional
options, such as monitoring isolated personals’ distress. The
vast research explores many aspects of SER. For example,
[2] explored the input features for SER classifiers. Several
supporting modalities were examined, such as visual-cues [3],
bio-signals [4], and textual information [5]. Many classifi-
cation models were tested, such as, Hidden Markov Models
(HMM) [6], Gaussian Mixture Model (GMM) [7], and support
vector machines (SVM) [8].

Recently, deep learning methods have shown promising
SER results. Several deep neural networks (DNN) architec-
tures were offered, amongst which are convolutional neural
networks (CNN), recurrent neural networks (RNN) using
long short term memory (LSTM) or gated recurrent units
(GRU), time-delay neural networks (TDNN), residual net-
works (ResNet), dilated residual networks (DRN), to name a
few.Knowledge transfer between models was also studied for

different data and different domains [9]. More architectures are
constantly tested, such as graph convolution networks (GCN)-
based architecture and attention rectified linear units GRU
(AR-GRU) [10], [11]. Many more aspects of SER are being
explored, e.g., reduction of the computational complexity [12].

Despite extensive research in the SER field, none of the
existing techniques considers the scenario where the speech
sounds source is located in a different room from the SER
system, and the audio travels through a joint wall. This issue
is becoming vital with the increasing distress situations intro-
duced by COVID-19’s social isolation policy. For example, a
rise in domestic violence has been documented [13], a higher
suicide rate [14], and other emotional responses with children,
the elderly community, people coping with mental conditions,
and the generally lonely personals. In such cases, multiroom
emotion recognition can be very beneficial. Unfortunately,
such audio scenes are not included in existing SER datasets.
The recordings are either made in a clean environment or have
single room reverberation characteristics inherent to the data
and cannot be controlled by the researcher.

In this paper, we study the problem of SER given a source
and a receiver located in different coupled rooms. We present
three models for SER and evaluate their performances on
real data recorded from another room. We train the models
using our augmentation method presented in [15] and assess
the influence of this augmentation on SER performance. Our
results show the benefit of using the multiroom impulse re-
sponse generator [15]. We show that the performances without
a generator’s augmentation are not better than a guess for this
use-case. We demonstrate this on two different architectures.

The rest of this paper is organized as follows: Section II
elaborates on the signal representation and evaluation metrics.
Section III details the datasets used and the pre-processing
procedure. The architectures for the classification models are
described in Section IV. Section V presents the experiments
and results. Finally, we conclude with a discussion in Sec-
tion VI.

II. PROBLEM FORMULATION

We consider an audio signal x(t), which is a recording of
emotional speech in a clean recording environment with min-
imum reverberation. For the acoustic environment simulation,
we produced a room impulse response (RIR), h(t). In this
case, the input to our model is given by

y(t) = h(t) ∗ x(t) + w(t), (1)
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where ∗ is the convolution operation and w(t) is white Gaus-
sian noise (WGN). When training without the environmental
influences, the input signal to the system is simply

y(t) = x(t). (2)

We consider a labeled dataset of N speech samples xi(t), with
the respective label ci ∈ C, where C is the set of all possible
labels, and 0 < i ≤ N . Given a classification model M , the
predicted label ĉi, is given by the activation of the model on
the input sample yi(t),

ĉi = M{yi(t)}. (3)

For the evaluation of the models, we use three metrics. We
follow measures from previous work, such as [9]–[12]. Given
the true-positive (TP), false-positive (FP), true-negative (TN),
and false-negative (FN) predictions, the balanced accuracy
(BA) is defined as

PBA =
TP + TN

TP + TN + FP + FN
, (4)

the unbalanced accuracy (UA) is defined as

PUA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (5)

and the F1 measure is defined as

PF1 =
2TP

2TP + FP + FN
. (6)

The PBA measure is a simple success rate, counting the
percentage of correct classification. The PUA, is an accuracy
measure meant for a similar assessment over an unbalanced
dataset, where different classes contain a different number
of samples. For a balanced dataset, the PBA and PUA will
converge to the same score. The PF1 score is the harmonic
mean between precision and recall. The maximal score for all
of these measures is 100%.

III. DATASETS

We use a combination of three datasets for the train-
ing and evaluation of the SER models: Berlin Emotional
Dataset (EmoDB) [16], Toronto Emotional Speech Database
(TESS) [17], and Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS) [18]. For simplicity, we
limit the datasets to the specific emotion labels [‘angry’, ‘sad’,
‘neutral’, ‘ps’, ‘happy’] (where ’ps’ is pleasant surprise). Each
audio file was loaded with a sample rate of 48 kHz, and each
sample is zero-padded up to 309500 samples (approximately
6.448 seconds). The zero paddings are used to fix the input
length and the number of time bins T . We proceed to extract
both Mel-frequency cepstral coefficients (MFCC) and Mel-
spectrogram coefficients, which are extracted from a short-
time Fourier transform (STFT). The STFT was calculated
with 2048 frequency bins, using a Hanning window of 2048
samples with 512 samples hop length. This results in a
T = 605 time bins. A total of 45 and 128 Mel-frequency
cepstral and Mel-spectrogram coefficients were calculated,

respectively. Both MFCC and Mel-spectrogram features were
concatenated to create a (T × F ) = (605 × 173) feature
map. We have extended the third dimension with a size 1 to
represent a single channel, where the model requires a channel
dimension.

In addition to the three datasets, we have recorded sounds
in a real multiroom audio scene. This real-test set comprises
75 samples, 15 for each of the five labels. In this real-test, the
receiver room was of size (H×D×W ) = (2.75×1.5×2.5) m,
and the source room was of size (H × D × W ) = (2.75 ×
3.1× 2.5) m. Both rooms are real adjacent rooms containing
various furniture and other absorbing and reflecting objects.
Between recordings, we altered the locations of the source and
receiver within their respective rooms. We used two standard
cellular phone devices for our recordings, which should best
represent the data quality that such a system is most likely
to encounter in real life. We kept the sampling rate and used
mono-recordings in MP4 file format.

IV. MODELS

We used three DNN architectures, namely a CNN AlexNet
model [19], and two custom RNN models. All three were
trained with and without augmentation, and were evaluated
using the metrics defined in Section II.

A. AlexNet

The original AlexNet is designed for a square, 227 × 227
image as an input. To fit our feature map into the network, we
have altered the first layer to receive a single channel, (T×F ),
image. We kept the original (11, 11) filter size but altered the
stride to (11, 3) so that it fits our (T × F ) size. As a result,
the rest of the model remains unchanged. When generating
the dataset as described in Section III, we added the channel
dimension. The AlexNet was trained using 150 epochs, using
an Adam optimizer, with early stopping. A patience of ten
epoches was used as a condition for the early stopping.

B. RNN

We created 2 RNN customized networks. All the parameters
were empirically chosen with respect to the datasets and
task use-case. The first two layers are RNN layers in both
networks with 128 bi-directional units. The difference between
the RNNs is the type of RNN units, namely GRU or LSTM.
Each RNN layer is followed by a dropout layer with the value
0.3 and 0.2, for GRU and LSTM, respectively. The subsequent
two layers are dense, fully connected layers, with rectified
linear units (ReLU) activation, followed by the same dropout
layer as the respective RNN unit. Lastly, we added a final
dense layer with soft-max activation and a one-hot labeling
output. The RNN models were trained for 70 epochs, using
Adam optimizer, with early stopping.

C. Architecture discussion

AlexNet is a standard classifier and was also used in [15] for
audio classification. A CNN architecture considers the input
as an image, where one axis represents the time bins, and
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TABLE I: Performance on the combined datasets with respect
to a synthetic evaluation test-set. The models were trained
without any augmentation.

Architecture UA BA F1
AlexNet 84.18% 84.44% 84.45%

LSTM-RNN 83.74% 83.04% 83.54%
GRU-RNN 85.94% 85.61% 85.86%

the other represents the frequency bins. Since the convolution
is two-dimensional, the architecture can extract both inter-
frequency and sequential data and the connections between
them. However, the filter size is fixed, limiting the time length
of the sequential feature extraction.

Conversely to CNNs, RNNs are specifically tailored for
the extraction of sequential data. The advantage of RNN is
in learning the length of contextual sequence relevant to the
task at hand. Considering our task, we note that emotion
in speech typically has a sequential factor and dependency
between consequent words and tonality. Even the tempo of
the sentence can contain valuable classification information.
Therefore RNN architectures are also prime candidates for
this task, due to their relative benefits in classifying sequential
data. To evaluate adjacent room SER, we designed two custom
bi-directional RNN models. We have to keep in mind that
the RNN units cannot extract inter-frequency information, and
the architecture depends on the following dense units for that
purpose.

Current literature is indecisive regarding the optimal archi-
tecture for audio tasks, RNN or CNN [20]. The literature is
also unclear on which unit is the best RNN unit [21]. The
GRU has less control over the amount of memory exposed to
other units in the network. Also, both use a different method
for controlling the amount of memory from previous steps,
exposed for the calculation of the current activation. While
both CNN and RNN architectures have pros and cons, and both
GRU and LSTM units achieve comparable performances, we
have to test all three of our models to find the optimal method
for SER in general, and for SER from an adjacent room in
particular.

D. Augmentation method

It is possible to train a simple model for an SER task using
the existing datasets, and then evaluate its performance when
the audio arrives from another room. However, it is highly
beneficial to integrate a simulation of the audio environment
into the training phase [15]. A new RIR generation method,
namely the structure image method (StIM) [15], enables to
simulate the transition of sound through a wall between two
adjacent rooms.

StIM starts by iteratively imaging the source on the source-
room walls, similar to the image method [22]. However, due
to the source and receiver residing in different rooms, simply
imaging the source creates artifact reflections that do not exist
in reality. To eliminate these artifacts, StIM tests whether
the line between the imaged source and the original receiver

TABLE II: Performance on the real data. The models were
trained without any augmentation.

Architecture UA BA F1
AlexNet 20% 20% 6.66%

LSTM-RNN 21.33% 21.33% 9.22%
GRU-RNN 26.66% 26.66% 18.09%

goes through the source room. Sources that do not satisfy
this criterion are artifacts, thus being eliminated. For non-
artifact sources, StIM proceeds and creates images of the
receiver on the receiver-room walls. Artifact receiver images
are also created and need to be eliminated. The criterion for
receiver elimination is whether the line between the current-
iteration source (imaged or original) and the current iteration’s
imaged receiver goes through the original receiver room.
The attenuation and delay of the signal are calculated as a
function of the reflection order and traveling distance. The
resulting RIR is a superposition of the delayed and attenuated
reflections.

Building on this generator, we wish to create an SER
training dataset that follows a multiroom use case. For this
purpose, we are using a set of 1000 generated multiroom RIRs.
Each RIR represents an audio scene, where the source and
receiver reside in two adjacent rooms. The dimensions of the
coupled rooms are randomised, where the height, width, and
depth of each room (H,W,D) are constrained (in meters) by
2 ≤ H ≤ 6, 1.5 ≤ D ≤ 4, 1.5 ≤ W ≤ 4. For simplicity, we
assume an alignment of the ceiling and floor of both rooms
(meaning they are of the same height). We also align a single
wall between both rooms. These alignment assumptions are
a common and reasonable case in indoor environments. The
locations of the receiver and source inside their respective
rooms are also randomized. All RIRs are of length 4096
samples. For each sample in the dataset, we randomize k RIRs.
The sample is then convolved with each of these k RIRs to
represent how it reacts with respect to k acoustical scenarios of
traveling between rooms. Thus, we create k new samples for
each original sample. We consider this a k fold augmentation
of the original data.

V. EXPERIMENTAL RESULTS

We start by training all three models without augmentation.
We used 20% of the clean data as an evaluation test-set. The
performances of all three models are presented in Table I. The
GRU-RNN model seems to perform slightly better than other
architectures with compatible results. Such minor differences
may be caused by neglectable factors such as weight initial-
ization or similar training parameters. Thus, all three models
can be considered to perform equally.

We proceed with evaluating these models using our real
data. Note that since the real data is balanced, the scores
converge for balanced and unbalanced accuracy. The results,
presented in Table II, show significant performance degrada-
tion for all three models. As evident by the confusion matrices
presented in Figure 1, all three models predict mostly the same
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Fig. 1: Confusion matrices of classifiers trained without aug-
mentation on real data. (a) AlexNet, (b) RNN with LSTM, and
(c) RNN with GRU. All models mostly guess a single label.

single label for all the test samples, reducing the performances
to a level of guesses and not classifications. Some of the acous-
tic features like pitch can be altered by the transition through
a wall while other features are invariant such as speaking rate.
These features could influence SER performances [23]. The
GRU-RNN model seems slightly better in this task, achieving
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Fig. 2: Performance on real data with respect to k.

a small number of correct labels for more than one class,
but still failing in general. A possible explanation is that
the GRU exposes all of its memory to other units in the
network. This memory may contain the required information
for classification, which is late due to the delays. The LSTM,
which controls the exposure of memory may be preventing
this information from flowing to other units. Training LSTM
with a compatible simulation will force the unit to learn an
exposure amount of memory that will be adequate for this
specific use-case.

As evident by the low performance of the multiroom SER
task, an augmentation method is needed. Therefore we proceed
to train all three models using k = [10, 20, 50, 100] augmenta-
tion folds. All models are trained using the three datasets. We
also use a test set from these datasets for evaluation purposes.
However, we focus our discussion on the performances on the
real-recorded evaluation set. The results on the test set, with
respect to k, are presented in Figure 2.

The performances of each of the models trained with aug-
mentation are given in Table III. The results show that all three
architectures greatly benefit from integrating the augmentation
into the dataset. It seems that the best results are achieved
using k = 50 folds of augmentation, and are saturated for
higher values of k. We note that in [15], the value of k
was chosen when the evaluation test-set reached performance
saturation. Given our real-recorded samples, we find the value
of k with respect to saturation on the real-recorded set.
However, such a method is not always possible and depends
on the availability of enough real-recorded samples.

As evident from Table III, even augmentation by a factor
of k = 10 greatly improves the performance on the real-
recorded set. The sequential models show better results over
the CNN for all k values, while the best performing model
is the LSTM-RNN. This could imply that the sequential
characteristics of the data in the SER task from an adjacent
room have more impact on the performance than the inter-
frequency features. This is reasonable, as reverberations are
a product of delaying and summing the original signal. Such
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TABLE III: Performances on the real data. The models were
trained with augmentation.

Architecture k UA BA F1
AlexNet 10 33.33% 33.33% 23.45%
AlexNet 20 38.66% 38.66% 35.79%
AlexNet 50 50.66% 50.66% 43%
AlexNet 100 49.33% 49.33% 47.73%

LSTM-RNN 10 42.66% 42.66% 37.68%
LSTM-RNN 20 57.33% 57.33% 54.45%
LSTM-RNN 50 61.33% 61.33% 58.23%
LSTM-RNN 100 60% 60% 58.8%
GRU-RNN 10 44.44% 44.44% 38.84%
GRU-RNN 20 46.66% 46.66% 40.01%
GRU-RNN 50 52% 52% 42.74%
GRU-RNN 100 53.33% 53.33% 50.12%

a process has a sequential nature, with a varying window of
time delay, depending on the room shape: large rooms will
have long delays, while in small rooms, the receiver will
experience incidents by more frequent reflections. The RNN
architecture is capable of learning the optimal sequence length
to be observed. In the case of SER in a multiroom audio
scene, the sequence length significantly affects the overall
performance.

VI. CONCLUSIONS

We have presented the first evaluation of an SER task
between coupled rooms. The results of our study show
that current models cannot identify the emotional state of
a speaker from another room without augmentation during
the training phase. In light of the findings, it is crucial to
use generators capable of simulating situations as close as
possible to the target situation. For the case of audio transition
between rooms, StIM provides a suitable simulation method.
The performance improvement is not limited to any specific
architecture, and the results show that the StIM improves both
CNN and RNN performances. With StIM, existing datasets can
be used without recording a new dataset specifically for the
multiroom case. Moreover, the low computational complexity
of the system allows parameters to be controlled quickly
and easily, enabling different experimental scenarios without
the necessity of actual recordings. LSTM-RNN achieved the
best performance for SER from another room when trained
using StIM augmentation with k = 50 rooms. Many other
architectures can be evaluated, such as TDNN, ResNets, and
GCN. Some of these may perform better in specific cases, such
as polyphonic audio. It may be useful to pursue future work
in multiroom SER using methods other than deep learning,
such as HMMs and SVMs, and evaluate the performance
improvement provided by StIM augmentation.
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