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ABSTRACT

Null directions are important parameters for differential beamform-
ers, which play an important role on the beamforming performance.
In this paper, we investigate the performance of differential beam-
formers as a function of the null directions. We first derive the di-
rectivity factor (DF) as an explicit function of null and show that the
DF decreases to 0 if any null approaches to the desired look direc-
tion. We then validate the theoretical analysis through simulation-
s using the beampattern, DF and signal-to-interference gain as the
performance measures. The results show that: 1) the performance of
a differential beamformer degrades significantly if there is any null
close to the desired look direction; 2) with a fixed null direction, in-
creasing the order of the differential beamformer can help improve
performance.

Index Terms—Differential beamforming, microphone array, di-
rectivity factor, interference suppression.

1. INTRODUCTION

In many speech related applications such as teleconferencing and
human-machine interfaces, microphone arrays have to be used to
extract the speech signal of interest from its observations contam-
inated by ambient noise, interference and reverberation. The most
critical part of a microphone array system is the so-called beamform-
ing, which takes the array observations as its inputs and generates an
estimate of the signal of interest exploiting the redundancy among
the multichannel observation signals [1–5]. Over the past several
decades, a large number of beamforming algorithms have been de-
veloped [6–9], among which the differential beamforming (the re-
sulting array is called a differential microphone array, or simply a
DMA) has attracted much interest because such a method can pro-
duce frequency-invariant spatial responses and have the potential to
obtain high directivity with compact array apertures [10–20].

Conventionally, the differential beamformer is designed in a cas-
caded structure, i.e., an N th-order differential beamformer is formed
by subtractively combining the outputs of two (N − 1)th-order dif-
ferential beamformers [21]. To better deal with the problem of white
noise amplification, which is inherent to differential beamforming, a
null-constrained method was developed [10,22], which was motivat-
ed by the facts that the ideal beampattern of an N th-order differential
beamformer has at most N nulls [10, 22, 23]. It converts the beam-
former design problem into one of linear system identification where
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the linear system is constructed using the information from the de-
sired look direction as well as the nulls. A minimum-form solution
of the linear system can help improve the white noise gain (WNG)
by increasing the number of microphones, thereby improving the
robustness of the beamformer [10, 11, 24, 25]. Apparently, the null
positions play an important role on the performance of differential
beamformers, the analysis of which is the focal point of this work.

To study how a null may affect the performance of a differential
beamformer, we first express the N th-order ideal differential beam-
pattern as an explicit function of the null. We then investigate the
relationship between the null direction and the level of directivity
factor (DF). Through this relationship, we show that for any order of
differential beamformer, the DF will decrease significantly if there
is a null approaching the look direction. To further validate the anal-
ysis, simulations are performed. The results show that the effec-
tiveness of beampattern, null depth, DF and the level of interference
suppression all suffer from significant degradation as the null direc-
tion approaches the desired look direction, which corroborates the
theoretical analysis.

2. SIGNAL MODEL, PROBLEM FORMULATION AND
PERFORMANCE MEASURES

Consider a farfield plane wave that propagates in an anechoic acous-
tic environment at the speed of sound, i.e., c = 340 m/s, and im-
pinges on a uniform linear microphone array, which consists of M
microphones with an interelement spacing of δ. If we attempt to s-
teer the beamformer to angle θ. The steering vector of length M can
be written as

d (ω, θ) =
[

1 e−ωδ

c
cos θ · · · e−

(M−1)ωδ

c
cos θ

]T

, (1)

where  is the imaginary unit, ω = 2πf is the angular frequency,
f > 0 is the temporal frequency, and the superscript T is the trans-
pose operator.

Beamforming is performed by applying an appropriate complex
spatial filter to the microphone array observations to recover the de-
sired signal. An estimate of the desired signal in the frequency do-
main is obtained by

Z (ω) = h
H (ω)y (ω)

= h
H
d (ω, θ0)X (ω) + h

H
v (ω) , (2)

where the superscript H is the conjugate transpose opera-
tor, h (ω) is the beamforming filter of length M , y (ω) =
[

Y1 (ω) Y2 (ω) · · · YM (ω)
]T

is the array observation vec-
tor of length M , X (ω) is the desired signal, θ0 denotes the desired
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look direction and with a linear DMA we often assume θ0 = 0◦,
v (ω) is the received noise vector having a similar form of y (ω). To
ensure that the desired signal passes the beamforming filter without
any distortion, the distortionless constraint is imposed, i.e.,

h
H (ω)d (ω, θ0) = 1. (3)

There are three common measures to evaluate the performance
of the beamformer: the beampattern, DF and WNG. The beampat-
tern describes the sensitivity of the beamformer to plane waves from
different directions, which is defined as [10]

B [h (ω) , θ] = h
H (ω)d (ω, θ) . (4)

For any beamforming filter, it is necessary to obtain the maximum
response at the desired look direction, i.e.,

B [h (ω) , θ0] ≤ 1, ∀θ 6= θ0. (5)

If the inequality in (5) holds, the beampattern is called an effec-
tive one. Otherwise, the beamformer may amplify unwanted signals,
leading to further contamination of the desired signal of interest in-
stead of enhancing it.

The DF evaluates how directive is the beampattern and is defined
as the squared magnitude of the beampattern at the look direction
divided by the averaged value over θ ∈ [0, π]. Mathematically [10],

D [h (ω)] =
|B [h (ω) , θ0]|

2

1

2

∫ π

0
|B [h (ω) , θ]|2 sin θdθ

=

∣

∣hH (ω)d (ω, θ0)
∣

∣

2

hH (ω)Γ (ω)h (ω)
, (6)

where Γ (ω) is a matrix of size M × M with the (i, j)th elemen-
t being given by [Γ (ω)]

i,j
= sinc [ω (j − i) /c] and sinc (x) =

sin (x) /x.
The WNG measures the robustness of the beamformer against

the array imperfection such as the position error or self noise of the
sensors, which is defined as [10]

W [h (ω)] =

∣

∣hH (ω)d (ω, θ0)
∣

∣

2

hH (ω)h (ω)
. (7)

3. DIFFERENTIAL BEAMFORMING METHOD

Differential beamformers use closely spaced acoustic sensors to
measure the spatial differentials of the sound pressure field, which
can produce frequency-invariant beampatterns. Ideally, an N th-
order differential beamformer has a beampattern of the following
form [23]

BN (θ) =
N
∑

n=0

aN,n cosn θ, (8)

where aN,n, n = 0, 1, 2, . . . , N , are real coefficients, which de-
termine the shape of the beampattern. For a linear DMA with the
distortionless constraint given in (3), the coefficients should satisfy
N
∑

n=0

aN,n = 1.

Given the ideal beampattern in (8), the problem of differential
beamforming can be converted as one of identifying a beamforming
filter h (ω) such that the resulting beampattern matches as close as
possible the ideal beampattern. According to (8), the ideal, target

differential beampattern has at most N distinct nulls, which are de-
noted as θN,n, n = 1, 2, . . . , N . These nulls can be used to identify
the beamforming filter [10]. Specifically, a linear system of N + 1
equations can be constructed as following:

D (ω,θN )h (ω) = iN+1, (9)

where iN+1 is a vector of length N + 1 whose first el-
ement is 1 and all the other elements are 0, θN =
[

θ0 θN,1 θN,2 · · · θN,N

]T
is a vector of length N + 1,

D (ω,θN ) =















dH (ω, θ0)
dH (ω, θN,1)
dH (ω, θN,2)

...
dH (ω, θN,N )















, (10)

is the constraint matrix of size (N + 1) × M . Suppose that M =
N+1, D is then a square matrix and the beamformer can be obtained
by solving the following linear system

hD = D
−1 (ω,θN ) iN , (11)

where the subscript “D” stands for direct inverse.
Generally, the differential beamformer in (11) suffers from the

problem of white noise amplification at low frequencies. One way
to deal with this problem is through increasing the number of micro-
phones while fixing the order of the differential beamformer. In this
case, we have M > N + 1 and D in (9) is no longer a square but
a tall matrix. One can identify the beamforming filter through the
minimum-norm method, i.e.,

hMN = D
H (ω,θN)

[

D (ω,θN )DH (ω,θN )
]

−1

iN . (12)

With this minimum-norm beamformer, the more the microphones
are used, the higher is the WNG.

4. PERFORMANCE ANALYSIS

In order to analyze the effect of nulls’ positions on the DF, we rewrite
the ideal differential beampattern in (8) as an explicit function of the
null, θn, i.e.,

BN,θn (θ) =

(

N−1
∑

n=0

bN,n cosn θ

)

(cos θ − cos θn) . (13)

where bN,n, n = 0, 1, . . . , N − 1 are real coefficients. The relation-
ship between the coefficients aN,n and bN,n can be derived as

a = Tb, (14)

where

a =
[

aN,0 aN,1 · · · aN,N

]T
, (15)

b =
[

bN,0 bN,1 · · · bN,N−1

]T
, (16)

and

T =



















− cos θn
1 − cos θn

1 − cos θn
. . .

. . .
1 − cos θn

1



















(17)
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is a matrix of size (N + 1)×N . Then, the distortionless constraint
becomes

N−1
∑

n=0

bN−1,n =
1

1− cos θn
. (18)

According to [23], the DF of the N th-order ideal differential
beampattern can be written as

DN =
|BN (θ0)|

2

1

2

∫ π

0
|BN (θ)|2 sin θdθ

=
1

aTHa
, (19)

where H is a Hankel matrix of size (N+1)×(N+1) whose (i, j)th
element is given by

[H]
i,j

=

{

1

i+j−1
, i+ j is even

0, otherwise
. (20)

Submitting (14) into (19), the DF of the ideal differential beampat-
tern with an explicit null, θn, is calculated as

DN,θn =
1

bTHb
, (21)

where

H = T
T
HT. (22)

Considering the fact that it is real symmetrical, one can decom-
pose the H matrix as

H = UΛU
T , (23)

where U is an orthogonal matrix of size N × N , Λ =
diag (λ1, λ2, . . . , λN) is a diagonal matrix of size N × N with it-
s diagonal elements λn, n = 1, 2, . . . , N , being the eigenvalues of
H. It can be checked that H is positive semi-definite. So, we have
λn ≥ 0.

Then, the denominator of the DF in (21) can be written as

b
T
Hb = tr

(

b
T
Hb
)

= tr
(

U
T
bb

T
UΛ

)

=
N
∑

n=1

λn [K]
n,n

, (24)

where tr(·) denotes the trace of a matrix and K = UTbbTU with
[K]

n,n
being its (n, n)th element.

Denoting the minimal eigenvalue as λmin, we then have

b
T
Hb ≥ λmin

N
∑

n=1

[K]
n,n

= λmintr (K)

= λmintr
(

b
T
b
)

≥
λmin

N

(

N−1
∑

n=0

bN,n

)2

=
λmin

N (1− cos θn)
2
. (25)

Therefore, one can conclude that for any order of DMA, when θn
approaches 0◦ (the desired look angle), the denominator of DF, i.e.,
bTHb approaches infinite, which means that the DF is close to 0
(or minus infinite dB).

5. SIMULATIONS

In this section, we study the performance of the first- and second-
order differential beamformers as a function of the nulls’ positions
in both anechoic and reverberant acoustic environments.

We consider a linear microphone array in a room of size 6×5×
4m. A reference microphone is placed at (x0, y0, z0). In order to re-
duce the impact of the reference point on evaluation, we performed
100 experiments for every evaluation and each time the reference
point is randomly selected within the room. The averaged result-
s are reported in this paper. For the first-order differential beam-
former, two sensors are used, one at the reference point, the other
at (x0 − 0.01, y0, z0), i.e., the spacing between the two sensors is
1 cm. For second-order differential beamformer, the spacing is again
1 cm and three sensors are used: one at the reference point, the other
two at (x0 − 0.01, y0, z0) and (x0 − 0.02, y0, z0) respectively. A
desired source placed at (x0 + 1.5, y0, z0). The room impulse re-
sponse (RIR) from the source to each microphone is generated with
the image model method [26, 27]. The beamformers are implement-
ed in the STFT domain. Specifically, the signals are partitioned into
overlapping frames with a frame size of 256 points and an overlap-
ping rate of 75%. For each frame, a Kaiser window is applied and the
windowed frame signal is subsequently transformed into the STFT
domain. After performing beamforming in each subband, the output
is formed with overlap-add technique. All the source signals have
the same sampling rate of 16 kHz.

We first measure the practical beampatterns of different differ-
ential beamformers in an anechoic environment, where the reflection
coefficients of all the walls, ceiling and floor are set to 0. For each
order of DMA, four differential beamformers with different nulls,
i.e., θn ∈ {120◦, 90◦, 60◦, 30◦}, are measured. Specifically, for
the first-order DMA, we set θ1,1 = θn while for the second-order
DMA, the two nulls are set to θ2,1 = 165◦ and θ2,2 = θn respec-
tively. Then the beamformers to be measured are computed accord-
ing to (11). To measure the beampattern, a narrowband source is
placed in the horizontal plane, which moves in a circle with a ra-
dius of 1.5 m and the center at the reference point. In other words,
the source’s coordinates are (xs, ys, z0), where xs = x0 + rs cos θs,
ys = y0 + rs sin θs, θs ∈ {0◦ : 1◦ : 360◦}, and rs = 1.5 m. The
source is a narrowband signal of 2 kHz. At each source position, the
RIR from the source to the microphones are generated with the im-
age model method [26,27]. The array observations are then obtained
by convolving the source signal with the corresponding RIRs. The
power of the beamformer’s output is subsequently computed. Re-
peating this process for θs ∈ {0◦ : 1◦ : 360◦} and normalizing all
the results with respect to the value at the endfire position, we obtain
the measured beampattern.

Then, we study the performance of different differential beam-
formers on interference suppression in reverberant environments
(with reverberation time T60 = 150ms) as a function of interference
incidence angle, which is measured by the signal-to-interference
(SIR) gain (denoted as GSIR) [28]. A desired source is placed at
(x0 + 1.5, y0, z0) and an interference at (xi, yi, z0), where xi =
x0 + ri cos θi, yi = y0 + ri sin θi, θi ∈ {20◦ : 10◦ : 180◦}, and
ri = 1.5 m. The desired and interference signals are both clean
speech. For each position of interference, we set θ1,1 = θi and
θ2,1 = 165◦ and θ2,2 = θi for the first- and second-order DMA,
respectively, and compute the corresponding beamformer by (11) so
that the beamformer always has a null towards the interference. Af-
ter array signal generation and beamforming, we obtain the SIR gain
for different interference incidence angles.

Figure 1 plots the designed and measured beampatterns of the
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Fig. 1. Designed and measured beampatterns of the first-order DMA
at f = 2 kHz: (a) θn = 120◦, (b) θn = 90◦, (c) θn = 60◦, and
(d) θn = 30◦.

Fig. 2. DF and SIR gains as a function of the interference incidence
angle, θi, for the first-order DMA.

first-order DMA for frequency, f = 2 kHz, and different θn ∈
{120◦, 90◦, 60◦, 30◦}. It is seen that the designed beamformer suc-
cessfully formed a null at every specified direction, and the measured
beampatterns matches well the designed ones. However, as the angle
of null closer to 0 (i.e., the desired look direction), the null tends to
be shallower, indicating a performance degradation

In Fig. 2, we plot the DF at f = 2 kHz and SIR gain of the first-
order DMA, as a function of null angle, θn, in the left and right axis,
respectively. It is seen that the DF is high for θn ≥ 90◦, and then
decreases rapidly as the null direction moves closer to the desired
look direction, which is consistent with the theoretical analysis. As
for the SIR gain, is similar to the DF, i.e., the gain decreases as the
interference is incident from a direction closer to 0◦.

Figures 3 and 4 plot the performance of the second-order DMA
in the same condition. In Fig. 3, one can also see some degradation
on beampattern effectiveness and null depth as the angle of the null
decreases. Compared with Fig. 1, when θn = 60◦, the beampattern
of the first-order DMA is noneffective, while the beampattern of the
second-order DMA is effective, which means that for the same angle
of null, a higher order DMA can help to improve the effectiveness

Fig. 3. Designed and measured beampatterns of the second-order
DMA at f = 2 kHz: (a) θn = 120◦ , (b) θn = 90◦, (c) θn = 60◦,
and (d) θn = 30◦.

Fig. 4. DF and SIR gain as a function of the interference incidence
angle, θi, for the second-order DMA.

of the beampattern. It is also observed that the DF and SIR gains
can keep a high value at first, but suffer from huge decline when
θn ≤ 60◦, which means that compared with the first-order DMA,
the second-order DMA can achieve a good performance in terms of
DF and interference suppression for a larger range of interference
incidence angles.

6. CONCLUSIONS

This paper studied the impact of the null directions on the perfor-
mance of differential beamformers. A new analytical expression of
ideal differential beampattern was first presented, which includes the
information of a null explicitly. Based on this new form, we showed
through theoretical analysis that as the null approaches to the desired
look direction the DF decreases rapidly. We validated the perfor-
mance analysis of the differential beamformer through simulations
using the beampattern effectiveness, null depth, directivity factor,
and SIR gain as the performance metrics. The results showed that
properly setting the nulls positions is important for DMA design,
which plays an important role on performance.
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