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Abstract—Intelligent Reflective Surface (IRS) is a promising
technology for improving the data transmission rate in hard
direct channel conditions. In this paper, we describe our solution
to estimate the relevant channels and configure the IRS for
efficient wireless communications, as part of the 2021 IEEE
Signal Processing Cup (SP Cup) competition. First, we estimate
the wireless channel and then find an IRS configuration that
maximizes the rate of that channel. We begin with the pro-
vided far-from-optimal IRS configurations and apply an iterative
optimization technique based on gradient descent and adaptive
quantization. Further optimization is obtained by training a deep
generative neural network to find a configuration that maximizes
the rate function. Compared to the best provided configurations
that provide a weighted average rate of 104.07 Mbit/s, the
best configurations we discovered provide a significantly higher
average rate of 120.70 Mbit/s. Non-IRS based solution provides
an average rate of 4.38 Mbit/s.

Index Terms—Channel estimation, IEEE Signal Processing
Cup (SP Cup), Intelligent reflective surface (IRS), Neural prior,
OFDM, Passive beamforming, Reconfigurable Intelligent Surface
(RIS)

I. INTRODUCTION

An Intelligent Reflecting Surface (IRS) [1] is a two-
dimensional array of metamaterial whose interaction with
electromagnetic waves can be controlled. It consists of an
array of N discrete passive elements that can be controlled to
alter the amplitude and/or phase of the reflected signal, thereby
smartly reconfigure the wireless propagation environment. The
physical implementation of such a system encounters many
challenges. It is therefore important to design a generic algo-
rithmic solution for utilizing IRS technology that is based on a
small amount of prior knowledge on the properties the specific
IRS, and employs as few stages as possible. Our goal is to
characterize the behaviour of an IRS based on received signals
from an over-the-air signalling, i.e., develop efficient channel
estimation process and a control algorithm to configure the
surface to increase communication performance [2].

The relation in the discrete-time domain between a transmit-
ted signal x[k] and the received signal z[k] can be modeled
as

z[k] =
M−1∑
`=0

hθ[`]x[k − `] + w[k] (1)

where {hθ : ` = 0 . . .M − 1} is the finite impulse response
representation of the channel between the base station to the
receiver, θ ∈ R1×N is the IRS specific configuration, and w is
the receiver noise. The transmission over the communication
channel is carried out using an orthogonal frequency-division
multiplexing (OFDM) with a finite impulse response (FIR)
filter of order M and K > M subcarriers. A more detailed
overview of fundamental properties of IRS technology from a
signal processing perspective can be found in [3].

Evaluation in the SP Cup 2021 competition is based on
an ensemble of 50 users that are located in the same room
with the IRS. The transmitting base station and the IRS are at
fixed locations and have a line-of-sight (LOS) channel between
them. All users have non-line-of-sight (NLOS) channels to the
base station. Some users have LOS channels from the IRS,
as shown in Figure 1, others do not. The weighted average
data rate over all users with the submitted configurations is
computed according to [2] with double weight for NLOS
users. The noise power spectral density is required to compute
the rate, thus we should estimate the wireless channel for
each user. An additional initial stage contains more data and
is focused on a single user. Therefore, it can be utilized to
learn channel-related and IRS-related channel properties, and
to develop a technique for channel estimation. In Section II, we
describe our technique for channel estimation. This technique
uses the geometrical shape of the IRS that is found as
described in Section IV.

Finding the global optimal configuration is mathematically
intractable. With the growing interest in this technology, many
heuristic solutions have recently been proposed. One notable
solution is based on strongest tap maximization (STM) [4],
[5]. However, this solution is inapplicable in practice as it
assumes a continuous phase, whereas we are constrained to
only two phases with a phase-shift difference of approximately
π between the elements. Other methods were proposed to the
discrete phase case, but they assume perfect knowledge of the
channel state information (CSI) [6], [7] and prior knowledge
of the geometrical shape and physical implementation of the
IRS [5], [8], while we do not assume either one of them.
The problem with these assumptions are that the IRS is a
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Fig. 1. Wireless communication with IRS: The base station has no LOS to
the receiver, but it does has LOS to the IRS, which it uses to improve the
data transmission rate.

passive device and therefore does not contain any active radio
frequency (RF) chains. Thus, it is impossible to find out
directly the channel from the base station to the IRS and from
the IRS to the receiver, but only the cascaded channel from the
base station through the IRS and to the receiver, using pilot
signals sent from the base station to the receiver.

Let
zf = hfθx

f +w (2)

be the received pilot signals in the frequency domain, where

hfθ = hfd + V
f
aθV

f
b , (3)

hfd ∈ CK×1 is the uncontrollable paths channel, V f
a ,V

f
b ∈

CK×N are the channels from the base station to the N IRS
elements and from them to the receiver, respectively, and θ ∈
CN×N is a diagonal matrix whose main diagonal contains
the phases of the IRS elements. One can see that any attempt
to estimate directly V f

a or V f
b is practically impossible, as

they are invariant to multiplication by any diagonal matrix
A ∈ CN×N since:

zf = (hfd + V
f
aθV

f
b )x

f +w

= (hfd + V
f
aAθA

−1V f
b )x

f +w . (4)

In the SP Cup 2021 we received two datasets: The first
contains 4 × 4096 over-the-air signals received by one user
equipment; each corresponds to a single IRS configuration.
The second dataset contains 50 × 4096 over-the-air signals,
4096 signals for each of the 50 users, corresponding to a fixed
subset of the IRS configurations from the first dataset. The IRS
has N = 4096 elements but the geometrical shape of the IRS,
as well as the locations of the base station, the IRS and the
users, are unknown.

We present two novel algorithms for IRS configuration
optimization. The first algorithm combines an adaptive quanti-
zation method with incremental optimization for quantization
of the STM algorithm for continuous phase [4], [5]. Our
second algorithm is based on the pioneering work of Deep
Image Prior [9] that introduced the use of a neural prior in
the context of image reconstruction, as well as [10]–[12] that
extended the neural prior to other problems and representations

such as 3D meshes, point clouds, and denoising. We have
observed that arbitrary phase changes tend to reduce data
transmission rates, while outputs subjected to a neural prior
perform better. This observation is supported by [13], [14],
which claims that IRS configuration should contain strong self-
similarity. Moreover, it was shown in [15] that the over param-
eterization, which is inherently available in neural networks,
helps in overcoming local minimums in optimization schemes
like gradient decent, even for simple tasks such as linear kernel
estimation. The design of our second algorithm is inspired by
these previous works, exploiting the neural prior and the over
parameterization that networks offer, to find a better global
configuration that maximizes the rate. Our solutions for finding
a good IRS configuration under these constraints is described
in Section III.

II. CHANNEL ESTIMATION

Accurate channel estimation is critical for finding a good
configuration because estimating the channel inaccurately may
result in optimizing the wrong objective function. We model
the system by

z = (hd + V θ)� x+w, (5)

where x, z, hd and w are vectors of size K × 1 representing
the transmitted signal, the received signal, the direct channel
and the noise, respectively. V is a K×N matrix representing
the cascade of the channel from the transmitter to the IRS and
the channel from the IRS to the receiver, and θ is a vector
of size N × 1 representing the configuration of the IRS. �
denotes the Hadamard element-wise product.

During the pilot transmission, all elements of x are equal
to a scalar value xi ≡ α. The IRS is configured in a sequence
of N configurations θ1, . . . ,θN that form the columns of an
N× N Hadamard matrix HN [16]. The first stage of channel
estimation consists of a set of 4N configurations such that
each configuration from HN and its negation appear twice
in the N × 4N configuration matrix of this sequence. Thus,
summation over all received signals in this sequence yields
4Nhd � x +

∑4N
i=1wi, and we can find the direct channel

by dividing this expression by 4Nα. Summing over all N
received signals of a single user in HN we get (Nhd +
V
∑N
i=1 θi) � x +

∑N
i=1wi, where

∑N
i=1 θi = [N, 0, .., 0]

T

is a vector of size N . This expression gives us the sum of
the direct channel and the response of the first element of the
IRS to the +1 state. Since the first element is negligible, we
estimate the direct channel of a single user in by

ĥd =

∑N
i=1 zi
Nα

= hd + V · [1, 0, .., 0]T +

∑N
i=1wi

Nα
. (6)

After estimating the direct channel hd we can estimate the
non-direct channel V . Since the Hadamard matrix is invertible,
we can use the least-square (LS) estimator that is given by

V = (Z −X Hd)Ω−1/α, (7)
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Fig. 2. Verification of our channel estimation process from N configurations,
with and without denoising, with the 4N configurations of the first pilot stage.

where X = αIK×K is a K × K matrix of the transmitted
signal (the scalar α), Z is a K × N matrix whose columns
are the received signals,Hd is a K×N matrix whose columns
are the direct channels hd, and Ω is the Hadamard matrix.

We used our discovery of the array’s geometrical shape
(described in Section IV) to compensate the estimated channel
for the addition of the response of the first element of the
IRS to the +1 state. We assume, and verified this on the set
of pilot signals from the first stage, that the MSE between
the frequency response of each element i and the frequency
response of elements i+ 64n (elements in the same column)
is small. So, we take the first column of V to be

V (:, 1) =
1

63

63∑
n=1

V (:, 1 + 64 · n) . (8)

We also perform a similar compensation for the direct channel
hd.

LS-based channel estimation is simple to implement and
does not require any a-priori knowledge of channel statistics.
However, its performance is not as good as more advanced
channel estimation techniques. Therefore, we applied a de-
noising strategy inspired by [17]. The channel in the time
domain is a vector of size K with small non-zero values at its
[M +1, ..,K] elements. Since the channel in the time domain
is modeled as an FIR filter of order M , we assume that the
elements [M + 1, ..,K] in the channel vector are noise, and
set them to zero before returning to the frequency domain.
The estimator we get from this process yields zero MSE on
the N configurations of HN . When verified on data from the
first stage, this estimator results in the smallest MSE of any
other channel estimation methods we tried. Figure 2 shows
the verification of our channel estimation process on the first
stage. Both channel estimators from N configurations follow
closely the amplitude and phase of the channel computed from
4N configurations. The channel estimated after denoising is
smoother.
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Fig. 3. An example of phase quantization for the resulting STM configuration
for user 20. The best separating line is drawn in red.

III. CONFIGURATION SEARCH

To find a configuration that maximizes the data rate, we
use two techniques. The first is an adaptive quantization and
optimization, while the second uses a deep neural network as
a prior for the configuration search.

Adaptive Quantization. In the first technique, we try to
maximize the rate R (calculated according to [2]) using the
gradient descent algorithm by defining ∇~θR = ∂R

∂~θ
and an

update rule

~θt+1 = exp

[
∠θt +

∠∇~θR∥∥∇~θR∥∥
]

(9)

where ∠θ is the phase of the complex vector θ ∈ C4096.
After several iterations, the optimization converges to a local
maximum that serves as the initial value for an iterative
optimization and quantization algorithm. We quantize the
phase into two values by finding the best line for separating
the phases on the unit circle for each user. An example of such
separating line for phase quantization is depicted in Figure 3.
Let the best separating line be [φ̃, φ̃+π]. Then, for all element
phases calculated using the STM estimator, we calculate their
cyclic distance from the separating line: D ≡ sin2(∠θ − φ̃).
This metric assigns a lower distance to elements that have
more ambiguous clustering. The iterative process is described
in Algorithm 1. More ambiguous elements are assigned a
lower distance based on the assumption that they are more
likely to be quantized incorrectly, and have a better chance of
increasing the rate. Therefore, as the algorithm proceeds, it is
more likely to converge to the optimal IRS configuration, as
the optimal elements to be considered are re-evaluated more
frequently.

To prevent the above algorithm from entering a local
maximum, at each 4n step of the algorithm, where n ∈
{1, 2, ... log4(4096)}, we check each element to see if its
phase change yields a higher rate. Another means for pre-
venting entry to a local maximum is to use a probabilistic
method at the end of the algorithm. Each element is assigned
a probability that is inversely proportional to the distance
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Algorithm 1: Iterative Optimization and Quantization

Result: IRS configuration
repeat

Calculate D(∠θ)
e = argmin(D(∠θ))
Create two assumptions - e is either +1 or −1.
For each assumption, run gradient descent
optimization for all unfixed elements until
convergence.

Fix e to the value that yields higher data rate.
until All IRS elements are fixed;

from its phase value assigned by the continuous phase STM
estimator. We then select a random configuration based on
these probabilities. If the new configuration has a higher rate
than the original, the new configuration is set as the base
configuration for an additional random iteration (with the
original probabilities). This process is repeated a fixed number
of iterations.

Neural Optimization. The second technique we use for
configuration search, generates IRS configurations by max-
imizing the rate while using a randomly initialized neural
network as a regularization term for the optimization process,
i.e., applies a neural prior. [13], [14] proposed that a favorable
solution for the phase configuration should contain strong
self-similarity, supporting the use of a neural prior for IRS
configuration search. Furthermore, [15] showed that using
over parameterization, which is inherently available in neural
networks, is beneficial in avoiding local minima during the
optimization process, and to reach a better final solution,
even for simple problems such as linear kernel estimation.
Consequently, we hypothesize that a neural prior may also be
favorable for solving the IRS configuration problem, as it is
subject to a neural network that produces self-similar results,
and is able to avoid local optimization minimums better than
direct optimization.

We define our loss function to be minus the data trans-
mission rate, and optimize a network to overfit a phase
configuration for one specific user. We observe that LOS
users achieve high data rates with very smooth, columns-
like, configurations. We conclude that the steering components
of the configurations are highly important, especially for
LOS users. Therefore, we divide the configuration search
architecture into two sub-networks, as shown in Figures 4 and
5. The first sub-network receives a random scalar as input,
similar to [9], [10], and optimizes for the steering configuration
(according to the geometrical shape of the array, see Section
IV), while the second sub-network receives this steering
configuration as input and generates another, not necessarily
steering, final configuration. The purpose of the second sub-
network is to fine tune the steering configuration by adding
elevation components. The first sub-network consists of five
fully-connected layers interspersed by one hyperbolic tangent
activation function, and a final hyperbolic tangent activation on

Fig. 4. First sub-network of the proposed generative neural network archi-
tecture. This network receives a random scalar (in vector form) as input and
generates a steering configuration (in vector form).

Fig. 5. Second sub-network of the proposed generative neural network
architecture. This network receives a steering configuration as input and
generates another, not necessarily steering, configuration (in vector form).

the output vector. The use of multiple consecutive linear layers
is not equivalent to having a single larger fully-connected layer
for optimization purposes, as was shown in [15]. In fact, this
creates the desired over parameterization, by decomposing a
single equivalent linear layer into multiple linear layers, which
helps to avoid local minimas throughout the optimization
process. The resulting vector of size 64 × 1 represents the
columns of a steering configuration and is replicated to create
a 64× 64 matrix that is the input to the second sub-network.
The second sub-network is a fully convolutional neural net-
work with intermediate layers of hyperbolic tangent activation
function that generates the final configuration as vector of size
4096×1. The choice of the fully convolutional architecture for
the second part is motivated by our assumption that elevation
components should not have long range dependency, but rather
be affected by local changes.

For optimizing the sub-networks, we used gradient de-
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Fig. 6. Combination of our two configuration search techniques - we extract
the elevation component from the best configuration discovered by the first
technique, and re-estimate the steering component using the first generative
sub-network from our second technique. Then, we sum the two components
to obtain the final configuration.

TABLE I
MEAN DATA RATES FOR THE IEEE SP CUP 2021 WITH NO IRS AND FOR

THE THREE PROPOSED IRS CONFIGURATION TECHNIQUES. THE
GENERATIVE NETWORK YIELDS THE HIGHEST RATE FOR LOS USERS, BUT

WITH INFERIOR PERFORMANCES FOR NLOS USERS.

Algorithm LOS NLOS

No IRS 3.95 Mbits
sec

3.62 Mbits
sec

Adaptive Quantization 116.88 Mbits
sec

65.17 Mbits
sec

Neural Prior 117.09 Mbits
sec

65.06 Mbits
sec

Steering-Elevation Decomposition - 65.25 Mbits
sec

cent with cosine annealing learning, compared to our first
configuration search technique which used vanilla gradient
descent and adaptive quantization. The network optimization
solution converges faster, is computationally more efficient and
typically discovers configurations with higher data rates for
LOS users. However, for NLOS users, the first technique is
usually better, as these users require a stronger emphasis on
elevating phase components.

In an effort to combine the best of both solutions, we
combined our two configuration search techniques by decom-
posing the configuration into its steering and elevation basis,
as depicted in Figure 6. We extracted the elevation component
from the best configuration discovered by the first adaptive
quantization technique, and estimated an independent steering
component using the first generative sub-network from our
second technique. Then, we summed the two components
to obtain the final configuration. This technique improved
on average the data transmission rates for the NLOS users,
compared to using each technique separately. The results of
these three method are compared in Table I. A weighted
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Fig. 7. Data rates obtained for each user with the best IRS configuration
in our proposed solution compared to the data rates obtained by the best
configuration provided in the pilot stage and to the data rate obtained by
STM (with continuous phase). The 36 users at the top of the graph have LOS
with the IRS, while the other 14 users at the bottom do not.

Fig. 8. An example of the best configurations discovered by our proposed
solution. Both users on the left have LOS with the IRS so their best
configuration is almost pure steering. Both users on the right do not have LOS
with the IRS so the patterns in their best configuration are more intricate.

average rate over all users that doubles the rate for NLOS
users is calculated according to [2]. Compared to the best
configurations provided to all users that provide an average
rate of 104.07 Mbit/s, the best configurations we discovered
provide a significantly higher average rate of 120.70 Mbit/s.
Without IRS, the average rate is only 4.38 Mbit/s.

Figure 7 shows the data rate for each user with the best IRS
configuration we found compared to the data rate obtained by
the best configuration provided in the pilot stage and to the
data rate obtained by STM (with continuous phase). Users
at the top of the graph have LOS with the IRS, while users
at the bottom do not. Figure 8 shows examples of the best
configurations discovered by our proposed solution. Users in
LOS with the IRS have best configurations that are almost
pure steering, while users with no LOS with the IRS have
more intricate patterns in their best configurations.

IV. GEOMETRICAL SHAPE OF THE IRS
Knowing the geometrical shape of the IRS allows to utilize

the spatial correlation between elements as described in Sec-
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Fig. 9. Average data rate for all LOS users as a function of the IRS array
column length. The best possible rate begins with log2n = 6, so we can
conclude that the physical shape of the array is 64× 64 elements.

tion III. In the SP Cup 2021 competition, the IRS is rectangular
and has N = 4096 elements. Hence, it can have one of the
sizes 1×4096, 2×2048, ..., 4096×1. We assume that for users
in LOS with the IRS, a pure steering configuration will provide
a high data rate. We observe that these steering configurations
for LOS users have many columns of the same value along
the y-axis. Thus, we have implemented a version of STM that
allows only steering configurations. We then used this version
to find the best steering configuration for all LOS users for
each possible geometrical shape of the array, and compared
the rates obtained by the different geometrical shapes. The
results of this experiment are depicted in Figure 9. From this
figure we can conclude that the physical shape of the IRS is
64× 64 elements.

V. CONCLUSIONS

In this paper, we approach the IRS configuration optimiza-
tion problem from two different perspectives: adaptive quan-
tization and optimization, and a novel neural prior approach.
We have shown that the recently proposed ideas of neural
prior and over-parametrization in generative neural networks
can be extended to the world of RF communications, far from
their original use in computer vision. This approach achieves
high data transmission rates for LOS users but is less effective
for NLOS users. We obtain high data transmission rates for
all users by combining the two proposed configuration search
techniques.

We demonstrated that even with the IRS technology pro-
vided in the SP Cup 2021 competition, which uses only two
phase states and has no control over the magnitude of the
reflected signal, data transmission rate can be increased on
average by a factor of 18 for NLOS user and by a factor
of 30 for LOS user when compared to the non-IRS case. In
addition, we have developed a technique for discovering the
physical shape of the IRS array, and used an understanding
of the physical properties of the IRS to improve the common
linear channel estimation method. All of these techniques have
allowed us to efficiently utilize IRS technology to significantly
improve data transmission rates between the base station and

users. The code of our solution is available at https://github.
com/BIueMan/IEEE SP CUP 2021-SIPL TEAM
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