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ABSTRACT

Machine learning and digital signal processing have been
extensively used to enhance speech. However, methods to re-
duce early reflections in studio settings are usually related to
the physical characteristics of the room. In this paper, we ad-
dress the problem of early acoustic reflections in television
studios and control rooms, and propose a two-stage method
that exploits the knowledge of a pretrained speech synthesis
generator. First, given a degraded speech signal that includes
the direct sound and early reflections, a U-Net convolutional
neural network is used to attenuate the early reflections in the
spectral domain. Then, a pretrained speech synthesis gen-
erator reconstructs the phase to predict an enhanced speech
signal in the time domain. Qualitative and quantitative exper-
imental results demonstrate excellent studio quality of speech
enhancement.

Index Terms— Acoustic early reflections, speech dere-
verberation, speech synthesis, generative adversarial net-
works.

1. INTRODUCTION

In television (TV) studios, the speech signal captured by the
microphone is degraded by adverse effects such as additive
noise and reverberation. Focusing on reverberation, the sound
reaching the microphone consists of the desired direct sound,
early acoustic reflections (which arrive roughly during the
first 50 ms after the direct sound), and late reflections. It is
known that late reflections cause significant degradation to
the speech quality and intelligibility [1]. Early reflections,
on the other hand, are traditionally considered desirable to
boost speech coloration and intelligibility [2]. A study to
determine the impact of early reflections on speech intelligi-
bility by cochlear implant listeners showed that early reflec-
tions neither enhance or reduce listeners’ speech perception
[3]. However, for monitoring and evaluating audio devices,
e.g., in TV studios, early reflections are considered undesir-
able and cause adverse effects to the sound quality [4].

Designing a studio to reduce early reflections is usu-
ally adequate, but expensive. Walker [5] presented a design

methodology in sound monitoring rooms to control early re-
flections by redirection of early sound energy. This method
was implemented in the design of new studios in BBC’s
broadcasting house. In [6], more design methodologies are
described for the cases of monophonic, stereophonic, and also
multichannel sound. Dunn and Protheroe [7] analyzed the
early reflections in six control rooms and discussed how dif-
ferent room properties, such as room geometry, desk size, and
materials, affect the early reflections. Shlomo and Rafaely
[8, 9] presented a preliminary attempt to blindly estimate
reflection amplitudes using an iterative estimator, based on
maximum likelihood and alternating least squares.

Attenuation of late reflections and speech denoising have
been extensively studied [10, 11, 12, 13], but attenuation of
early reflections using digital signal processing is still a sig-
nificant challenge. In this paper, our objective is to attenuate
the early reflections in TV studios with arbitrary designs, us-
ing digital signal processing and machine learning. In our
setup, the sound in the studio is captured using a fixed mod-
ern microphone array instead of the traditional methods (e.g.,
neck mic or boom mic) [14]. Once captured, the data is pro-
cessed to reduce reverberation and background noise, and an
enhanced speech signal is returned. This enhanced signal
consists of the direct sound and the early reflections. We fo-
cus on generative adversarial network (GAN)-based speech
synthesis generators that generate waveform speech signals
given their Mel-spectrograms [15, 16, 17, 18]. Inspired by re-
cent works in image processing [19], we propose that a gen-
erator, well-trained on clean speech signal synthesis, can be
used as a prior for speech enhancement tasks. We show that
artifacts caused by early reflections are very noticeable in the
signal spectrogram magnitude. Therefore, enhancement in
the time-frequency domain with a convolutional neural net-
work is a natural choice. After the magnitude is enhanced,
the pretrained generator reconstructs the spectrogram phase
to get a studio-quality waveform speech signal.

The remainder of this paper is organized as follows: Sec-
tion 2 presents and formulates the problem. Section 3 de-
scribes the proposed method. Section 4 details the experi-
mental setup and shows the results. Section 5 concludes this
work.
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Fig. 1. Speech spectrograms: (a) Clean speech, (b) Speech
with a single early reflection, α = 1, T = 2 ms [Eq. (2)].

2. PROBLEM FORMULATION

2.1. Model

Let x(t) be a speech source in the discrete-time domain in
an arbitrary room. The signal is captured by a microphone
array, and the observed data is processed using existing meth-
ods to reduce late reflections (e.g., using some variant of
weighted prediction error (WPE) [13]) and to reduce back-
ground noises (e.g., using the minimum variance distortion-
less response (MVDR) beamformer [20]). The output of this
processing is the observed single-channel signal, y(t), which
is modeled as:

y(t) = (h ∗ x)(t) (1)

where h(t) is the “enhanced” room impulse response (RIR),
satisfying T60 ≤ 50 ms (meaning 20 log10 |h(t)| ≤ −60 dB
for t ≥ 50 ms) and ∗ stands for linear convolution. Let X =
STFT(x) = X(t, f) denote the short-time Fourier transform
(STFT) of x(t), and let |XM | = Mel (|X|) = |XM (t, c)|
denote the Mel-spectrogram of x(t). Given the observed de-
graded signal y(t), the goal is to design a system f that returns
an estimate of the source signal f(y(t)) = x̂(t) ≈ x(t).

2.2. Time-Frequency Domain

As shown in Figure 1, early reflections in speech signals cause
notches in certain frequencies, which are very noticeable in
the STFT magnitude (the blue horizontal stripes). To get
some intuition regarding this phenomenon, assume a simple
model of a single early reflection:

hsingle(t) = δ(t) + αδ(t− T ) (2)

where α and T are the amplitude and the delay of the reflec-
tion, respectively. Now, assume α = 1 and x(t) = cos (2πft)
for some frequency f ∈ R+. Then, the degraded signal is

Fig. 2. Proposed system. The module F has trainable weights
while the weights of G are fixed.

given by:

y(t) = cos (2πft) + cos (2πf(t− T ))

= 2 cos (2πfT ) cos (2πf(2t− T )) , .
(3)

Hence, y(t) ≡ 0 if cos (2πfT ) = 0, which is true if f =
1
4T + 1

2T k for some k ∈ Z+. For, e.g., T = 2 ms, we will
observe notches in the frequencies 125, 375, 625, . . . Hz.

3. PROPOSED METHOD

The proposed system is illustrated in Figure 2, which com-
prises two main modules: An attenuation module, F , of early
reflections, and a speech synthesis generator, G. The module
F is a U-Net neural network, and the module G is a pretrained
speech synthesis generator HiFi-GAN [15] that synthesizes
the speech waveform from its Mel-spectrogram. Given a
speech waveform with early reflections, y(t), the network
F is fed with the STFT magnitude |Y (t, f)|. The enhanced
spectrogram |X̂(t, f)| = F (|Y (t, f)|) is transformed to Mel
domain |X̂M | and then fed into the generator G to generate
the enhanced waveform x̂ = G(|X̂M |). In the training phase,
given a reference clean speech signal, x, we acquire the cor-
responding signal y according to (1). The RIR is generated as
follows:

hmulti(t) = δ(t) + n(t)b(t) exp (−αT60
t) (4)

where δ(t) is Kronecker delta and:

n(t) ∼ N (0, 1) (5)

b(t) =

{
1 w.p. 0.05
0 w.p. 0.95 (6)

T60 ∼ U [15, 50] ms (7)

αT60 =
3 log 10

T60
. (8)

Note that the left term of (4) (i.e., the Kronecker delta)
corresponds to the direct speech signal, and the right term
corresponds to the early reflections.

The objective function for optimization is given by:

L(x, y) = Ls (|X|, F (|Y |)) + Ls (|X|, |STFT(x̂)|) (9)
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Table 1. DNSMOS scores (↑) on LJSpeech validation set.
Degraded signals are generated using RIR from Eq. (4).

T60 [ms] Ref. Deg. F G F + G

20 3.85 4.01 3.95 4.02
30 4.11 3.84 4.00 3.95 4.02
40 3.84 3.98 3.94 4.01
50 3.84 3.98 3.96 4.01

where the spectral loss, Ls is defined as:

Ls(|X|, |Y |) =
∑
t,f

||X(t, f)| − |Y (t, f)||

+ λs

∑
t,f

∣∣∣∣log ∣∣∣∣X(t, f)

Y (t, f)

∣∣∣∣∣∣∣∣ . (10)

Note that the first term of (9) is computed with respect
to the output of F , and the second term is computed with
respect to the output of G. During training, the weights of
the pretrained generator are fixed, and the optimization of L
is with respect to the weights of F .

4. EXPERIMENTAL RESULTS

4.1. Data and Implementation Details

To train the module F , we use the LJSpeech dataset [21],
sampled at fs = 22.05 kHz. The network is fed with STFT
magnitudes with 512 frequency bands. Its architecture is U-
Net, including 6 convolution layers with kernel size 5×5 and
stride 2, followed by 6 transposed convolution layers. For G,
we use the official implementation of HiFi-GAN [15] (con-
figuration V1), which generates a speech waveform its Mel
spectrogram with 80 bands, pretrained on LJSpeech dataset
[21]. In every epoch, given a clean speech sample x(t) from
the dataset, we randomly draw hmulti(t) according to (4) and
generate the corresponding y(t). The system is trained for
100 epochs with batch size of 2 using AdamW optimizer [22].
We set λs = 1 in (10) when optimizing the objective function
(9).

4.2. Performance Evaluation

To show the contribution of the system, we compare the
speech quality of 4 waveform signals:

1. Deg. (degraded) – the input signal y(t).

2. F – signal is formed by inverse STFT using the mag-
nitude of X̂(t, f) and the phase of Y (t, f) (denoted as
z(t)).

3. G – signal is formed using only the generator without
F (i.e., the signal G(|YM |)(t)).
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Fig. 3. RIR and estimations: (a) RIR generated according to
(4) with T60 = 40 ms, (b) RIR estimate from the output of
F , (c) RIR estimate from the output of the generator (G), (d)
RIR estimate from the output of the system (F +G).

4. F +G – the output of the system x̂(t).

Table 1 shows the mean DNSMOS score [23], which is
highly correlated with human perception, over the LJSpeech
validation set (a larger score indicates better perceptual
speech quality). As can be seen, F + G achieves the best
score.

To evaluate the system’s performance, we propose to use
the C2 clarity index. Given an RIR h(t), the C2 clarity index
is defined as:

C2(h) = 10 log10

∑τ2
t=0 h

2(t)∑∞
t=τ2+1 h

2(t)
(11)

where τ2 is the timestamp corresponding to 2 ms after the
peak of the direct speech (the Kronecker delta in (4)). Larger
values of C2 imply that reflections later than 2 ms after the
direct speech are insignificant. It is important to mention
that usually, the C50 clarity index (i.e., taking τ50 instead of
τ2) is used for evaluation of dereverberation methods. Still,
since we try to measure the attenuation of reflections that ar-
rive much earlier than 50 ms, it makes more sense to use
the C2 clarity index [7]. Note that the RIR is required for
the calculation of the clarity index. However, because of the
non-linearity of F and G, the relation between the clean sig-
nal x(t) and the reconstructed signal x̂(t) is not necessarily
linear. For proof-of-concept, we approximate the RIR using
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Fig. 4. Clarity index C2 (↑) for different values of T60.

least square regression with L1 regularization (LASSO [24]).
More specifically, given input-output pair {x, y}, we approx-
imate h by solving the optimization problem:

ĥ = argmin
h

∥Xh− y∥22 + λ∥h∥1 (12)

where X is a Toeplitz matrix formed from the signal x(t), and
λ is a hyper-parameter that controls the weight of the regular-
ization. We choose L1 regularization instead of L2 because
we expect h to be sparse. We assume that the length of h
is 60 ms. Figure 3 shows an example of RIR generated ac-
cording to the model in (4), its estimate using (12), and RIR
estimates using the output of the generator G, and the output
of the system F + G. Note that for obtaining RIR estimates
from the outputs of the generator or the system, the Toeplitz
matrix X in (12) is formed from the output signal instead of
x(t) (i.e., we reconstruct the clean speech using G or F +G).
In all cases, we choose λ = 20.

We evaluate the C2 clarity index on LJSpeech validation
set based on the approximation of h in the following way:

• Given a clean speech signal x(t) and a fixed T60 value,
generate 10 RIRs according to the model in (4), the cor-
responding yi(t) (i = 1, . . . , 10) and the corresponding
outputs x̂i for F +G, G(|YM |i) for G, and zi for F .

• Estimate RIRs with respect to the pairs {G(|XM |i), x̂i}
for F +G, {G(|XM |i), G(|YM |i)} for G, and {xi, zi}
for F .

• Calculate C2 and take the mean over i.

• Take the mean over all files in the validation set (150
records).

Results for different T60 values are shown in Figure 4. As
can be seen, F + G achieves the largest clarity index, which
matches the DNSMOS scores in Table 1. Interestingly, the
clarity index of F is approximately constant for different val-
ues of T60. The score of G is better than the score of the de-
graded signals, which indicates that even just reconstructing a
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Fig. 5. Speech spectrograms: (a) Clean speech, (b) degraded
speech (T60 = 40 ms), (c) output of G, (d) output of F +G.

speech waveform using a pretrained generator might improve
the speech quality (Table 1) and reduce early reflections (Fig-
ure 4).

For demonstration, we present typical speech spectro-
grams of the outputs in Figure 5. We see that G enables to
eliminate the high-frequency notches, while F +G enables to
eliminate both the low and high-frequency notches.

5. CONCLUSIONS

We have presented a method for attenuating early acoustic
reflections in TV studios using digital signal processing and
machine learning. Experimental results show that the pro-
posed method reduces early reflections and that algorithmic
solutions might be an alternative for traditional methods to
control early reflections in studios. The method may be ex-
tended to the multichannel case in future work, where spatial
information can be exploited to improve performance. Fur-
thermore, an additional bandwidth extension module may be
explored to get studio-quality speech enhancement sampled
at 48 kHz.
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