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ABSTRACT

In this paper, we propose an incoherent design method of sparse
broadband arrays that optimizes the number of sensors and their po-
sitions simultaneously. We introduce an iterative clustering proce-
dure that merges different groups of sensors with a small distance, in
terms of Bhattacharyya distance, between their angle distributions.
The iterative clustering procedure is initialized with a large num-
ber of groups of sensors, and computes in each iteration a cluster-
ing score and a threshold. Then, near groups are merged into joint
groups, yielding a new set of groups of sensors. We show that the
optimal set of sensors is obtained when the clustering score is larger
than the threshold, indicating that the remaining groups are distant.
The proposed approach is demonstrated by a design of a superdirec-
tive beamformer, and its performance is compared with an existing
incoherent approach. Experimental results show improved perfor-
mance in terms of a more favorable tradeoff between directivity fac-
tor and white noise gain.

Index Terms— Sparse arrays, subspace clustering, frequency-
invariant beamformers.

1. INTRODUCTION

Frequency-invariant (FI) broadband beamformers techniques are
widely used in several real-world applications like audio, communi-
cations, and sonar systems [1–6]. Among several approaches for FI
design, the sparse class comprises a promising concept since both
the beamformer’s coefficients and their locations are optimized.
Consequently, sparse beamformers can maintain an adequate level
of performance with fewer sensors, weight, size, and cost.

Previous works on FI sparse designs were based on analytical ap-
proaches [7,8], greedy algorithms such as genetic algorithms [9], and
multidimensional searching algorithms [10] applied to find a global
minimum of an appropriate cost function. Recently, a sparse de-
sign was proposed based on an `1 - norm constrained optimization
[11, 12]. As the optimization is performed over all frequency bins
simultaneously, we may refer to it as a coherent approach. Although
exhibiting promising performance, the coherent approach carries a
profound drawback of a high computational burden limiting its ap-
plicability in some scenarios. To overcome this problem, Buchris
et al. [13, 14] introduced an incoherent approach, which solves sep-
arately an `1 constrained optimization problem for each frequency
bin. Then, a fusion step is performed, yielding a joint-sparse selec-
tion of sensors. Finally, the selected sensors are used to synthesize
the desired FI beamformer. In this way, a significant reduction in
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computation time is achieved. However, the optimal number of sen-
sors in the sparse array’s layout is determined empirically by trial
and error, preventing such beamformers from being operated online.

This paper proposes a modified incoherent design that facilitates
a built-in mechanism to retrieve the optimal number of sensors au-
tomatically. Specifically, we intervene in the fusion phase of the
original approach by applying an iterative clustering procedure that
merges different groups of sensors with a small distance, in terms of
Bhattacharyya distance, between their angle distributions. The itera-
tive clustering procedure is initialized with a large number of groups
of sensors, and computes in each iteration a clustering score and a
threshold. Then, near groups are merged into joint groups, yield-
ing a new set of groups of sensors. The optimal set of sensors is
obtained when the clustering score is larger than the threshold, indi-
cating that the remaining groups are distant. The proposed approach
is demonstrated by a design of a superdirective beamformer, and
its performance is compared with the original incoherent method.
Experimental results show that the proposed technique achieves the
same number of optimal sensors as the former design. Still, the po-
sitions of the sensors are different, which yields a performance im-
provement in terms of a more favorable tradeoff between directivity
factor (DF) and white noise gain (WNG).

The rest of this paper is organized as follows. In Section 2, we
formulate the problem. The design constraints are given in Section
3. Section 4 describes our proposed modification in detail. A design
example and simulations are provided in Section 5, and conclusions
are drawn in Section 6.

2. PROBLEM FORMULATION

Consider a linear array with M possible candidate sensor positions.
We denote the position of the mth sensor by pm,m = 1, 2, ...,M ,
and by Bd(θ) the desired far-field FI beampattern in the bandwidth
of interest Ω, and in azimuth θ. The beampattern of such an array
for the angular frequency ω is generally defined as

B
(
h(ω)

)
= hH(ω)d

(
kω(θ)

)
, (1)

where the superscript ( )H denotes the conjugate-transpose operator,

h(ω) = [H1(ω), H2(ω), ..., HM (ω)]T (2)

is a vector containing the beamformer complex gains, and the su-
perscript ( )T stands for the transpose operator. The wavenumber at
frequency ω and direction θ is

kω(θ) = −ω
c

cos θ, (3)
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and is associated with the following M × 1 steering vector

d
(
kω(θ)

)
=
[
e−jkω(θ)p1 , e−jkω(θ)p2 , ..., e−jkω(θ)pM

]T
, (4)

where j =
√
−1, and c is the waveform’s speed.

Assume that we select a subset of K � M positions {pik}
K
k=1,

with indices {ik}Kk=1 ∈ [1, 2, ...,M ]. Then the beampattern be-
comes

B
(
h(ω), iK

)
= hH(ω)Ts(iK)TTs(iK)d

(
kω(θ)

)
, (5)

where iK = [i1, i2, ..., iK ]T , and Ts(iK) is a K×M selection ma-
trix, i.e., containing K rows, composed of 1 ×M unit vectors cor-
responding to the indices {ik}Kk=1. Our goal is to select the optimal
number of sensors, K, and their positions, iK , out of the M candi-
date positions, such that the synthesized beampattern B (h(ω), iK)
will be as close as possible to the desired beampattern Bd(θ), ∀ω ∈
Ω, but at the same time fulfilling several design constraints that will
be discussed in the next section.

3. DESIGN CONSTRAINTS

Given a desired beampattern Bd(θ), let

bm
d = [Bd(θ1),Bd(θ2), ...,Bd(θL)]T (6)

denote a vector containing the desired beampattern in L out of P
directions that cover the mainlobe region, and let

bs
d = [Bd(θL+1), Bd(θL+2), ..., Bd(θP )]T (7)

denote a vector containing the desired beampattern in P − L direc-
tions that cover the sidelobes region. Let

D(km
ω ) = [d(kω(θ1)),d(kω(θ2)), ...,d(kω(θL)]

D(ks
ω) = [d(kω(θL+1)),d(kω(θL+2)), ...,d(kω(θP )]

(8)

be sets of steering vectors related to each of the directions that cover
the mainlobe and the sidelobe regions, respectively, where

km
ω = {kω(θ1), kω(θ2), ..., kω(θL)}

ks
ω = {kω(θL+1), kω(θL+2), ..., kω(θP )}.

(9)

are their corresponding set of wavenumber values.
Then, several design constraints intended to ensure robust and FI

broadband beampattern, can be formulated ∀ω ∈ Ω by [13]

C1 : ||(bm
d )T − hH(ω)TT

s (iK)Ts(iK)D(km
ω )||22 ≤ ε1(ω),

C2 : ||(bs
d)T − hH(ω)TT

s (iK)Ts(iK)D(ks
ω)||22 ≤ ε2(ω),

C3 : hH(ω)TT
s (iK)Ts(iK)d

(
(kω(θs)

)
= 1,

C4 : hH(ω)TT
s (iK)Ts(iK)h(ω) ≤ γ(ω),

where C1 and C2 are the mainlobe and sidelobes constraints which
are used to obtain the desired FI beampatterns in each of the main-
lobe and sidelobes regions in a least-square (LS) error sense. ε1(ω)
and ε2(ω) are small positive tolerance parameters indicating the
overall allowed error for C1 and C2, respectively. C3 is the common
distortionless response constraint, and C4 imposes a limitation on
the maximal allowed white noise output power at frequency ω using
the parameter γ(ω).

The optimization problem is formulated as follows:

minimize {number of active sensors - K}
subject to C1, C2, C3, C4, ∀ω ∈ Ω

(10)

whose solution yields the jointly-sparse filters

hK(ω) = Ts(iK)h(ω),∀ω ∈ Ω. (11)

An efficient solution to (10) was proposed in [13] based on an
incoherent approach. It comprises four steps, including analysis, di-
mensionality reduction, clustering, and synthesis. Yet, it lacks an
intelligent way to determine K a priori. In the next section, we in-
troduce a reliable and efficient way to determine K by modifying
the clustering step. We focus on that step while briefly overviewing
the other steps.

4. INCOHERENT SPARSE BROADBAND DESIGN

Let {ωj}Jj=1 ∈ Ω denote a set of frequency bins. Then, the first
analysis step solves an `1 optimization problem under constraints
similar to {C1, C2, C3, C4} for each frequency ωj . The result is an
M × J analysis matrix

HA = [hA(ω1),hA(ω2), ...,hA(ωJ)], (12)

where hA(ωj) is the solution of the optimization problem for ωj
(see details in [13]). Due to the sparsity nature of HA, we can apply
principle component analysis (PCA) [15], to reduce its dimensional-
ity and form an M ×Q (Q� J) compact representative matrix

HR = HA ·U, (13)

where HA is a centralized version of HA, i.e., the sampled mean
of each column of HA has been shifted to zero. The subscript R
stands for reduced, and the matrix U ∈ IRJ×Q contains Q eigen-
vectors corresponding to the Q largest eigenvalues of the sampled
correlation matrix of HA defined by:

RA = HH
A HA (14)

Specifically, we pick the first Q largest eigenvalues which satisfy

ΣQ =
ΣQj=1λj

ΣJj=1λj
≤ Σ, (15)

where λ1 ≥ λ2 ≥ · · · ≥ λJ are the eigenvalues of the analysis cor-
relation matrix RA and Σ is a parameter that determines the portion
of the overall variability in HA to be preserved in HR , where its
value is typically set between 0.6 ≤ Σ ≤ 0.9.

The reduced matrix, HR, is used as an input to a clustering step,
which returns K clusters, from which one representative sensor is
selected. To determine K, we present in the following subsections
an alternative approach based on [16], which offers a parameter-free
clustering tool that extracts the optimal number of clusters automati-
cally. This approach relies on the assumption that the distributions of
angles subtended between sensors are distinct in each cluster. Note
that there are several heuristic methods that deal with the problem of
finding an optimal number of clusters in a dataset [17,18]. Yet, most
of them are domain-dependent and strictly rely on suitable parame-
ters adjustment.
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Fig. 1. Clustering score γK and threshold ζK for different Σ values.

4.1. Clustering of Angles Subtended Between Sensors

Let xm∈ IR1×Q denote the normalized version of the sensors’ re-
duced analysis vectors calculated ∀m = {1, 2, ...,M} by:

xm =
HR(m, :)

||HR(m, :)||22
. (16)

Then, clustering is performed over the angles unfolded by sensors’
pairs (i.e., xm and xn, m 6= n) and are calculated according to

θm,n = cos−1(xTmxn), (17)

where θm,n ∈ [0, π] is the angle subtended between sensor m and
sensor n. These angles are first clustered across a large number of
groups according to a given initialization process. Herein, we con-
sider the k-means algorithm to yield the initial clusters.

4.2. Clustering Score

Let CK = {I1, I2, ..., IK} denote K clusters of datasets, where Ic’s
are mutually disjoint index sets with UKc=1 Ic = {1, 2, ...,M}. We
refer to Ic’s as constituent clusters. For each group in CK we cal-
culate the angles between all possible data-point pairs to produce
a set of approximately Gaussian within-cluster angle distributions,
{Wc}Kc=1, i.e.,

Wc = {θm,n|m,n ∈ Ic,m < n} ∼ N (µwc , σ
2
wc

), (18)

where µwc and σ2
wc

are, respectively, the sample mean and sample
variance ofWc.

Similarly, we calculate the angles subtended by data-points be-
tween different clusters to establish a set of between-clusters Ic and
Il angles distributions {Bcl|c, l = 1, . . . ,K, c 6= l} characterized
by a Gaussian distribution as well:

Bcl = {θm,n|m ∈ Ic, n ∈ Il} ∼ N (µbcl , σ
2
bcl) (19)

where µbcl and σ2
bcl

are, respectively, the sample mean and sample
variance of the distribution elements between clusters Ic and Il.

Fig. 2. Array layout obtained by the original incoherent approach
(black ‘x’) and the modified version (red circles).

We evaluate the distance of within-cluster Wc and between-
clusters Bcl distributions using a well-known distributions distance
measure called the Bhattacharyya distance [19]:

dcl =
1

4

[
(µwc − µbcl)

2

σ2
wc

+ σ2
bcl

+ loge

(
1

4

[
σ2
wc

σ2
bcl

+
σ2
bcl

σ2
wc

]
+

1

2

)]
(20)

where small values of dcl imply two distributions suspected to share
the same subspace, and larger Bhattacharyya distances indicate that
the clusters are separate. The clustering score is defined as the value
dictated by the minimum possible distance:

ηc = min
l=1,...,K, l 6=c

dcl (21)

and

γK = min
c=1,...,K

ηc (22)

where ηc stands for the score of cluster Ic, and γK is the overall
score of CK . We refer to the two constituent clusters that produce
the clustering score as a mergeable pair of CK .

4.3. Threshold

A theoretical derivation of a threshold value has been presented
in [16]. Under a Gaussian assumption on the nature of distribu-
tions of angles, it has been shown that the clustering score holds
γK ≤ ζK , as long as there are at least two groups in the current
clustering CK that share the same subspace. The threshold ζK is
strictly related to the number of independent angles in the mergeable
pair of CK , i.e., the number of angles within the cluster that formed
by merging the mergeable pair of CK . Let TK denote the number of
elements in the merged cluster of CK . Hence, the threshold ζK can
be obtained by

ζK =
1√

TK − 1
, (23)

4.4. Clustering Algorithm

We start with a large number of initial clusters Kinit � Kopt.
The algorithm then runs iteratively from K = Kinit to K = 2,
where in each iteration, the clustering score γK and the threshold
ζK are calculated using (22) and (23), respectively. The corre-
sponding mergeable pairs are merged into one cluster yielding a
new set of clusters CK−1 that is passed to the next iteration. In
this way, we expect to obtain clustering scores around zero for
CKinit , CKinit� 1 , ..., CKopt+1 , and observing a sharp increase when
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Fig. 3. WNG for the proposed modified incoherent version using 8
sensors (red triangles line), 10 sensors (solid blue line), 11 sensors
(green circles line), and for the original approach using 10 sensors
(black dashed line).

reaching the optimal number of clustersKopt, since no more merge-
able pairs are left. From that point to K = 2, the scoring behavior
is unpredictable as the remaining clusters are mixed subspaces. The
optimal number of clusters is determined automatically when the
clustering score crosses the threshold for the first time (i.e., when
γKopt > ζKopt ). Ultimately, in each cluster within CKopt , we pick
one data point which is closest to the cluster centroid in terms of Eu-
clidean distance. This way, the most significant sensors are selected
to form the jointly-sparse support vectors, hKopt(ωj), ∀ωj ∈ Ω.

5. DESIGN EXAMPLE

We consider the design of a superdirective beamformer, i.e, a beam-
former that maximizes the DF when steered to the endfire [20]. We
apply the original incoherent approach and our modified version to
design an FI broadband beampattern for a range of frequencies be-
tween flow = 200Hz and fhigh = 4480Hz. We consider a typical
frequency resolution of ∆f = 40Hz comprising J =

fhigh−flow
∆f

=

108 frequency bins, and a typical waveform’s speed of c = 340m/s.
We set an initial array of M = 70 candidate microphones, with an
element spacing of δ = 1cm. For the modified version we use k-
means to produceKinit = 20 initial clusters that serve as an input to
the proposed clustering scheme. The beamformer’s induced WNG
and DF are calculated by [21]

W(h(ωj)) =

∣∣hH(ωj)d
(
(kωj (θ)

)∣∣2
hH(ωj)h(ωj)

(24)

and

D(h(ωj)) =

∣∣hH(ωj)d
(
(kωj (θ)

)∣∣2
hH(ωj)Γdnh(ωj)

, (25)

where

[Γdn(ωj)]uv = sinc

(
ωjδ

c
(v − u)

)
(26)

is an M ×M pseudo-coherence matrix of the diffuse noise field.
We test the performance of our proposed approach across the fol-

lowing dimensionality reduction factors: Σ = 0.6, 0.8, 0.9, 1, where

Fig. 4. DF for the proposed modified incoherent version using 8
sensors (red triangles line), 10 sensors (solid blue line), 11 sensors
(green circles line), and for the original approach using 10 sensors
(black dashed line).

Σ = 1 represents an attempt to skip the dimensionality reduction
step.

Figure 1 demonstrates the performance of the proposed method
for different values of Σ. As discussed, the optimal number of clus-
ters is determined when the clustering score γK intersects with the
empirical threshold ζK for the first time. One can see that for Σ =
0.9, our method coincides with the analytical solution of the co-
herent approach in terms of the optimal number of sensors, that is,
Kopt = 10 [13]. Moreover, in this case, the algorithm yields the
sharpest increase at the optimal point, indicating the best clustering
performance among all depicted candidates. Figure 2 shows the ar-
rays layouts obtained by the original incoherent approach (black ‘x’)
and the modified proposed approach (red circles). We notice that
the modified design yielded a selection of sensors that spread over
a smaller aperture. In particular, 7 out of 10 sensors are centered in
the first 11 positions.

Figures 3 and 4 show the WNG and DF for both designs. For
the modified version, we observe that a favorable tradeoff between
WNG and DF is obtained for the optimal number of clustersKopt =
10. Specifically, performance is spread more equally than the origi-
nal approach, especially for higher frequencies.

6. CONCLUSIONS

We have presented a modified incoherent sparse design of FI beam-
formers that optimizes the number of sensors in the array. In addi-
tion, an iterative clustering methodology fuses sensors’ groups that
share similar angle distributions. Simulations comparing the pro-
posed and the original incoherent designs show that both implemen-
tations achieve a good compromise between DF and WNG with a
preference to the modified one, whose performance appears to be
more stable across frequencies. This characteristic is reflected in an
array layout with a smaller aperture. Hence, we conclude that ob-
serving the angles subtended between data points better reveals the
inter-connections structure between sensors in large arrays. How-
ever, despite the encouraging results, for our approach to enabling
beamformers to be operated online, its robustness to the clustering
initialization should be further tested. The design of a suitable ini-
tialization technique is a subject for future work.
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