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ABSTRACT

We propose a general framework for adaptation control us-

ing deep neural networks (NNs) and apply it to acoustic echo

cancellation (AEC). First, the optimal step-size that controls

the adaptation is derived offline by solving a constrained non-

linear optimization problem that minimizes the adaptive filter

misadjustment. Then, a deep NN is trained to learn the re-

lation between the input data and the optimal step-size. In

real-time, the NN infers the optimal step-size from streaming

data and feeds it to an NLMS filter for AEC. This data-driven

method makes no assumptions on the acoustic setup and is

entirely non-parametric. Experiments with 100 h of real and

synthetic data show that the proposed method outperforms the

competition in echo cancellation, speech distortion, and con-

vergence during both single-talk and double-talk.

Index Terms— Acoustic echo cancellation, adaptation

control, variable step-size, double-talk, deep learning.

1. INTRODUCTION

Hands-free speech communication often involves a conver-

sation between two speakers located at near-end and far-end

points. During double-talk, the near-end microphone captures

the desired-speech signal in addition to an echo produced by

a loudspeaker that nonlinearly distorts and plays the far-end

signal. The acoustic coupling between the loudspeaker and

the microphone may lead to degraded speech intelligibility in

the far-end due to echo presence [1]. Acoustic echo cancel-

lation (AEC) aims to identify the echo path with an adaptive

filter and create a replica of the echo that is subtracted from

the microphone signal [2].

The normalized least mean squares (NLMS) filter is a

popular adaptive filter since it is numerically stable and com-

putationally efficient [3]. The NLMS integrates the normal-

ized step-size parameter that governs the often conflicting fast

convergence requirements and low misadjustment. Therefore,

it is highly desirable to control the step-size during adaptation

in practical scenarios of time-varying echo paths and double-

talk. This problem has motivated numerous variable step-size

(VSS) related studies. For example, Haubner et al. employed
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neural networks (NNs) for near-end estimation [4], noise esti-

mation [5], and minimizing the error using adaptation control

in the frequency domain [6]. Meier and Kellermann [7] em-

ployed a deep NN that maps statistical features of the far-end

and a priori error signals to an analytically derived VSS. A

batch of classic approaches includes the non-parametric VSS

(NPVSS) that adjusts the step-size by reducing the squared

error at each instant [8], the mean error sigmoid VSS (SVSS)

that applies decompoisition of the error into sub-blocks [9],

and Huang’s VSS (HVSS) that estimates the system noise

power to control the step-size update [10].

However, existing approaches make restricting assump-

tions in real-life setups, e.g., assuming a linear relationship

between the echo and the far-end signals [4]– [10], and adopt-

ing a time-invariant echo-path [8]. In practice, these assump-

tions result in filter misadjustment and slow convergence rates

during echo-path changes [11]. Also, such methods require

tuning parameters that are difficult to control in real-life sce-

narios. For example, the NPVSS [8] involves estimating the

noise power, which is challenging during double-talk.

We address these gaps by presenting a deep VSS (DVSS)

framework. First, we solve a constrained nonlinear optimiza-

tion problem that minimizes the normalized misalignment be-

tween the actual and estimated echo path. Second, we present

a deep NN that learns the relation between the far-end, mi-

crophone, and a priori error signals and the optimal step-size.

Finally, the trained NN produces the VSS estimate in real-

time, which is fed to the NLMS filter for echo cancellation.

This data-driven method makes no acoustic assumptions and

is completely non-parametric. The end-to-end system, from

the NN input to the NLMS output, comprises the proposed

DVSS-NLMS filter. Notably, the DVSS framework can be

generalized and is not restricted to NLMS-type algorithms.

For evaluation, we use 100 h of recordings from the AEC-

challenge database [12] and compare the DVSS to five com-

peting methods. Experiments show that the DVSS is advan-

tageous in echo cancellation and speech distortion in double-

talk, is more robust to high levels of speech and noise, and has

a better generalization to various nonlinearities. The DVSS

also achieves the best re-convergence times and success rates

following abrupt echo-path changes during single-talk and

double-talk across different acoustic conditions.
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Fig. 1: AEC scenario and proposed system (bordered). The

NN produces the DVSS estimate μ̂∗ (n), which is fed to an

NLMS filter that generates the acoustic path estimation ĥ (n).

2. PROBLEM FORMULATION

Figure 1 illustrates the DVSS-NLMS configuration. The mi-

crophone signal m (n) at time index n is given by

m (n) = y (n) + s (n) + w (n) , (1)

where s (n) is the near-end speech signal, w (n) represents

environmental and system noises, and y (n) = xT
NL (n)h (n)

is a nonlinear and reverberant echo. xNL (n) denotes the L
most recent samples of the far-end signal, x (n), after under-

going nonlinear distortions by nonideal components, and the

echo path h (n) is modeled as a finite impulse response filter

with L coefficients:

xNL (n) = [xNL (n) , . . . , xNL (n− L+ 1)]
T
, (2)

h (n) = [h0 (n) , h1 (n) , . . . , hL−1 (n)]
T
. (3)

An NLMS adaptive filter with L coefficients tracks the echo

path estimate ĥ (n) and echo estimate ŷ (n) = xT (n) ĥ (n):

x (n) = [x (n) , x (n− 1) , . . . , x (n− L+ 1)]
T
, (4)

ĥ (n) =
[
ĥ0 (n) , ĥ1 (n) , . . . , ĥL−1 (n)

]T
. (5)

Then, an estimate of the near-end speech signal is given by

e (n) = m (n)− ŷ (n) (6)

= (y (n)− ŷ (n)) + s (n) + w (n) .

Our goal is to estimate ĥ (n) and to cancel the echo by elimi-

nating y (n)− ŷ (n), without distorting the speech s (n).

3. DEEP VARIABLE STEP-SIZE ALGORITHM

3.1. General NLMS Filter Model in Double-talk

The a priori and a posteriori error signals of the NLMS adap-
tation process are, respectively, given by [3]:

ε (n) = xT
NL (n)h (n)− xT (n) ĥ (n− 1) + s (n) + w (n) , (7)

e (n) = xT
NL (n)h (n)− xT (n) ĥ (n) + s (n) + w (n) . (8)

Also, NLMS-type adaptive filters follow the update rule:

ĥ (n) = ĥ (n− 1) + μ (n)x (n) ε (n) , ĥ (0) = 0T , (9)

where μ (n) is a positive step-size that controls the trade-off

between convergence rate and adaptation misalignment and

ĥ (0) has L zeros. From (7)–(9), we have

e (n) = ε (n)
[
1− μ (n)xT (n)x (n)

]
. (10)

To derive the general expression for μ (n), we impose echo

cancellation from the a posteriori error, namely:

e (n) = s (n) + w (n) . (11)

Assuming s (n) and w (n) are uncorrelated [3], substituting

(11) into (10) yields

μ (n) =
1

LE [x2 (n)] + δ

[
1−

√
s2 (n) + w2 (n)

ε2 (n)

]
, (12)

where E [·] denotes empirical expectation and δ > 0 is a reg-

ularization parameter added to avoid division by zero.

3.2. Data-driven Generation of the Optimal Step-Size

The normalized misalignment D (n) quantifies the mismatch
between the actual and estimated echo paths in dB:

D (n) = 20 log10

[
‖h (n)− ĥ (n) ‖2

‖h (n) ‖2

]
(13)

= 20 log10

[
‖h (n)− ĥ (n− 1)− μ (n)x (n) e (n) ‖2

‖h (n) ‖2

]
.

The optimal step-size μ∗ (n) is the solution of the constrained

nonlinear optimization problem that minimizes D (n):

μ∗ (n) = argmin
0<μ(n)<2

D (n) , (14)

where the constraint complies with the stability condition of

NLMS-type algorithms [3]. This optimization process is car-

ried out using the active-set optimization algorithm [13]. Ac-

cording to (13), merely the far-end and a priori error signals

are required for μ∗ (n). This allows a non-parametric and

data-driven approach to estimate μ∗ (n).

3.3. Optimal Step-Size Learning Using Neural Networks

Deriving μ∗ (n) in practice is time-consuming and requires

knowledge of the echo path. Thus, a deep NN is built to learn

the relation between available data measurements and μ∗ (n)
during training, and to produce an estimate μ̂∗ (n) in real-

time. According to (12), the step-size involves information

of the far-end, a priori error, and near-end speech and noise

signals. Even though the near-end signals are not available

in practice, they comprise the available microphone signal.
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Thus, we propose a deep NN that receives the far-end, a priori

error, and microphone signals as inputs and maps them to the

corresponding optimal step-size.

We employ a convolutional NN [14] with three input

channels, one for each input signal, and a single-neuron out-

put for the step-size. Each input channel is fed with its cor-

responding waveform signal’s short-time Fourier transform

(STFT) [15] amplitude. The first convolution layer employs a

3 × 3 kernel size, stride of 3, dilation of 5, and padding of 1,

followed by 2-D batch normalization and a ReLU activation

layer, and has 3 input and 16 output channels. A second con-

volution layer follows the same filtering specifications, but

has 16 input and 16 output channels. A fully-connected NN

unit receives the 16 filters and propagates their flatten version

through a 1920 × 512 layer, followed by 1-D batch normal-

ization, a ReLU activation function, and a dropout layer with

a probability of 0.5. Finally, this outcome is concatenated

to a second fully-connected layer with dimensions 512 × 1
that ends with a sigmoid activation function. The objective

function is the �2 distance between the NN prediction and the

optimal step-size μ∗ (n).
In real-time, the NN produces μ̂∗ (n), which is fed to the

succeeding NLMS. This end-to-end system contains 1 Mil-

lion parameters that consume 4 Million floating-point opera-

tions per second (Mflops) and 4.6 Megabytes (MB) of mem-

ory. Thus, its integration on hands-free devices is enabled

with hands-free communication timing constraints met [16],

e.g., using the NDP120 neural processor by SyntiantTM [17].

4. EXPERIMENTAL SETUP

4.1. Database Acquisition

The AEC challenge database [12] is employed in this study.

This corpus is sampled at 16 kHz and includes single-talk and

double-talk periods both with and without echo-path change.

No echo-path change means no movement in the room dur-

ing the recording, and echo-path change means either the

near-end speaker or the device are moving during the record-

ing. The corpus includes 25 h of synthetic data and 75 h

of real clean and noisy data. To account for realistic acous-

tic environments, every far-end signal randomly undergoes

one of 4500 simulated nonlinear modifications, generated

according to the physical behavior of power amplifiers and

loudspeakers in modern hands-free devices [11]. Also, ev-

ery nonlinearly-distorted signal is randomly propagated via

one of 4500 real room impulse responses that are taken from

the corpus in [18] with their first L coefficients. The echo-

to-speech ratio (ESR) and echo-to-noise ratio (ENR) levels

were distributed on [−10, 10] dB and [0, 40] dB, respectively,

and are defined as ESR=10 log10
[‖y (n) ‖22/‖s (n) ‖22] and

ENR=10 log10
[‖y (n) ‖22/‖w (n) ‖22

]
in dB, both calculated

with 50% overlapping time frames of 20 ms.

Table 1: Performance measures for evaluation.

Measure Definition

ERLE 10 log10
‖m(n)‖2

2

‖e(n)‖2
2

∣∣∣
Far-end single-talk

SDR 10 log10
‖s(n)‖2

2

‖e(n)−s(n)‖2
2

∣∣∣
Double-talk

4.2. Data Processing, Training, and Testing

Initially, the 100 h of real and synthetic data are randomly

split to create 80 h of training, 10 h of validation, and 10 h

of test sets. All sets are balanced to prevent biased results,

as detailed in [19]. The training and validation sets are used

for step-size generation via (14) with μ(0) = 3 × 10−5,

L = 150 ms, and ĥ (0) = 0T being a vector of L zeros. The

step-size is generated every 8 ms to avoid unnecessary heavy

computations. An abrupt change in echo path reoccurs every

t seconds, where t ∼ U [4.5, 5.5], resembling real-life sce-

narios. The signals are transformed by the STFT using 16 ms

frames and 8 ms shifts. Past information of 96 ms is concate-

nated before entering the NN. Training the NN is done using

back-propagation through time with a learning rate of 10−4

that decays by 10−6 every 5 epochs, mini-batch size of 32 ms,

and 40 epochs, using Adam optimizer [20]. In real-time, the

NN infers the test set and is not updated. The NLMS receives

the optimal step-size estimate from the NN and continuously

tracks the echo path. The NN may introduce an artificial gain,

which is compensated as in [21]. Training duration was 30
minutes per 1 h of data, and the batch inference time of the

end-to-end system, i.e., the NN and adaptive filter, is 24 ms

on an Intel Core i7-8700K CPU @ 3.7 GHz with two GPUs

of Nvidia GeForce RTX 2080 Ti.

4.3. Performance Measures

To evaluate the performance, the echo return loss enhance-

ment (ERLE) [22] is used. It measures echo reduction be-

tween the degraded and enhanced signals when only a far-end

signal and noise are present. In double-talk, we use the signal-

to-distortion ratio (SDR) [23] that takes echo suppression and

speech distortion into account, and the perceptual evaluation

of speech quality (PESQ) [24]. All measures are calculated

with 50% overlapping frames of 20 ms, and the ERLE and

SDR are defined in Table 1. Convergence times and success

rates are also given. Convergence occurs whenD (n) falls un-

der −10 dB and is successful if that holds for the remaining

echo path. We also report the value of D (n) as given in (13).

5. EXPERIMENTAL RESULTS

Using the entire test set, the DVSS method is compared

against four competing VSS-based methods in [7]– [10],

respectively notated “NNVSS”, “NPVSS”, “SVSS”, and
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Table 2: Performance with no echo-path change.

SDR PESQ ERLE Norm. Mis.

DVSS 3.51±0.4 2.52±0.3 21.3±4.6 -22.8±4.2
NNVSS 2.48±0.9 1.78±0.4 15.5±5.7 -16.8±4.9

NPVSS 2.81±0.8 2.06±0.5 16.8±6.7 -18.1±5.7

SVSS 2.21±0.9 2.03±0.6 15.0±5.5 -16.3±5.0

HVSS 2.86±0.6 2.12±0.4 18.1±6.5 -19.9±6.2

NLMS 2.09±1.1 1.62±0.3 14.2±5.8 -15.5±4.9

Table 3: Performance with echo-path change.

SDR PESQ ERLE Norm. Mis.

DVSS 3.16±0.6 2.31±0.5 16.9±5.7 -18.3±5.2
NNVSS 2.11±1.1 1.75±0.5 11.9±5.5 -11.9±4.9

NPVSS 2.57±1.0 1.99±0.6 15.9±7.7 -17.4±7.1

SVSS 2.03±1.2 1.80±0.7 15.0±6.1 -13.4±5.9

HVSS 2.62±0.9 2.03±0.5 12.7±5.7 -15.1±4.2

NLMS 1.95±1.4 1.56±0.3 10.2±4.1 -11.0±3.0

Table 4: Convergence times [seconds] and success rates [%].

DVSS NNVSS NPVSS SVSS HVSS NLMS

3.4s, 95% 5.9s, 77% 6.6s, 75% 5.6s, 83% 7.0s, 71% 7.9s, 58%

“HVSS”. All methods are implemented with the NLMS fil-

ter, which is also implemented with a constant step-size

of μ = 3× 10−5 as the benchmark, notated “NLMS”. In

Tables 2 and 3, measures are reported by their mean and

standard deviation (std) values in the format mean±std. In

Table 4, the average convergence times and success rates are

reported.

Results with no echo-path change are given in Table 2

and with echo-path change are shown in Table 3, both after

convergence. According to the ERLE measure, the proposed

method achieves leading echo cancellation in single-talk.

The DVSS yields less speech distortion and better speech

quality during double-talk, respectively deduced by the SDR

and PESQ scores. A lower std value is also achieved, which

implies better stability of the DVSS across various setups.

Although scenarios of echo-path change lead to expected

performance decline relative to no echo-path change, our

method outperforms competing methods across all measures

in terms of mean and std. Furthermore, by Table 4, our

method achieves the fastest average re-convergence time and

highest convergence success rate compared to the competi-

tion. Thus, the data-driven DVSS that requires no acoustic

assumptions and is entirely non-parametric, can track the

VSS in practical acoustic conditions with double-talk with

high generalization and robustness, and adjust the VSS most

accurately and rapidly.

Convergence comparison is illustrated in Fig. 2, where

the ESR and ENR continuously vary, and after 5 s, an abrupt
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Fig. 2: Convergence comparison. Abrupt echo-path change

occurs after 5 s, and ESR and ENR values regularly change.

echo-path change occurs. On the other hand, the DVSS-

NLMS filter continues to converge during double-talk and

is only disturbed by the abrupt echo-path change. Also, the

DVSS rapid convergence and re-convergence are demon-

strated. However, all VSS-based competing methods expe-

rience divergence due to double-talk, which degrades their

adaptation process. This supports previous conclusions re-

garding the DVSS superiority in real acoustic conditions,

including double-talk and echo-path changes.

6. CONCLUSIONS

We have introduced a general framework for real-time adap-

tation control using deep learning. We first performed opti-

mal VSS generation that is entirely non-parametric and makes

no acoustic assumptions via minimization of the filter mis-

alignment. Second, the relation of the data and the optimal

VSS was learned via a deep NN. Finally, in real-time, the NN

yields a VSS estimate that is fed into the adaptive filter that

continuously tracks the echo path. Experiments using 100 h

of real and synthetic data showed superior performance of the

DVSS over the competition in AEC using the NLMS filter. In

particular, the DVSS is preferable during double-talk in terms

of echo cancellation and speech distortion, and characterized

by faster convergence following abrupt echo-path changes.
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J. Černockỳ, “Building and evaluation of a real room

impulse response dataset,” IEEE J. of Selected Topics in
Signal Process., vol. 13, no. 4, pp. 863–876, 2019.

[19] A. Ivry, I. Cohen, and B. Berdugo, “Deep residual echo

suppression with a tunable tradeoff between signal dis-

tortion and echo suppression,” in Proc. ICASSP. IEEE,

2021, pp. 126–130.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” in Proc. ICLR, 2015.

[21] A. Ivry, I. Cohen, and B. Berdugo, “Objective metrics to

evaluate residual-echo suppression during double-talk,”

in Proc. WASPAA, 2021.

[22] “ITU-T Rec. G.168: Digital network echo cancellers,”

Feb. 2012.

[23] E. Vincent, R. Gribonval, and C. Févotte, “Performance

measurement in blind audio source separation,” IEEE
Trans. Audio, Speech, and Lang. Process., vol. 14, no.

4, pp. 1462–1469, 2006.

[24] “ITU-T Rec. P.862.2: Wideband extension to recom-

mendation P. 862 for the assessment of wideband tele-

phone networks and speech codecs,” Oct. 2017.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on May 02,2022 at 13:23:19 UTC from IEEE Xplore.  Restrictions apply. 


