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Abstract

In this thesis, we study the problems of acoustic echo cancellation and residual echo
suppression. Acoustic echo is a common problem in full-duplex telecommunication sys-
tems. An acoustic echo is generated when the signal produced by a loudspeaker is
captured by a microphone along with the desired signal. This echo can cause conversa-
tion quality degradation, which poses a problem in many real-life situations, such as a
meeting in which the remote participants’ speech is played in the meeting room by loud-
speakers. Abundant research was conducted to mitigate the acoustic echo problem. In
recent years, acoustic echo cancellers (AECs) have achieved outstanding performance
thanks to deep-learning technology. Nevertheless, several aspects were not studied in
previous research. This thesis aims to fill this gap by studying three aspects: A proper
choice of a linear AEC in a deep-learning-based residual echo suppression system, a
proper integration of a double-talk detector (DTD) with a deep-learning residual echo
suppression model, and residual echo suppression (RES) in the low signal-to-echo ratio
(SER) scenario.

First, we present an echo suppression system that combines a linear AEC with a
deep-complex convolutional recurrent network (DCCRN) for residual echo suppression.
The filter taps of the AEC are adjusted in subbands by using the normalized sign-error
least mean squares (NSLMS). We compare the NSLMS with the normalized least mean
squares (NLMS) and study the combination of each with a deep RES model. We
also study the utilization of a pre-trained deep-learning speech denoising model as an
alternative to a RES model. Results show that the performance of the NSLMS is
superior to that of the NLMS in all settings. With the NSLMS output, the proposed
RES model achieves better performance than the larger, pre-trained speech denoiser
model. Furthermore, the denoiser performs better on the NSLMS output than the
NLMS output, indicating that the residual echo in the NSLMS output is more akin to
noise than speech.

The acoustic echo cancellation problem is especially challenging in low SER scenar-
ios, such as hands-free conversations over mobile phones when the loudspeaker volume
is high. In this thesis, we propose a two-stage deep-learning approach to residual echo
suppression focused on the low SER scenario. The first stage consists of a speech
spectrogram masking model integrated with a DTD. The second stage consists of a
spectrogram refinement model optimized for speech quality by minimizing a perceptual
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evaluation of speech quality (PESQ) related loss function. The proposed integration
of DTD with the masking model outperforms several other configurations based on
previous studies. We conduct an ablation study that shows the contribution of each
part of the proposed system. We evaluate the proposed system in several SERs and
demonstrate its efficiency in the challenging setting of a very low SER. Finally, the
proposed approach outperforms competing methods in several residual echo suppres-
sion metrics. We conclude that the proposed system is well-suited for the task of low
SER residual echo suppression.
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Abbreviations

AEC : Acoustic Echo Canceller
AECMOS : Acoustic Echo Cancellation Mean Opinion Score
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CRN : Convolutional Recurrent Network
DCCRN : Deep Complex Convolutional-Recurrent Network
DFT : Discrete Fourier Transform
DNN : Deep Neural Network
DNS : Deep Noise Suppression
DNSMOS : Deep Noise Suppression Mean Opinion Score
DTD : Double-Talk Detector
DTLN : Dual-Signal Transformation LSTM Network
ELU : Exponential Linear Unit
ENR : Echo-to-Noise Ratio
ERLE : Echo Return Loss Enhancement
FC : Fully-Connected
FCRN : Fully-Convolutional Recurrent Network
GRU : Gated Recurrent Unit
IRM : Ideal Ratio Mask
iSTFT : inverse Short-Time Fourier Transform
LMS : Least Mean Squares
MRI : Magnetic Resonance Imaging
MSE : Mean Squared Error
NLMS : Normalized Least Mean Squares
NSLMS : Normalized Sign-Error Least Mean Squares
PESQ : Perceptual Evaluation of Speech Quality
PReLU : Parametric Rectified Linear Unit
PSF : Phase-Sensitive Filter
ReLU : Rectified Linear Unit
RES : Residual Echo Suppressor
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RT60 : Reverberation Time
RNN : Recurrent Neural Network
RTF : Real-Time Factor
SER : Signal-to-Echo Ratio
SLMS : Sign-Error Least Mean Squares
SNR : Signal-to-Noise Ratio
STFT : Short-Time Fourier Transform
T-F : Time-Frequency
VAD : Voice Activity Detector
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Notations

a(n) : Output signal of the AEC at time-point n

A(f, k) : Spectrogram magnitudes of the AEC’s output signal at
frequency bin f and time bin k

B : Batch size
c(n) : Linear AEC’s filter tap weights vector at time-point n

d(n) : Near-end signal at time-point n

d̃(n) : Estimated near-end signal at time-point n

D(f, k) : Spectrogram magnitudes of the near-end signal at
frequency bin f and time bin k

D̃(f, k) : Spectrogram magnitudes of the estimated near-end signal at
frequency bin f and time bin k

e(n) : Error signal at time-point n

E(f, k) : Spectrogram magnitudes of the error signal at
frequency bin f and time bin k

Fc : Output of a complex LSTM layer
h(t) : Impulse response at time t

H(f, k) :
Log of the ratio between the spectrogram magnitudes of the clean
near-end speech and that of the error signal at frequency bin f

and time bin k

H̃(f, k) : Masking model’s output at frequency bin f and time bin k

Hin/out : Height of a convolution layer’s input/output feature maps
j(t) : Continuous-time input to a linear filter at time t

l : Masking model’s loss function
lDTD : DTD’s loss function
lDTD-farend : The DTD’s far-end speech loss term
lDTD-nearend : The DTD’s near-end speech loss term
lmask : Masking loss function
lMSE : Refinement model’s MSE loss term
lPESQ : Refinement model’s PESQ loss term
LSTMr : Real LSTM layer
LSTMi : Imaginary LSTM layer
M : Number of STFT resolutions in the STFT loss
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m(n) : Microphone signal at time-point n

M(f, k) : Spectrogram magnitudes of the microphone signal at
frequency bin f and time bin k

N : Number of linear AEC’s filter taps
Oc : Output of a complex 2-D convolution layer
P (f, k) : DTD’s output at frequency bin f and time bin k

T : Number of time frames
tinference : The time it takes a model to make an inference
tsignal : Duration of a model’s input signal
v(n) : Noise signal at time-point n

vk : DTD’s ground-truth label at time-point k

v̂k : DTD’s prediction at time-point k

Wr, Wi : Real and imaginary convolution kernels
x(n) : Far-end reference signal at time-point n

X(f, k) : Spectrogram magnitudes of the far-end reference signal at
frequency bin f and time bin k

xN (n) : Far-end reference signal vector of length N at time-point n

Xr, Xi : Real and imaginary parts of a complex features map
y(n) : Echoic loudspeaker signal at time-point n

z(t) : Continuous-time output of a linear filter at time t

α(n) : Step size of the NSLMS algorithm at time-point n

ϵ, ϵ1, ϵ2 : Small constants for numerical stability
λDTD : DTD’s loss weight parameter
λMSE : Refinement model’s MSE loss weight parameter
µ : Step size of the LMS algorithm
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Chapter 1

Introduction

1.1 Background and Motivation

Modern telecommunication systems often suffer speech intelligibility degradation caused
by an acoustic echo. A typical scenario includes two speakers communicating between
a far-end and a near-end point. At the near-end point, a microphone captures both
the near-end speaker’s signal and the acoustic echo of a loudspeaker playing the far-
end signal [1]. When the far-end speaker speaks, he hears the echo of his voice, thus
reducing the quality of the conversation. Therefore, canceling the acoustic echo while
preserving near-end speech quality is desired in any full-duplex communication system.
An illustration of an acoustic echo scenario is depicted in Figure 1.1. Typically, the
acoustic paths include reflections from the walls or other objects. Only direct paths
between the speakers, microphones, and loudspeakers are illustrated for simplification.

Figure 1.1: Illustration of an acoustic echo scenario. Red lines represent the near-end
speaker’s speech and blue lines represent the far-end speaker’s speech.
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Acoustic echo cancellers (AECs) are commonly employed to cancel the echo com-
ponent of the microphone signal. Traditionally, AECs are based on linear adaptive
filters [2]. Linear AECs estimate the acoustic path from the loudspeaker to the mi-
crophone. The estimated filters are applied to the far-end reference signal (i.e. the
near-end loudspeaker’s signal before propagating through the room), resulting in an
estimate of the echo signal as received by the microphone. Then, the estimated echo-
free near-end signal is obtained by subtracting the estimated echo from the microphone
signal.

Linear AECs commonly use the least mean squares (LMS) algorithm [3] and its
normalized version, the normalized LMS (NLMS) [4]. The normalization allows the
step size to be independent of the input signal’s power. Variants of the LMS and
NLMS algorithms are the sign-error LMS (SLMS), and normalized SLMS (NSLMS)
algorithms [5]. In contrast to the NLMS, the NSLMS adjusts the weight for each
filter tap based on the polarity (sign) of the error signal. Several studies have shown
the advantage of the NSLMS over the NLMS. For example, Freire and Douglas [6]
used the NSLMS adaptive filter to cancel geomagnetic background noise in magnetic
anomaly detection systems and demonstrated its benefit over the NLMS. Pathak et
al. [7] utilized the NSLMS adaptive filter to perform speech enhancement in noisy
magnetic resonance imaging (MRI) environments. According to their experiments, the
NSLMS achieves faster convergence than the NLMS, and residual noise produced by
the NSLMS has characteristics of white noise. In contrast, residual noise produced by
the NLMS is more structured. However, due to their linear nature, residual non-linear
components of the echo remain at the output of the linear AECs. In most cases, the
residual echo still interferes and degrades the near-end speech’s quality.

In recent years, deep-learning neural networks (DNNs) achieved unprecedented per-
formance in many fields, e.g., computer vision, natural language processing, audio and
speech processing, and more. Possessing high nonlinear modeling capabilities, DNNs
became a natural choice for nonlinear acoustic echo cancellation. Zhang and Wang [8]
employ a bi-directional long short-term memory (BLSTM) [9] recurrent neural net-
work (RNN) operating in the time-frequency (T-F) domain to capture dependency
between time frames. The model predicts an ideal ratio mask (IRM) [10] applied
to the microphone signal’s spectrogram magnitudes to estimate the near-end signal’s
spectrogram magnitudes. Kim and Chang [11] propose a time-domain U-Net [12] ar-
chitecture with an additional encoder that learns features from the far-end reference
signal. An attention mechanism [13] accentuates the meaningful far-end features for
the U-Net’s encoder. Westhausen and Meyer [14] combine T-F and time-domain pro-
cessing by adapting the dual-signal transformation LSTM network (DTLN) [15] to the
task of acoustic echo cancellation. Although DNN AECs achieve performance superior
to linear AECs and allow for end-to-end training and inference, they are prone to intro-
ducing distortion to the estimated near-end signal, especially when the signal-to-echo
ratio (SER) is low.
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An alternative for end-to-end DNN acoustic echo cancellation is residual echo sup-
pression. While traditional residual echo suppression relies on filter-based techniques
[16,17], recent advances in deep learning have shifted the focus towards neural network-
based approaches. In a typical residual echo suppression setting, a linear AEC is fol-
lowed by a DNN aimed at suppressing the residual echo at the output of the linear
AEC. Linear AECs introduce little distortion to the near-end signal. Their estimation
of the echo and near-end signals provides the residual echo suppressor (RES) with bet-
ter features, allowing for better near-end estimation with smaller model sizes. Carbajal
et al. [18] propose a simple fully-connected architecture that receives the spectrogram
magnitudes of the far-end reference signal and the linear AEC’s outputs and predicts
a phase-sensitive filter (PSF) [19] to recover the near-end signal from the linear AEC’s
error signal. Pfeifenberger and Pernkopf [20] suggest utilizing an LSTM to predict a
T-F gain mask from the log differences between the power of the microphone signal
and the AEC’s echo estimate. Chen et al. [21] propose a time-domain RES based on
the well-known Conv-TasNet architecture [22]. They employ a multi-stream modifica-
tion of the original architecture, where the outputs of the linear AEC are separately
encoded before being fed to the main Conv-TasNet. Fazel et al. [23] propose context-
aware deep acoustic echo cancellation (CAD-AEC), which incorporates a contextual
attention module to predict the near-end signal’s spectrogram magnitudes from the
microphone and linear AEC output signals. Halimeh et al. [24] employ a complex-
valued convolutional recurrent network (CRN) to estimate a complex T-F mask which
is applied to the complex spectrogram of the AEC’s error signal to recover the near-end
signal’s spectrogram. Ivry et al. [25] employ a 2-D U-Net operating on the spectrogram
magnitudes of the linear AEC’s outputs. A custom loss function with a tunable param-
eter allows a dynamic tradeoff between the levels of echo suppression and estimated
signal distortion. Franzen and Fingscheidt [26] propose a 1-D fully convolutional re-
current network (FCRN) operating on discrete Fourier transform (DFT) inputs. An
ablation study is performed to study the effect of different combinations of input signals
on the joint task of residual echo suppression and noise reduction. Although achieving
state-of-the-art residual echo suppression performance, none of the above studies focus
on the challenging scenario of extremely low SER. Low SER may occur in typical real-
life situations, such as a conversation over a mobile phone where the loudspeaker plays
the echo at a high volume.

Under challenging real-life conditions, for example, low SER and changing acous-
tic echo paths, the performance of the linear AEC preceding the RES model has a
significant impact on the overall performance. Hence, investigating the AECs in con-
junction with deep-learning models for RES may be beneficial. Furthermore, the output
of a linear AEC is expected to contain a distorted weaker version of the echo signal
while keeping the near-end signal almost distortionless. Therefore, denoising the lin-
ear AEC’s estimated near-end signal with a designated speech denoiser might suppress
the residual echo while also eliminating other noises, i.e., the speech denoiser may act
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as a RES. Research on deep-learning-based speech enhancement algorithms has seen
significant progress over the last few years, with many models exhibiting excellent per-
formances [27–29]. Speech denoisers are commonly trained on speech data containing
various types of noise where the clean speech utterances are the labels. In the residual
echo suppression setting, the residual echo may sometimes resemble speech, thus the
denoiser could possibly preserve it. Therefore, it is assumed that for a speech denoiser
to achieve good performance as a RES, the AEC must produce residual echo that closely
resembles noise rather than human speech.

In a typical residual echo suppression scenario, one of four situations may occur
at each time point: both speakers are silent, only the far-end speaker speaks, only
the near-end speaker speaks, and double-talk, where both speakers speak at the same
time. When only the near-end speaker speaks, the microphone signal should remain
unchanged to keep the near-end speech distortionless. Ideally, the microphone signal
should be completely canceled when only far-end speech is present to remove any echo
component. The challenging situation is double-talk, where it is desired to cancel the
echo of the far-end speech while keeping the near-end speech distortion to a minimum.
Therefore, it is natural to integrate a double-talk detector (DTD) into the system.
Linear AECs typically employ a DTD to prevent the cancellation of the near-end speech
in double-talk situations [30, 31]. Several studies also integrate double-talk detection
in deep-learning acoustic echo cancellation or residual echo suppression models. Zhang
et al. [32] employ an LSTM, which operates on the spectrogram magnitudes of the
microphone and far-end reference signals, and predicts near-end speech presence via
a binary mask that is applied to the output of the DNN AEC. Zhou and Leng [33]
formulate the problem as a multi-task learning problem where a single DNN learns to
perform residual echo suppression and double-talk detection in tandem. The model
consists of two output branches, the first branch predicts a PSF and acts as a RES,
and the second branch detects double-talk. The RES is conditioned on the DTD’s
predictions by supplying it with features before the classification. Ma et al. [34] propose
to perform double-talk detection with two voice activity detectors (VADs), one for
detecting near-end speech and the other for detecting far-end speech. Features from
several layers of the VADs are fed to a gated recurrent unit (GRU) [35] RNN that
performs residual echo suppression. Ma et al. [36] propose a multi-class classifier that
receives the encoded features of the time-domain microphone and far-end signals and
classifies each time frame independently of the AEC’s predictions. Zhang et al. [37]
also incorporate a VAD as an independent output branch in a residual echo suppression
model. While exhibiting high residual echo performance, their results show that adding
the VAD does not lead to improved objective metrics. The rest of the works mentioned
above do not study the effect of the DTD/VAD on the RES’s performance. Therefore, it
is worth studying the effect of DTD and RES integration configurations on the system’s
performance, especially in the low SER setting where the echo may screen the near-end
speech completely.
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1.2 Main Contributions

This research aims to fill the gaps and address the drawbacks discussed in the previous
section. The research yielded several main contributions:

• An echo suppression system employing NSLMS to perform linear acoustic echo
cancellation and DCCRN [28] to perform residual echo suppression is suggested.
The performance of the system with the NSLMS is superior to that of the same
system employing the commonly-used NLMS. Furthermore, the DCCRN RES
achieves superior performance compared to a speech-denoiser RES, which was
pre-trained on a large corpus with diverse conditions and despite the denoiser
comprising substantially more model parameters.

• The utilization of a speech denoiser to the output of the linear AEC to perform
residual echo suppression and denoising in tandem is evaluated. The combination
of the denoiser with the NSLMS results in a notable performance improvement
compared to using NLMS. The results indicate that the NSLMS output contains
residual echo that resembles noise more closely than speech.

• A novel two-stage residual echo suppression deep-learning system focused on the
challenging low SER scenario is proposed. By integrating a DTD in the first
stage and employing a perceptual speech-quality loss function in the second stage,
the proposed system achieves the highest performance gain in the extremely-low
SER setting. Furthermore, the proposed system achieves the best performance
compared to other RES systems in this challenging setting.

• The integration of the DTD with the DNN is studied and the proposed configura-
tion is compared to several others based on previous research. Results show that
while all other configurations result in minor or no performance improvement,
the proposed configuration achieves notable performance gain.

1.3 Research Overview

This research is focused on residual echo suppression systems based on linear adaptive
AECs and DNN RES. Different aspects of the systems are studied, including the choice
of the AEC, utilization of a pre-trained speech denoiser as an alternative to a designated
RES, integration of a DTD, and an extremely-low SER setting. The first part of the
research focuses on the choice of the linear AEC and its effect on the DNN RES. Two
different linear AECs are studied and compared: one based on the NLMS algorithm
and the other based on the NSLMS algorithm. Although the NLMS is a common
choice in many DNN-based residual echo suppression systems, several studies showed
the superiority of NSLMS over NLMS in other fields [6,7]. The presented results show
that the NSLMS is superior to NLMS in linear acoustic echo cancellation as well. We
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propose a RES based on the DCCRN architecture [28], initially proposed for speech
enhancement and adapted to the residual echo suppression task. The performance
of the RES with the NSLMS is compared to that of the RES with the NLMS. The
performance gap between the two settings is larger than the performance gap between
the NSLMS AEC and NLMS AEC, which indicates that NSLMS is a better choice than
NLMS for RES as well. Furthermore, a pre-trained deep-learning speech denoiser [27]
is utilized as an alternative to a RES. Although the speech denoiser was pre-trained
on a larger corpus with diverse conditions, and despite its model comprising a greater
number of parameters by an order of magnitude, the proposed RES model achieves
better performance. Nevertheless, the performance gap between the denoiser with the
NSLMS and the denoiser with the NLMS is greater than the respective gap in the RES
setting. These results indicate that the NSLMS produces output more akin to noise
than speech. This observation further strengthens the claim that the proper choice of
linear AEC is crucial for the RES’s performance.

The second part of the research focuses on the challenging and little-studied scenario
of extremely-low SER residual echo suppression. We propose a two-stage DNN RES
inspired by [38], where a two-stage approach was taken to tackle the low signal-to-noise
ratio (SNR) speech enhancement task. In the proposed system, the first stage consists
of spectrogram masking. A different architecture than the masking stage of [38] is
employed, consisting of fewer model parameters and exhibiting a shorter algorithmic
delay. Furthermore, a DTD is integrated with the model. An ablation study shows
that the proposed DTD configuration contributes to the performance, contrary to con-
figurations proposed in previous studies, which showed little performance gain. The
second stage of the proposed system consists of spectrogram refinement. In [38], the
second stage is spectrogram inpainting. The mask produced by the first stage is used
to create holes in spectrogram bins that contained speech but were dominated by noise.
The inpainting operation aims to reconstruct the speech components while eliminating
noise. In our experiments, we found that this approach is less suitable for residual
echo suppression since it is more challenging to reconstruct the near-end speech and
completely discard the echoic far-end speech. Instead, the proposed refinement stage
aims to refine the first stage’s outputs rather than create holes and perform inpainting.
The refinement is achieved by minimizing a speech-quality-related loss function. The
proposed system outperforms compared RES systems in the low-SER setting. Further-
more, the system is evaluated in different SERs. Results show that the performance
gain is increased when the SER is decreased, further showing the proposed system’s
efficacy in this challenging scenario.

This research proposes solutions to the common, real-life problems of acoustic echo
cancellation and residual echo suppression. Therefore, all proposed systems are imple-
mented with real-life considerations, such as small model sizes, low memory consump-
tion, and short algorithmic latency. Furthermore, the systems were tested on real-life,
independently-recorded data rather than synthetic data, which is often used to evaluate
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AEC and RES systems.

1.4 Organization

This thesis is organized as follows. Chapter 2 presents the problem formulation, in-
cluding the different notations used throughout the thesis and the related scientific
background. Chapter 3 presents the first set of contributions: the proposed DCCRN
RES with the NSLMS linear AEC, the comparison to NLMS, and the utilization of
the speech denoiser as an alternative to RES. The second set of contributions is pre-
sented in Chapter 4, where the two-stage residual echo suppression system is proposed
to tackle the extremely-low SER problem. A novel DTD integrated with the masking
stage is also proposed and evaluated. Chapter 5 concludes the thesis, summarizes the
main contributions, and proposes future research directions.
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Chapter 2

Preliminaries

This chapter provides background to the different aspects and methods described in
this thesis. In Section 2.1, we formulate the problem of residual echo suppression and
denote the different signals. Section 2.2 provides background to linear adaptive filters
and their application to acoustic echo cancellation. Lastly, we describe the different
performance measures used to evaluate the methods described in this thesis in Section
2.3.

2.1 Problem Formulation

To formulate the problem of residual echo suppression, we denote the different signals
as follows. x(n) denotes the far-end reference signal at time point n. We denote
the echoic loudspeaker signal received by the microphone by y(n) and the near-end
speaker’s signal by d(n). The noise signal is denoted by v(n). The microphone signal
is denoted by m(n) and is given by

m(n) = y(n) + d(n) + v(n) . (2.1)

The inputs to the linear AEC are m(n) and x(n), and its outputs are a(n) and e(n) =
m(n)−a(n), the estimated echo signal y(n) and the error signal, respectively. The filter
tap weights vector is denoted by c(n) = [c1(n), ..., cN (n)]T , where N is the number of
filter taps, and (·)T is the transpose operation. We also denote the far-end reference
signal vector of length N at time n by xN (n) = [x(n), x(n − 1), ..., x(n − N + 1)]T .

The error signal e(n) contains noise and residual echo components. The goal is to
enhance e(n) to obtain a better estimate of d(n) by further suppressing the residual
echo and possibly removing noise. This is done either by a speech denoising model, in
which case it receives e(n) as a single input to be denoised, or by an RES model, in
which case it also receives as inputs x(n), m(n), and a(n). d̃(n) denotes the estimated
near-end speaker’s signal at the entire system’s output. Figure 2.1 depicts the residual
echo suppression setup and the different signals. The following chapters will refer to the
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spectrogram magnitudes of the different signals’ short-time Fourier transform (STFT).
These will be denoted by capital letters of their respective time-domain signal notation,
e.g., X(f, k) is the STFT spectrogram magnitude of x(n), where f and k denote the
frequency-bin and time-bin indices, respectively.

Figure 2.1: Residual echo suppression setup.

2.2 Linear Adaptive AEC

Digital filters are a fundamental part of digital signal processing (DSP). Among the
common tasks of digital filters is signal separation, where a superposition of two signals
is decomposed into two different signals with the help of a reference signal. Linear
filters are filters whose outputs are a linear function of their inputs. In the continuous
time domain, the output of the linear filter z(t) can be mathematically expressed as
the convolution of the input signal j(t) with the filter’s impulse response h(t):

z(t) =
∫ T

0
j(t − τ)h(τ)∂τ (2.2)

Contrary to filters with fixed coefficients, where the coefficients are set in advance
and do not vary over time, adaptive filters allow flexibility when the filter coefficients
that provide the best performance cannot be determined in advance. Figure 2.2 shows
the basic schema of a linear adaptive filter. In the figure, digital signals are considered,
where x(n) is the filter’s input, c(n) is the filter’s coefficients vector of length N , a(n)
is the filter’s output, m(n) is the superposition of the signals to be separated (or the
desired signal in the case of signal reconstruction), and e(n) is the error signal. The
filter’s coefficients are adapted using the error signal according to some optimization
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Figure 2.2: Linear adaptive filter schema.

algorithm. One of the most basic and widely used algorithms is the least-mean squares
(LMS) algorithm, defined in Algorithm 2.1.

Algorithm 2.1 The LMS algorithm
Parameters: µ - step size, N - number of filter coefficients
for n = 0, 1, 2, ... do

c(n) = [c1(n), ..., cN (n)]T
xN (n) = [x(n), x(n − 1), ..., x(n − N + 1)]T
e(n) = m(n) − a(n) = m(n) − cT (n)xN (n)
c(n + 1) = c(n) + 2µe(n)xN (n)

end for

For the purpose of acoustic echo cancellation, linear adaptive filters are used to esti-
mate the echo signal y(n) from the microphone signal m(n) using the far-end reference
signal x(n). The output of the linear AEC, a(n), is the estimate of the echo signal, and
the error signal e(n) = m(n) − a(n) is the estimate of the (noisy) near-end signal.

2.3 Performance Measures

To evaluate the performance of the proposed and compared systems, two scenarios are
considered: far-end only and double-talk. Except for some results presented in Chapter
3, near-end-only periods are not considered for performance evaluation and comparison
since all systems introduce little distortion to the input signal when no echo is present.
Furthermore, since it is a trivial task to determine that the far-end speaker is silent,
during these periods, the microphone signal can be directly passed to the system’s
output. Thus, no distortion will be applied to it.
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During far-end-only periods, we expect the enhanced signal to have as low energy
as possible (ideally, it is completely silent). Therefore, performance is evaluated during
these periods using the echo return loss enhancement (ERLE), which measures the echo
reduction between the microphone signal and the enhanced signal. ERLE is measured
in dB and is defined as

ERLE = 10log10
||m(n)||2

||d̃(n)||2
. (2.3)

ERLE may not always correlate well with human subjective ratings [39]. AEC mean
opinion score (AECMOS) [40] provides a speech quality assessment metric for evalu-
ating echo impairment that overcomes the drawbacks of conventional methods. AEC-
MOS is a DNN trained to directly predict subjective ratings for echo impairment using
ground-truth human ratings of more than 148 hours of data. The model predicts two
scores in the range [1, 5], one for echo impairment (AECMOS-echo) and the other for
other degradations (AECMOS-degradations). The model distinguishes between three
scenarios: near-end single-talk, far-end single-talk, and double-talk. In the far-end
single-talk case, only AECMOS-echo is considered. AECMOS is used to evaluate per-
formance in Chapter 4.

We aim to suppress the residual echo during double-talk periods while maintaining
near-end speech quality. During these periods, performance is evaluated using three
different measures. The first measure is perceptual evaluation of speech quality (PESQ)
[41]. PESQ is an intrusive speech quality metric based on an algorithm designed to
approximate a subjective evaluation of a degraded audio sample. PESQ score range is
[−0.5, 4, 5], where a higher score indicates better speech quality. However, like ERLE,
PESQ does not always correlate well with subjective human ratings. Therefore, the
second performance measure, used to evaluate performance in Chapter 3, is deep noise-
suppression mean opinion score (DNSMOS) [42]. DNSMOS is a perceptual objective
speech quality metric that was initially developed to evaluate noise suppressors and does
not require a clean reference signal. Similarly to AECMOS, DNSMOS is a DNN trained
to predict subjective ratings of noise suppressors. The third performance measure,
used to evaluate performance in Chapter 4, is AECMOS-echo which measures the
echo reduction during double-talk periods. We do not use AECMOS-degradations for
performance evaluation for two reasons: (i) we focus on the low SER scenario without
including intense noise or distortions which may cause additional degradations, and
(ii) as we show in the results, AECMOS-degradations fails to capture the true residual
echo suppression performance in the low SER case.

Finally, although not performance measures, we formally define SER and echo-to-
noise ratio (ENR). SER is measured in double-talk periods and used to measure the
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near-end signal’s energy relative to the echo signal’s energy. SER is expressed in dB as

SER = 10log10
||d||2

||y||2
. (2.4)

ENR is also expressed in dB and is measured during far-end-only periods. ENR is
defined as

ENR = 10log10
||y||2

||v||2
. (2.5)
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Chapter 3

Acoustic Echo Cancellation with
the Normalized Sign-Error Least
Mean Squares Algorithm and
Deep Residual Echo Suppression

This chapter presents an echo suppression system that combines a linear AEC with
the NSLMS algorithm with a deep-complex convolutional recurrent network (DCCRN)
for residual echo suppression. The main focus of the research in this chapter is the
utilization of the NSLMS algorithm for acoustic echo cancellation and its effect on
the performance of RES. Two alternatives are considered for RES: the proposed deep-
learning model and a pre-trained speech enhancement model. In Section 3.1, we present
the different components of the systems: the weights update equations of the NSLMS
and NLMS algorithms, the proposed RES, and the pre-trained speech enhancement
model. Details regarding the implementation, training procedures, and data, are given
in Section 3.2. We provide experimental results and a comparison between the different
systems and conditions in Section 3.3. The chapter is summarized in Section 3.4.

3.1 System Components

An RES system comprises a linear AEC and an RES model. Two linear AECs are
being compared: NSLMS and NLMS. For RES, two alternatives are considered: the
proposed RES model and a pre-trained speech-denoising model.

3.1.1 Linear Acoustic Echo Cancellers

For linear acoustic echo cancellation, we employ an AEC with the NSLMS algorithm.
The algorithm operates in the subband domain by transforming the signals using uni-
form single-sideband filter banks [43, Section 7.6]. The filters’ tap weights update
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equation for each subband is given by

c(n + 1) = c(n) + α(n)sgn(e(n))xN (n)
||xN (n)||2

(3.1)

where α(n) is the step size, and sgn(·) is the signum function. The performance of
NSLMS is compared to that of NLMS, for which the tap weights update equation is
given by

c(n + 1) = c(n) + α(n)e(n)xN (n)
||xN (n)||2

. (3.2)

The normalization factor allows the steady-state error of the AEC to be independent
of the far-end signal power [44].

3.1.2 Residual Echo Suppression Model

For residual echo suppression, we adopt the DCCRN [28] architecture, which employs
a complex convolutional encoder-decoder structure and a complex LSTM. The model
was originally developed for speech enhancement in the time-frequency domain. It
estimates a complex ratio mask (CRM) applied to the input signal’s short-time Fourier
transform (STFT). For the purpose of residual echo suppression, we adapt the model
to have 4 input channels instead of one and feed it with all available signals: e(n),
a(n), x(n), and m(n). The estimated CRM is applied to the STFT of the error signal,
E(f, k). Fig. 3.1 depicts the model architecture. The encoder and decoder branches

Figure 3.1: Residual echo suppression model architecture.

of the network are symmetrical, where the outputs of each encoder block are used as
the inputs of the next encoder block as well as additional inputs to the decoder block
of the same level. These connections between the different encoder and decoder blocks
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are termed skip connections. Skip connections have two advantages: they provide an
alternative path for the gradient during back-propagation, which is beneficial for model
convergence, and they allow re-using of features from the encoder in the decoder. Each
encoder/decoder block is comprised of a complex 2-D convolution layer, a complex
batch-normalization layer, and a real PReLU activation function, as depicted in Figure
3.2. A complex 2-D convolution layer is comprised of two real 2-D convolution layers,

Figure 3.2: Structure of a complex convolution block. The input features map, consist-
ing of real and imaginary parts, is fed to a complex 2-D convolution layer, the outputs
of which are fed to a complex 2-D batch normalization layer. A PReLU activation
function provides the block’s output.

each operating on both the real and imaginary parts of its input. The output of a
complex 2-D convolution layer, denoted by Oc, is formulated as

Oc = (Xr ∗ Wr − Xi ∗ Wi) + j(Xr ∗ Wi + Xi ∗ Wr) , (3.3)

where Xr, Xi are the real and imaginary parts of the input, respectively, Wr, Wi are
the real and imaginary convolution kernels, respectively, and ∗ is the convolution op-
eration. We note that the complex convolution was implemented this way since, at the
time of developing this model, the framework used (PyTorch) did not support convo-
lution with complex numbers. Support was added since then, although we expect that
the performance of a single convolution layer with double the number of channels is
comparable to the performance of the implementation used in this thesis.

Similar to the complex 2-D convolution layer, the complex LSTM layer is comprised
of two real LSTM layers, denoted by LSTMr and LSTMi. The output of the complex
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LSTM, denoted by Fc, is formulated as

Fc = (LSTMr(Xr) − LSTMi(Xi)) + j(LSTMi(Xr) + LSTMr(Xi)) . (3.4)

Since a clean near-end signal is unavailable when training with real, recorded data,
the training target is the noisy near-end signal d(n) + v(n). As a training objective, we
use the waveform ℓ1 loss, combined with the multi-resolution STFT magnitude loss,
adopted from [27]. For an estimated signal ỹ and its ground-truth y, the loss is defined
as

Loss = 1
T

[||y − ỹ||1 +
M∑

i=1
L(i)

mag(y, ỹ)] (3.5)

L(i)
mag(y, ỹ) = 1

T
||log|STFT(y)| − log|STFT(ỹ)|||1 (3.6)

where T is the number of time steps, || · ||1 is the ℓ1 norm, M is the number of STFT
resolutions, and i is the resolution index.

3.1.3 Speech Denoising Model

As an alternative to the RES model, we utilize an off-the-shelf, pre-trained speech-
denoising deep-learning model [27] which accepts a single input e(n) and outputs d̃(n).
The model operates in the time domain, and similarly to DCCRN, it employs a convo-
lutional encoder-decoder structure and an LSTM between the encoder and the decoder.
The model is pre-trained on the Valentini dataset [45] and the INTERSPEECH 2020
deep noise suppression (DNS) challenge dataset [46]. The model is subsequently fine-
tuned with the same training data used for training the RES models, once with the
NSLMS outputs and once with the NLMS outputs. The loss function that is minimized
is given in (3.5).

3.2 Experimental Setup

3.2.1 Datasets

Two datasets were employed for training the different models: the ICASSP 2021 AEC
challenge synthetic dataset [47] and an independently recorded dataset. The indepen-
dent recordings were taken to train and test the systems in real-life conditions with
low SERs. Some variations in recording conditions include different near-end source
positions and distances from the microphone, echo-path changes, and different room
sizes with varying reverberation times. The dataset was created as follows. 5.5 hours of
speech from the TIMIT [48] corpus and 5.5 hours of speech from the LibriSpeech [49]
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corpus were used in the recordings. Double-talk utterances were generated with an
average overlap of 90% and contained two different speakers. The generated dataset
contains an equal amount of female and male speakers. To simulate a low SER scenario,
such as a conversation over a mobile phone where the loudspeaker plays the far-end
signal with high volume, Spider MT503TM or Quattro MT301TM speakerphones were
employed, in which the microphone and loudspeaker are enclosed within a distance of
5 cm. In order to introduce echo path changes, in some of the recordings, the echo was
played by a Logitech type Z120TM loudspeaker. The loudspeaker was moved 1, 1.5, or
2 meters away from the microphone during recordings. In order to simulate near-end
speech, mouth simulator type 4227-ATM of Bruel&Kjaer was employed to generate the
near-end signal. Three different positions were used for the mouth simulator, either at
1, 1.5, or 2 meters from the microphone. Additional variations in recording conditions
include 4 different room sizes (between 3×3×2.5 m3 and 5×5×4 m3) and different re-
verberation times (RT60), which vary between 0.3 and 0.6 s. Further details concerning
the recordings can be found in [25]. The training data SER is distributed on [−24, 18]
dB, and the test data SER is distributed on [−18, 5] dB. Test data speakers are unique
and not used in the training set.

The ICASSP 2021 AEC challenge synthetic dataset was used to augment the train-
ing data. About 27.7 hours of data were generated, with different scenarios including
near-end only, far-end only, double-talk, with/without near-end noise, and likewise for
far-end. In addition, several nonlinear distortions were applied, with different SERs
and signal-to-noise ratios. Further details regarding the dataset can be found in [47].

3.2.2 Implementation details

Before being fed to the linear AECs, the input signals, with a sampling rate of 16 kHz,
are transformed using uniform 32-band single-sideband filter banks [43, Section 7.6].
Both AECs comprise filters of 150 taps in each subband (equivalent to time-domain
filters of 150 ms length with 2400 taps).

For the RES model, all input signals are transformed to the time-frequency domain
with a 512-point STFT, resulting in 257 frequency bins. The STFT window length
is 25 ms, and the hop length is 6.25 ms. The number of convolution kernels for the
different encoder layers is [16, 32, 64, 128, 256, 256]. The LSTM has 2 layers with a 128
hidden size. The model comprises 2.07 M parameters. Training optimization is done
with the Adam optimizer [50] and an initial learning rate of 5e−4. The learning rate is
decreased by a factor of 2 if there was no validation loss improvement for 3 consecutive
epochs. Mini-batch size is 16, and the training continues for a maximum number of
100 epochs, where early-stopping is applied if no validation loss improvement occurs
for 10 consecutive epochs.

The denoiser was pre-trained using the Valentini dataset [45] and the INTER-
SPEECH 2020 DNS challenge dataset [46]. The model comprises 18.87 M parameters.
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Table 3.1: Performance comparison of the different systems. FE stands for far-end
only, NE stands for near-end only, and DT stands for double-talk.

ERLE DNSMOS PESQ
FE DT+NE DT DT+NE DT

NLMS 16.60 2.81 2.62 3.33 2.42
NSLMS 21.17 2.86 2.71 3.66 2.98

NLMS+
Denoiser 32.63 2.72 2.44 3.23 2.32

NSLMS+
Denoiser 39.44 2.84 2.65 3.63 3.13

NLMS+
RES 38.55 2.76 2.46 3.34 2.53

NSLMS+
RES 40.34 2.84 2.64 3.70 3.11

For a fair comparison with the RES model, we employ the causal version of the de-
noiser. For both linear AECs, the model is fine-tuned using the same data used to
train the RES model. Training continues for 20 epochs with a learning rate of 3e−4

using the Adam optimizer [50]. Further details regarding the model architecture can
be found in [27].

3.3 Experimental results

Table 3.1 shows the different methods’ performance on the test set: the linear AECs
(NLMS and NSLMS), the denoiser [27] operating on the outputs of each of the linear
AECs (NLMS+Denoiser and NSLMS+Denoiser), and the RES model combined with
each of the linear AECs (NLMS+RES and NSLMS+RES). As seen from the table,
NSLMS achieves superior results over NLMS both in the cancellation of far-end echo
when only the far-end signal is present (as indicated by ERLE) and in preserving near-
end speech quality when the near-end signal is present (as indicated by DNSMOS and
PESQ). We differentiate PESQ and DNSMOS for the double-talk-only scenario from
the respective results when also including the near-end-only scenario. As expected,
there is a degradation in results in the double-talk scenario for both linear AECs. The
NLMS PESQ degrades by 0.91 while the NSLMS PESQ degrades by a smaller amount
of 0.68 - further showing the superiority of NSLMS AEC over NLMS AEC in double-
talk scenarios. NSLMS achieves superior results over NLMS in the denoiser setting and
the RES setting as well.

The NSLMS+RES system achieves better residual echo suppression capabilities
than the NSLMS+Denoiser system, as seen from the 0.9 decibel gap in ERLE. The
near-end speech quality of both systems is on-par, as seen from the DNSMOS and PESQ
scores. When taking these measures in double-talk scenarios, the denoiser system has a
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negligible advantage over RES. When including near-end-only scenarios, both systems
achieve identical DNSMOS, and the RES system achieves a higher PESQ score. When
comparing the two systems to the baseline NSLMS linear AEC, it can be seen that while
both systems achieve improved PESQ over the baseline in double-talk-only scenarios,
the denoiser sees degradation in PESQ in near-end-only scenarios. In contrast, the
RES system improves PESQ compared to the baseline. These results show the efficacy
of the proposed RES model, as it achieves better echo suppression and on-par near-end
speech quality with the denoiser while requiring 10 times fewer parameters than the
denoiser model, which was also pre-trained on a large corpus with diverse speakers and
noises.

When comparing the performance of both RES systems, it can be seen from the
table that NSLMS+RES is favorable over NLMS+RES. The gap in ERLE between the
two systems is smaller than the gap in ERLE between the respective linear AECs out-
puts. Both systems see degradation in DNSMOS compared to their respective baseline
DNSMOS, but the NSLMS+RES degradation is smaller than that of NLMS+RES.
Both RES systems achieve improved near-end speech quality compared to the base-
line linear AECs as measured by PESQ, and the improvement in the NSLMS setting
is more significant than that in the NLMS setting by a small margin. Overall, both
NLMS and NSLMS perform well when combined with the proposed RES model, where
NSLMS+RES shows superior results over NLMS+RES - both in all reported measures
and the near-end speech quality gap compared to the linear AEC.

Denoising the output error signal e(n) of the linear AECs results in a significant
gap in performance between NSLMS and NLMS compared to the gap in performance
in the RES setting. The NSLMS+Denoiser system achieves ERLE that is higher by
6.81 decibels than the NLMS+Denoiser system. This ERLE gap is more significant
than the respective ERLE gap in the linear AEC and the RES settings. It is due to
the NLMS output residual echo, which is more structured and less akin to noise than
the residual echo in the output of NSLMS, as was suggested in [7]. This results in
the denoiser being unable to cancel some of the residual echoes that resemble human
speech more closely than noise. Significant differences are also observed in PESQ scores.
While NSLMS+Denoiser achieves improved double-talk scenario PESQ compared to
the baseline linear AEC, NLMS+Denoiser sees degradation in PESQ compared to the
baseline. This result further strengthens the claim that NSLMS outputs residual echo
that more resembles noise than the residual echo in the NLMS output - the denoiser is
better able to suppress the residual echo and preserve the near-end speech in the NSLMS
setting. In contrast, in the NLMS setting, it identifies some of the residual echoes as
speech and cannot distinguish them from the near-end speech. When measuring PESQ
in the near-end only scenario as well, the gap between NSLMS+Denoiser PESQ and
NLMS+Denoiser PESQ is smaller. This further shows that the gap in performance
between the two is mainly due to the denoiser being better able to suppress the far-
end echo in the NSLMS setting. The above results and observations show that when
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(a) PESQ in double-talk
only scenario

(b) ERLE in far-end
only scenario

Figure 3.3: Comparison of the linear AECs with or without RES.

employing an off-the-shelf speech denoising model to the task of RES, NSLMS is better
suited to the preceding task of linear acoustic echo cancellation than NLMS.

Next, we compare the performance of NSLMS and NLMS as a baseline AEC as well
as combined with the proposed RES model for different SERs and ENRs. Figure 3.3(a)
shows the PESQ scores for different values of SER in the double-talk scenario. NSLMS
achieves superior PESQ over NLMS for all SERs, both for AEC and RES. Furthermore,
when the SER is low, NSLMS+RES achieves improved PESQ over the baseline NSLMS
AEC, while NLMS+RES never surpasses the baseline PESQ. Figure 3.3(b) shows ERLE
for different values of ENR when only far-end speech is present. NSLMS achieves
superior ERLE over NLMS for all ENRs, both in the AEC and the RES settings. For
the RES systems, it can be observed that the performance gap is more significant for
lower ENRs.

3.4 Summary

In this chapter, we have presented an echo suppression system based on the NSLMS-
AEC and the DCCRN speech enhancement model. We conducted experiments in chal-
lenging real-life conditions with low SER.We compared the performance of the proposed
system to the performance of a pre-trained speech-denoising model operating on the
error signal at the output of the linear AEC and fine-tuned with the same training data.
Results show that although the speech denoising model was pre-trained on a large cor-
pus with diverse speakers and conditions and is 10 times larger concerning the number
of parameters, the proposed RES model achieves better residual echo suppression capa-
bilities and on-par near-end speech quality. We also compared the performances of all
the systems using NSLMS-AEC and NLMS-AEC. Results show that NSLMS achieves
superior results over NLMS in all settings and for a wide range of SER and ENR val-
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ues. Notably, the results support the claim that the NSLMS produces a residual echo
that is less structured than the output produced by the NLMS, as observed from the
denoiser performance gap between the two. Therefore, when the complexity of the
model is not an important consideration, fine-tuning a readily available denoiser could
be a reasonable alternative to creating a new RES model. However, the choice of linear
AEC becomes more critical, and NSLMS should be preferred.

29



30



Chapter 4

Double-talk Detection-aided
Residual Echo Suppression via
Spectrogram Masking and
Refinement

This chapter presents a two-stage residual echo suppression system that focuses on the
low SER scenario. The system employs the NSLMS linear AEC discussed in Chapter
3. The first stage of the RES includes spectrogram masking and double-talk detection.
The second stage performs spectrogram refinement. In Section 4.1, we present the
spectrogram masking and double-talk detection model. In Section 4.2, we present the
spectrogram refinement model. Section 4.3 discusses the data used for training and
evaluation and the models’ training procedures. Results are presented and discussed
in Section 4.4. Section 4.5 summarizes this chapter.

4.1 Masking and Double-Talk Detection

The spectrogram masking model aims to perform a significant portion of the residual
echo suppression. The greatest challenge in residual echo suppression is suppressing
the echo during double-talk periods while reducing the near-end speech distortion.
Therefore, the model may benefit from optimization for double-talk detection in tandem
with residual echo suppression.

In the masking stage, we employ the U-Net architecture [12]. This architecture
differs from the one in [38], where the architecture comprises convolutional blocks con-
sisting of residual connections, requiring more model parameters and resulting in a
longer inference time than the U-Net architecture while achieving similar performance.
U-Net has a fully-convolutional encoder-decoder structure with skip connections be-
tween levels of the encoder and the decoder. The proposed model is a concatenation of

31



two U-Nets. The first U-Net performs double-talk detection and is also used to learn a
feature representation from the double-talk predictions and the input signals used for
the masking task. The second U-Net receives the outputs of the first U-Net and all
input signals and predicts a spectrogram ratio mask.

The first U-Net’s input is the log of the input signals X(f, k), A(f, k), M(f, k),
and E(f, k), concatenated along the channel dimension. The encoder comprises down-
sampling convolution blocks (referred to as ”down-blocks” from here on), where each
block consists of a 2-D convolution layer, instance normalization layer [51], and leaky
rectified linear unit (leaky ReLU) [52] activation function. The convolution window
stride is 2 along the frequency dimension and 1 along the time dimension - effectively
down-sampling the inputs along the frequency dimension while preserving the time
dimension. The output of the encoder is fed to a uni-directional GRU, which learns
time dependency between the different frames. The GRU’s output has two purposes
- it is used both as features utilized by a classifier that predicts double-talk for each
time frame and as inputs to the decoder, which learns a representation from the DTD’s
features. We frame the double-talk detection task as a binary multi-label classification
task, where each time frame is labeled as either containing near-end speech or not, as
well as either containing far-end speech or not. We empirically found that this approach
leads to better classification performance than the more common approach of multi-
class classification, where each time frame is assigned a single label (most commonly,
the labels are: silence, near-end speech only, far-end speech only, or double-talk). To
classify each time frame, the outputs of the GRU are fed to a fully-connected layer
responsible for reducing the feature dimension (while preserving the time dimension as
we want to classify each time frame) to 2, which corresponds to the two possible labels.

The features learned by the encoder for double-talk detection are employed to assist
the task of learning a spectrogram mask. Instead of directly feeding the masking U-Net
with the encoder’s features, the decoder learns a feature representation. The decoder
comprises up-blocks similar to down-blocks, except that the inputs are first up-sampled
via nearest-neighbor up-sampling with a factor of 2 along the frequency dimension and
1 along the time dimension. The up-sampled inputs are concatenated along the channel
dimension with the outputs of the matching level of the encoder. The output of the
decoder, P (f, k), has a single channel and is of the same frequency and time dimensions
as the input signals. To learn a spectrogram mask, an additional U-Net is concatenated
to the first U-Net. This U-Net accepts as inputs the log of all input signals X(f, k),
A(f, k), M(f, k), and E(f, k), as well as the output of the first U-Net P (f, k), resulting
in 5 input channels. The second U-Net’s structure is similar to that of the first U-Net
with a few exceptions - the down-sampling (as well as the up-sampling) factor is 2 for
both frequency and time dimensions, and the last decoder block contains neither an
activation function nor a normalization layer. The model’s output, denoted by Ĥ(f, k),
consists of one channel and has the same frequency and time dimensions as the input
signals. The entire DTD and masking model’s architecture is depicted in Figure 4.1.
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Figure 4.1: Structure of the double-talk detector (DTD) and masking model architec-
ture. FC stands for fully connected.

As previously mentioned, we empirically found that the DTD performs better when
trained to detect near-end and far-end speech separately for each time frame. Therefore,
the DTD’s training target for each utterance is a tensor of shape (B, 2, T ), where B

is the batch size, and T is the number of time frames. The first and second rows of
the second dimension represent the presence of near-end speech and far-end speech,
respectively, where 1 indicates the presence of speech and 0 represents its absence. The
training target of the masking model is the log of the ratio between the spectrogram
magnitudes of the clean near-end speech and that of the error signal, denoted by H(f, k)
and given by

H(f, k) = log10( D(f, k)
E(f, k) + ϵ1

+ ϵ2) , (4.1)

where ϵ1 and ϵ2 are small constants for numerical stability. The loss function used for
the double-talk detection task is denoted by lDTD and given by

lDTD = 1
2

(lDTD-nearend + lDTD-farend) , (4.2)

where lDTD-nearend and lDTD-farend are binary cross entropy (BCE) loss terms for near-
end and far-end speech detection, respectively. lDTD-nearend is given by

lDTD-nearend = − 1
T

T∑
k=1

[vk · log σ(v̂k) + (1 − vk) · log(1 − σ(v̂k))] , (4.3)

where vk is the ground-truth label for time frame k, v̂k is the predicted label for time
frame k, and σ(·) is the sigmoid function. lDTD-farend is similarly defined. For the
masking task, we use the mean squared error (MSE) loss between the labels and the
outputs, denoted by lmask and given by

lmask = 1
n

∑
f

∑
k

(H(f, k) − Ĥ(f, k))2 , (4.4)
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where n is the total number of spectrogram bins. The overall loss function used to
optimize the model is a weighted sum of the two loss functions with a weight parameter
λDTD applied to lDTD:

l = λDTD lDTD + lmask . (4.5)

4.2 Spectrogram Refinement

The spectrogram masking approach alone may not be sufficient to both suppress the
residual echo and preserve the near-end speech’s quality. It is especially true in the low
SER scenario, where the echo signal’s energy is considerably higher than the near-end
signal’s. In this case, spectrogram masking can suppress the residual echo to a large de-
gree, at the cost of degrading the near-end speech quality. In the most severe cases, the
masking operation completely cancels parts of the near-end speech during double-talk.
In [38], following the masking stage, the speech is further enhanced by a spectrogram
inpainting stage. The inpainting operation aims to reconstruct spectrogram bins con-
taining speech canceled in the masking stage. In the residual echo suppression case,
near-end speech is screened by far-end echoic speech rather than noise. The screening
renders the reconstruction operation more challenging as it may be difficult to distin-
guish the speech components of the near-end signal from those of the far-end signal.
Instead, we frame this stage as spectrogram refinement, where the mask learned by the
masking model is used as an additional feature along with the input signals rather than
to mask the signal from which we want to obtain the desired near-end speech.

For spectrogram refinement, we adopt the architecture used in [38]. In our exper-
iments, we found that when using the U-Net architecture for this stage, the model’s
performance was almost identical to the performance of the masking model. Since the
masking model achieves good performance on its own, and due to the skip connection
between the inputs and the decoder outputs, the refinement model with the U-Net
architecture achieved negligible performance gain compared to the masking model. In-
stead, we employ a fully-convolutional architecture consisting of residual connection
blocks, as proposed in [38].

The input to the model is the log of the input signals X(f, k), A(f, k), M(f, k), and
E(f, k), the output of the masking model Ĥ(f, k), and the double-talk features P (f, k),
concatenated along the channel dimension. The input is first fed to two consecutive
down-blocks, similar to the encoder blocks in the masking stage. The inputs are down-
sampled by a factor of 2 along both time and frequency dimensions. Instead of leaky
ReLU, we employ an exponential linear unit (ELU) activation function [53] as proposed
in [38]. Following the down-blocks is a series of identical residual blocks. A residual
block comprises two consecutive down-blocks with a convolution kernel stride (1, 1).
The output of the second convolution block is summed element-wise with the input
to the residual block. Following the last residual block are two up-blocks with an up-
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sampling factor of 2 along both time and frequency dimensions. The output layer is
a 2-D convolution layer with one output channel. Figure 4.2 depicts the refinement
model’s architecture and the residual blocks.

Figure 4.2: Structure of refinement model architecture and residual blocks. (a) Refine-
ment model architecture. (b) Structure of the residual blocks.

We frame the refinement stage as a regression task, where the model learns to
predict the near-end spectrogram magnitudes directly. Therefore, the training target
is the log of the near-end signal’s spectrogram magnitudes log10(D(f, k) + ϵ), where ϵ

is a small constant for numerical stability. Inverting the log operation and applying
inverse STFT (iSTFT) using the error signal’s phase, we obtain the time-domain near-
end signal d(n). Since a significant portion of the residual echo was suppressed in the
masking stage, the main goal of the refinement stage is to improve the estimated near-
end speech quality. We achieve this goal by optimizing the model for speech quality
measured by PESQ. Since the PESQ function is non-differentiable, it cannot be used
as a loss function in gradient-descent-based algorithms. The PMSQE loss function [54]
aims to approximate PESQ with a differentiable function. PMSQE, unlike MSE, takes
into account perceptual-related features of the predicted signal by incorporating two
disturbance terms inspired by the PESQ algorithm. We denote the PMSQE loss term
by lPESQ (for brevity, we do not formulate the loss function and its different components
here - the reader is referred to [54] for additional details). We empirically found that
minimizing the PMSQE loss function alone does not achieve the desired results since,
although the loss value converges, the different evaluation metrics diverge. Therefore,
we add a regularizing MSE loss term defined as

lMSE = 1
n

∑
f

∑
k

(log10(D̃(f, k) + ϵ) − log10(D(f, k) + ϵ))2 . (4.6)

The complete loss function minimized during the refinement model training is given by

l = lPESQ + λMSElMSE , (4.7)

where λMSE is a weight parameter.
The following tables detail the specifications of the different layers of the two stages’

models.
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Table 4.1: Double-talk detection and spectrogram masking model specifications. Mod-
ule names with an asterisk are model outputs. For down-blocks and up-blocks, the
numbers in the Details column represent input channels, output channels, kernel size,
and stride of the convolution window or up-sampling factor, respectively. For the GRU
layer, the Details column’s numbers represent hidden-layer size and the number of lay-
ers, respectively. For fully-connected (FC) layers, the number represents the number
of neurons. More than one module in the Input column means concatenation of the
modules in parentheses.

Module Details Inst. norm Activation Input

Down-block 1 (4, 32, 3, (2, 1))
√

Leaky ReLU Model’s input
Down-block 2 (32, 64, 3, (2, 1))

√
Leaky ReLU Down-block 1

Down-block 3 (64, 128, 3, (2, 1))
√

Leaky ReLU Down-block 2
Down-block 4 (128, 256, 3, (2, 1))

√
Leaky ReLU Down-block 3

GRU (128, 1) - - Down-block 4
FC 1* 2 - Sigmoid GRU
FC 2 2816 - Leaky ReLU GRU

Up-block 1 (384, 128, 3, (2, 1))
√

Leaky ReLU (FC2,
Down-block 3)

Up-block 2 (192, 64, 3, (2, 1))
√

Leaky ReLU (Up-block 1,
Down-block 2)

Up-block 3 (96, 32, 3, (2, 1))
√

Leaky ReLU (Up-block 2,
Down-block 1)

Up-block 4* (36, 1, 3, (2, 1))
√

Leaky ReLU (Up-block 3,
Model’s input)

Down-block 5 (5, 32, 3, (2, 2))
√

Leaky ReLU (Up-block 4,
Model’s input)

Down-block 6 (32, 64, 3, (2, 2))
√

Leaky ReLU Down-block 5
Down-block 7 (64, 128, 3, (2, 2))

√
Leaky ReLU Down-block 6

Down-block 8 (128, 256, 3, (2, 2))
√

Leaky ReLU Down-block 7
Up-block 5 (384, 128, 3, (2, 2))

√
Leaky ReLU (Down-block

8, Down-block
7)

Up-block 6 (192, 64, 3, (2, 2))
√

Leaky ReLU (Up-block 5,
Down-block 6)

Up-block 7 (96, 32, 3, (2, 2))
√

Leaky ReLU (Up-block 6,
Down-block 5)

Up-block 8* (37, 1, 3, (2, 2)) - - (Up-block 7,
Up-block 4,

Model’s input)
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Table 4.2: Refinement model specifications. Module names with an asterisk are model
outputs. For down-blocks, up-blocks, and residual blocks (Res. blocks), the numbers
in the Details column represent input channels, output channels, kernel size, and stride
of the convolution window or up-sampling factor, respectively.

Module Details Inst. norm Activation Input

Down-block 1 (6, 64, 3, (2, 2))
√

ELU Model’s input
Down-block 2 (64, 128, 3, (2, 2))

√
ELU Down-block 1

Res. block 1 (128, 128, 3, (1, 1))
√

ELU Down-block 2
Res. block 2 (128, 128, 3, (1, 1))

√
ELU Res. block 1

Res. block 3 (128, 128, 3, (1, 1))
√

ELU Res. block 2
Res. block 4 (128, 128, 3, (1, 1))

√
ELU Res. block 3

Res. block 5 (128, 128, 3, (1, 1))
√

ELU Res. block 4
Up-block 1 (128, 64, 3, (2, 2))

√
ELU Res. block 5

Up-block 2 (64, 32, 3, (2, 2))
√

ELU Up-block 1
Up-block 3* (32, 1, 3, (1, 1)) - - Up-block 2

4.3 Data and Training Procedures

We employ the independently recorded dataset, discussed in Chapter 3, to train and
evaluate the proposed system in real-life conditions. Recorded data were split between
the training and test sets, such that the test set contains unique speakers not shared
by the training set and unique conditions and setups not seen during training. To
augment the training dataset, synthetic data from the ICASSP 2021 AEC challenge
dataset [47] were also used during training. In 80% of the cases, the far-end signal
in the synthetic dataset was processed with a nonlinear function. Some examples of
nonlinear functions are clipping of the maximum value, a sigmoidal function, or a
learned nonlinear distortion function. More details regarding the synthetic data can
be found in [47]. Since this part of the research focuses on the low SER scenario, The
SER in both datasets (synthetic and independent recordings) was set to −20 ± 3 dB.
For analysis in different SERs, the same data were used in every experiment, where the
SER was set to −15 ± 3 dB, −10 ± 3 dB, or −5 ± 3 dB. The combined dataset consists
of 34.1 hours of data with a 16 kHz sampling rate.

As mentioned in Chapter 3, the NSLMS linear AEC operates in the subband do-
main. Therefore before being fed to the AEC, the input signals are transformed using
uniform 32-band single-sideband filter banks [43, Section 7.6]. The linear AEC com-
prises filters of 150 taps in each subband, equivalent to time-domain filters of length
150 ms with 2400 taps.

All inputs to the RES system are transformed to the time-frequency domain using
a 320-point STFT with a window length of 20 ms and a hop length of 10 ms. For
utterances of 2 s, this results in an input tensor of size (B, 4, 161, 201) where B is the
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batch size, 4 corresponds to the four input signals, and 161 and 201 are the frequency
and time bins, respectively. Both stages’ models are optimized with the Adam optimizer
[50]. The initial learning rate of the masking model is 6e−4, and the initial learning
rate of the refinement model is 1e−4. For both models, learning-rate scheduling is
applied such that it is multiplied by a factor of 0.5 each time there was no validation
loss improvement for 4 consecutive epochs. Early stopping is applied if there was no
validation loss improvement for 8 consecutive epochs. We set λDTD = 0.5 to balance
the size of the two loss terms of the masking and DTD model. λMSE is set to 1 since
the regularizing loss term lMSE is a magnitude-of-order smaller than lPESQ. We set
ϵ1 = ϵ2 = ϵ = 1e−8. For both models, the mini-batch size is 32, and the maximum
number of epochs is 100. All models are implemented with Pytorch, and a single Nvidia
GeForce GTX 1080 is used for training.

4.4 Experimental Results

In this Section, we present the experimental results for this chapter. First, we present
the results of the ablation study, where we show the contribution of each part of the
system. We also show the efficacy of the proposed DTD and compare it to other DTD
configurations, based on previous studies. The DTD’s classification results are also
presented and discussed. Next, we present the comparison of the proposed system to
other systems from previous studies.

4.4.1 Ablation study

First, we present the ablation study’s results, showing how each part of the proposed
system contributes to the performance. Table 4.3 shows the performance of the AEC,
the performance of the AEC followed by the masking stage with and without double-
talk detection (AEC+M+D and AEC+M, respectively), the performance of the AEC
followed by the refinement stage without the masking stage’s outputs (AEC+R, using
only the input signals), and the entire system’s performance - AEC followed by masking
and double-talk detection followed by the refinement model (AEC+M+D+R).

Table 4.3: Ablation study results. M stands for masking, D for DTD, and R for
refinement.

Far-end only Double-talk
ERLE AECMOS PESQ AECMOS

AEC 18.80 4.67 2.25 4.15
AEC+M 40.39 4.67 2.74 4.66

AEC+M+D 42.28 4.67 2.84 4.69
AEC+R 40.69 4.66 2.75 4.57

AEC+M+D+R 44.32 4.68 2.94 4.71
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From the table, combining the DTD with the masking model improves ERLE by
almost 2 dB while achieving on-par far-end only AECMOS, which indicates better echo
suppression performance when there is no near-end speech. During double-talk, there
is a notable increase of 0.1 in the PESQ score and a minor increase of 0.03 in AECMOS.
These results indicate that combining the DTD with the masking model improves per-
formance compared to not combining a DTD during double-talk periods. When adding
the refinement stage to the masking+DTD stage, there is an additional improvement
in all measures. Most notably, ERLE is increased by an additional 2.04 dB, and PESQ
is increased by 0.1. Far-end AECMOS and double-talk AECMOS are also improved,
albeit by a negligible amount. It can also be observed how without first employing
the masking stage, the refinement stage on its own achieves on-par performance with
the masking model without the DTD. This further asserts the efficacy of the proposed
system; the masking stage, aided by the DTD, performs the initial residual echo sup-
pression, and the refinement stage, which relies on the features provided by the masking
stage, further improves performance. It can be concluded from the ablation study that
the proposed configuration of the DTD aids the masking model’s performance and that
the refinement stage indeed performs refinement to the outputs of the first stage since
its stand-alone performance is inferior. Figure 4.3 shows examples of spectrograms
from different stages of the system.
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Figure 4.3: Visualization of spectrograms of the different stages’ outputs. (a) Error
signal spectrogram. (b) Spectrogram of the signal reconstructed from the masking
stage’s output. (c) Spectrogram of the refinement stage’s output. (d) Near-end

signal’s spectrogram.

It can be observed from the figure that the masking model suppresses the majority
of the residual echo, notably evident after 1.25 seconds and above 4000 Hz. The finer
details of the near-end speech are blurred compared to the near-end spectrogram. The
refinement model refines the output of the masking model, resulting in a finer-detailed
spectrogram that closely resembles the near-end spectrogram.

Next, we study different ways to combine the DTD with the masking model. We
compare five different configurations:

• No double-talk detection - A single U-Net is utilized to perform spectrogram
masking (similar to the proposed system, without the first U-Net).

• Configuration 1: Shared encoder - A single U-Net, where the outputs of the
encoder are used both by a double-talk classifier and by the decoder that outputs
the spectrogram mask. This is similar to the configuration proposed in [36].

• Configuration 2: Separate encoders, shared features - Two identical en-
coders are employed. The first encoder learns features used for double-talk detec-
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tion. The second encoder receives all input signals, and each level’s features are
concatenated with features from the matching level of the DTD’s encoder. This
is similar to the configuration proposed in [24].

• Configuration 3: Separate decoders, conditioning - The features learned
by a single encoder are fed into two separate decoders. The first decoder performs
double-talk detection. The second decoder learns a spectrogram mask, its outputs
conditioned on the DTD’s predictions by sharing the decoders’ features in each
matching level. This is similar to the configuration proposed in [33].

• Proposed - the configuration proposed in this study, as detailed in Section 4.1.

Table 4.4 shows the performance of the masking model combined with the DTD in
each of the above configurations. The proposed configuration achieves the best resid-
ual echo suppression performance during far-end-only periods, as indicated by ERLE
and AECMOS. The proposed configuration’s ERLE is more than 1 dB greater than
the second-best ERLE (Conf. 3), and the AECMOS equals the no-DTD baseline AEC-
MOS. In contrast, all other configurations see a minor degradation. In the double-talk
scenario, the proposed configuration’s PESQ score is nearly 0.1 greater than the second-
best PESQ (Conf. 2), which is only 0.01 greater than the no-DTD baseline PESQ. The
AECMOS is also the highest among all compared configurations’ AECMOS. Overall,
results show that the proposed configuration of DTD combined with the masking model
achieves a notable performance improvement compared to not combining a DTD, where
all other configurations have little to no effect on performance. We conclude that com-
bining a DTD with the masking model is beneficial when the double-talk detection is
performed before the masking and that it is necessary to learn a feature representa-
tion from the DTD’s predictions to enable the masking model to use these predictions
effectively.

Table 4.4: Study of different configurations of the masking model with a DTD. Conf.
stands for configuration.

Far-end only Double-talk
ERLE AECMOS PESQ AECMOS

No DTD 40.39 4.67 2.74 4.66
Conf. 1 41.07 4.61 2.69 4.56
Conf. 2 39.88 4.66 2.75 4.60
Conf. 3 41.17 4.66 2.72 4.65

Proposed 42.28 4.67 2.84 4.69

For completion, we provide the DTD’s performance in Table 4.5. Since the proposed
DTD operates as a multi-label classifier where the labels are the presence of near-end
speech and far-end speech, double-talk is not an actual class for the classifier. Instead,
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it is determined for time-frames containing both near-end and far-end speech. The
provided results for near-end and far-end include time frames where both are present
(double-talk). Multi-class classification results are also provided for comparison. We
can observe from the table that both near-end and far-end performance is high and
that precision and recall are balanced. The far-end performance is slightly better than
that of the near-end. This small performance gap is expected in the low SER setting
since, during double-talk periods, the near-end speech may be almost indistinguishable.
This observation is also evident in the double-talk results, notably degraded. During
these periods, the DTD may predict a time frame as containing far-end speech and not
containing near-end speech. When using the DTD’s prediction directly as inputs to
the subsequent masking model, it may cancel these time frames, as it learns to do so
from the actual far-end only time frames. Learning a representation from the DTD’s
predictions helps overcome this issue. It can also be observed from the table that the
proposed multi-label classifier outperforms the multi-class classifier. While near-end
performance is on-par, the far-end performance and overall accuracy of the multi-label
classifier are superior to that of the multi-class classifier. In the double-talk scenario,
the multi-label classifier achieves superior precision and inferior recall, and its overall
accuracy is notably superior to that of the multi-class classifier.

Table 4.5: Performance of the DTD. Numbers in parentheses represent the respective
results of the multi-class classifier.

Precision Recall Accuracy
Near-end 0.96 (0.95) 0.95 (0.96) 0.97 (0.97)
Far-end 0.98 (0.94) 0.97 (0.89) 0.98 (0.97)

Double-talk 0.90 (0.88) 0.91 (0.93) 0.86 (0.80)
Overall - - 0.98 (0.95)

Finally, we address an issue with double-talk AECMOS-degradations in the low
SER scenario. Figure 4.4 shows double-talk AECMOS-degradations at different SERs,
where the ’degraded’ signals used to obtain the scores are m(n), e(n), d(n), and d̃(n).
The graphs show how the microphone signal’s AECMOS is substantially higher than
the clean near-end speech’s AECMOS. Furthermore, the gap between the two is more
significant when the SER is lower. When the SER is low, the far-end speech is loud
(and its quality is high since we do not consider noise or additional distortions in our
data), while the near-end speech is nearly indistinguishable. Thus, the microphone sig-
nal’s AECMOS-degradations are high, despite mainly containing undesired echo. On
the other hand, the clean near-end speech signal’s AECMOS-degradations are consid-
erably lower, degrading further when the SER is lowered. This may indicate that the
AECMOS model was not trained on such extreme cases since we expect this score to
be high regardless of the SER as it contains no noise or distortions. Nevertheless, we
can see that at all SERs, the enhanced signal d̃(n) obtains slightly better AECMOS-
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degradations than the error signal e(n), indicating that the proposed model improves
AECMOS-degradations compared to its input.

Figure 4.4: AECMOS-degradations of the different signals at various signal-to-echo
ratios (SERs).

4.4.2 Comparative results

We compare the proposed system to two recent RES systems: Regression-U-Net [25],
and Complex-Masking [24]. Both systems operate in the T-F domain. Regression-U-
Net’s inputs are the spectrogram magnitudes of e(n) and a(n). The model predicts the
spectrogram magnitudes of d̃(n). Since we optimize our refinement model to increase
the PESQ score, we choose α = 0 in the Regression-U-Net’s implementation, as it yields
the best PESQ [25]. Complex-Masking’s model consists of a convolutional encoder and
decoder and a GRU between them. All layers in the model are complex, which allows
the model to learn a phase-aware mask while utilizing the complete information from
the input signals. The model’s inputs are the complex spectrograms of e(n) and x(n),
and its output is a complex mask applied to the spectrogram of e(n). We note the
differences between the two systems: Regression-U-Net is real-valued and performs
regression (outputs the desired signal directly). At the same time, Complex-Masking
is complex-valued and performs masking rather than regression. Both systems were
trained using the original code provided by the authors and the same training data used
to train the proposed system, and they were evaluated using the same test data. Since
our work focuses on the RES part, all systems used the same preceding linear AEC.
Table 4.6 shows the performance of the different systems, their number of parameters
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and memory consumption, and their real-time factor (RTF), defined as

RTF = tinference
tsignal

, (4.8)

where tinference is the time it takes the model to infer an output for an input of duration
tsignal. All systems’ RTF is measured on the standard Intel Core i7-11700K CPU
@ 3.60 GHz.

Table 4.6: Comparison of the proposed, the Regression-U-Net (U-Net), and the
Complex-Masking (Masking) systems. Param. stands for parameters and Mem. for
memory.

Far-end only Double-talk #
Param.

Mem.
(Bytes)

RTF

ERLE AECMOS PESQ AECMOS

U-
Net

39.39 4.62 2.56 4.04 0.14 M 0.5 M 0.03

Masking 44.54 4.67 2.73 4.55 1.86 M 7.0 M 0.32
Proposed44.32 4.68 2.94 4.71 5.1 M 21.3 M 0.04

Results show that the proposed and Complex-Masking systems achieve on-par per-
formance during far-end-only periods. Complex-Masking achieves negligibly better
ERLE, and the proposed system achieves negligibly better AECMOS-echo. Regression-
U-Net’s performance is inferior to the other two systems - most notably, its ERLE is
4.93 dB less than that of the proposed system. Regression-U-Net’s performance is also
inferior to the other systems during double-talk periods. This performance gap may
be due to the model’s low complexity; it has only 0.14 M parameters, which is 1.72 M
fewer than Complex-Masking. Therefore, it may be hard for the model to learn the
input-output relations in such extreme conditions properly. Contrary to far-end-only
periods, during double-talk, the proposed system’s performance is notably superior
to that of Complex-Masking. The proposed system’s PESQ is higher by more than
0.2, and AECMOS is higher by 0.16 dB. Although the proposed system’s number of
parameters is about three times greater than that of Complex-Masking, its RTF is
significantly lower. Thus, when inference time is a more critical constraint than mem-
ory consumption, the proposed system is favorable over Complex-Masking. It is worth
noting how the proposed system’s RTF is only slightly larger than Regression-U-Net’s
RTF, despite having significantly more parameters and higher memory consumption.
It is due to the difference in the systems’ input sizes; the proposed model was trained
on 2 seconds-long segments while Regression-U-Net was trained on 0.3 seconds-long
segments. Although the proposed system’s architecture allows for variable-size input,
it provides the best performance for 2 seconds-long inputs. Thus, in cases where low
memory consumption and short algorithmic delay are high priorities while performance

44



is not, Regression-U-Net might be favorable. We also note Complex-Masking’s high
RTF despite the relatively small parameter number. This is due to the complex oper-
ations, which are more time-consuming.

Next, we study the different systems’ performance in different SERs. We focus on
far-end only ERLE and double-talk PESQ. Figure 4.5 (a) shows the ERLE difference
between the systems’ output signal d̃(n) and the error signal e(n). Similarly, Figure 4.5
(b) shows the PESQ difference.

Figure 4.5: Systems’ performance in different SERs. (a) Echo return loss enhancement
(ERLE) difference between the systems’ outputs and the error signal. (b) Perceptual
evaluation of speech quality (PESQ) difference between the systems’ outputs and the
error signal.

The proposed system’s graphs show its efficiency in lower SERs - it can be seen that
both ∆ERLE and ∆PESQ are increased when the SER is lowered, and the increase
rate is also increasing (the graphs’ slopes are higher in lower SERs). In other words,
the proposed system is more effective in lower SERs. A similar trend can be seen in
Regression-U-Net’s performance, although the ∆PESQ increase rate is lower. Regard-
ing Complex-Masking, which is more comparable to the proposed system, it can be
seen that although its ERLE is consistently higher than the proposed system’s ERLE,
the rate at which ∆ERLE increases is lower. At −20 dB SER, the gap between the two
graphs is negligible. The increase rate of ∆PESQ is lower at lower SERs, while for the
proposed system, it grows larger, i.e., the proposed system is more effective at lower
SERs than Complex-Masking.

Finally, we compare the performance of the proposed masking architecture (AEC+M,
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without the DTD) with the performance of the masking architecture proposed in [38]
(Masking-inpainting). Table 4.7 shows the different performance measures, the number
of parameters, the memory consumption, and the RTF of the models.

Table 4.7: Comparison of the proposed masking architecture without the DTD
(AEC+M) and the masking architecture in Masking-inpainting.

Far-end only Double-talk #
Param.

Mem.
(Bytes)

RTF

ERLE AECMOS PESQ AECMOS

Masking-
inpainting

40.21 4.67 2.72 4.68 2.56 M 9.76 M 0.031

AEC+M40.39 4.67 2.74 4.66 1.01 M 3.85 M 0.007

Results show that the performance measures of the two models are on-par with
negligible differences. On the contrary, the proposed model is preferable to Masking-
inpainting’s model concerning memory and running-time performance. Masking-inpainting’s
parameter number and memory consumption are roughly 2.5 times that of AEC+M,
and its RTF is an order of magnitude greater than AEC+M’s RTF. Hence the choice
of the proposed masking architecture over the one proposed in [38].

4.5 Summary

We have presented a two-stage deep-learning residual echo suppression and double-talk
detection system focused on the low SER scenario. The first stage combines the DTD
with a spectrogram masking model based on the U-Net architecture. We conducted
experiments with different configurations (based on previous studies) of the DTD with
the masking model. The results show that the proposed configuration outperforms all
other configurations. To the best of our knowledge, this is the first study of different
ways to combine a DTD with a residual echo suppression model and the first study
to report improved results due to the DTD. The second stage performs spectrogram
refinement. The architecture is based on convolution blocks consisting of residual con-
nections. The model is optimized to maximize the desired speech quality by minimizing
the PMSQE loss function, which approximates PESQ. We performed an ablation study
which shows the contribution of each stage of the system. Furthermore, we conducted
experiments at different levels of SER. We showed that the proposed algorithm achieves
the best performance gain in the low SER setting, approving its effectiveness in this
challenging scenario. Lastly, we compared the proposed system to several other sys-
tems. The proposed system outperforms all others in near-end speech quality during
double-talk periods, as measured by PESQ and AECMOS. During far-end-only periods,
the system’s performance is on par with one of the compared systems and outperforms
the other system.
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Chapter 5

Conclusions

5.1 Summary

In this research, we have focused on the field of acoustic echo cancellation and resid-
ual echo suppression. Traditionally, AECs and residual echo suppressors are based on
adaptive filters. In recent years, with the rapid improvement in deep-learning tech-
nology, DNNs have become a popular choice for acoustic echo cancellation or residual
echo suppression based on the outputs of a linear AEC. While exhibiting high perfor-
mance, DNN-based residual echo suppression studies mainly focus on the RES model.
This research showed that the proper choice of the preceding linear AEC is crucial for
the RES’s performance. We proposed to use an AEC based on the NSLMS algorithm
rather than the common NLMS and showed that it results in increased performance,
especially with the proposed RES model. Since the most significant challenge for AECs
and residual echo suppressors is during double-talk periods, it is natural to integrate a
DTD into the system. While some previous studies utilized DTDs in their work, none
focused on their proper integration or effect on results. In this research, we proposed
a novel DTD integration and showed that it improves performance, while other inte-
grations, based on previous studies, do not improve results. Furthermore, none of the
previous studies focus on the challenging scenario of extremely-low SER, an example of
which is the common real-life situation of a conversation over a mobile phone when the
loudspeaker volume is high. We proposed a deep-learning-based RES comprising two
stages - double-talk detection and spectrogram masking, and spectrogram refinement.
The proposed system outperforms competing systems while exhibiting significant per-
formance gain, particularly in the low-SER setting.

In Chapter 3, we proposed a complex-valued deep-learning RES model. The pre-
ceding linear AEC is based on the NSLMS algorithm. Commonly, linear AECs are
based on the NLMS algorithm. We showed that the NSLMS outperforms the NLMS
as a baseline AEC and when combined with a deep-learning RES. Previous studies in
other fields show that the residual signal in the output of the NSLMS is more akin to
noise than speech. Therefore, in addition to the proposed RES, we utilized an off-the-
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shelf, pre-trained speech denoiser trained on hundreds of hours of speech with varying
noises and conditions to perform residual echo suppression. While the proposed RES
outperforms the speech denoiser, the performance gap between the NLMS and NSLMS
is greater for the speech denoiser. This affirms that, indeed, NSLMS produces a resid-
ual echo that is less structured than the residual echo produced by the NLMS. We
concluded that the NSLMS is a better choice for residual echo suppression than the
commonly-used NLMS. Furthermore, an off-the-shelf pre-trained speech denoiser can
be employed for the task of residual echo suppression. In this case, the proper choice
of the preceding linear AEC is even more crucial, and the NSLMS, which produces a
residual echo that is more akin to noise than speech, is preferable over NLMS.

Chapter 4 proposed a two-stage deep-learning RES designed explicitly for the low-
SER scenario. The first stage consists of spectrogram masking and double-talk detec-
tion. Previous studies that combined DTD in their residual echo suppression system
did not study its effect on performance. In addition to the proposed DTD integra-
tion, we studied other integrations based on previous studies. We showed that while all
other integrations bring little or no improvement to performance, the proposed integra-
tion does improve results. The second stage of the system is spectrogram refinement.
Although a significant portion of the residual echo is eliminated in the first stage, the
near-end speech’s quality is degraded, especially during double-talk periods. Therefore,
this stage is focused on improving speech quality. This is done by employing a network
architecture that has shown good speech synthesis performance in previous studies
and by minimizing a PESQ-related loss function. While improving performance in all
measures compared to the first stage, the proposed system also outperforms compared
systems. Specifically, the proposed system exhibits the highest performance gain in
lower SERs. We concluded that the proposed system is effective in the challenging and
little-explored scenario of low SER.

5.2 Future Research

In this thesis, we have proposed several acoustic echo cancellation systems, focusing on
the deep-learning residual echo suppressors while emphasizing the importance of the
preceding linear AEC. While obtaining high performance compared to existing systems
and providing novel insights into little-explored aspects of this field, some questions
remain that can provide a basis for future research. These include:

1. In Chapter 3, we showed that the NSLMS is superior to the NLMS, especially
when combined with a pre-trained speech denoiser utilized as a RES. However,
there are many more types of linear AECs, some of which may be better suited
for deep-learning residual echo suppressors. Furthermore, it may be that some
other off-the-shelf deep-learning model rather than a speech denoiser is available
to the user. Thus, studying other linear AEC algorithms for deep-learning-based
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residual echo suppression may be worthwhile, especially when little training data
is available and an off-the-shelf solution is desirable.

2. Our research focused on the single-channel scenario where a single microphone
captures the related signals. In many real-life applications, numerous microphones
are available. The information provided by the different microphones can be uti-
lized to improve performance with multi-channel methods such as beamforming.
While several previous works study multi-channel residual echo suppression, none
focus on the aspects studied in this thesis - proper choice of linear AEC, proper
integration of DTDs, and low SER.

3. While all systems proposed in this thesis were designed with real-time perfor-
mance considerations, no real-time evaluation was performed. While the analysis
windows in the different systems’ components comply with real-time standards
used in various acoustic echo cancellation challenges, the systems are not causal.
Furthermore, the system proposed in Chapter 4 comprises a relatively large pa-
rameter number, which may render it unusable in small portable devices. Thus,
it may be essential to design systems that provide solutions to the challenges
addressed in this thesis while also being utterly compatible with real-time and
memory consumption requirements.
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זיהוי משלב אשר דיבור ספקטרוגרמת של למיסוך מודל כולל הראשון השלב במיוחד. נמוך אות-הד

הדיבור. איכות למיטוב מאומן זה מודל ספקטרוגרמה. מיטוב מודל כולל השני השלב דיבור-כפול.

אותות איכות להערכת שמשמש נפוץ למדד שקשורה הפסד פונקציית של מזעור ידי על נעשה האימון

בהשוואה יותר טובים לביצועים מביא המיסוך מודל עם דיבור-כפול מזהה של המוצע השילוב דיבור.

על השוואתי מחקר מבצעים אנו בנוסף, קודמים. מחקרים על המבוססים שנבחנו, אחרים לשילובים

השילוב ושל המוצעת, המערכת של והמרכיבים מהשלבים אחד כל של החשיבות את להראות מנת

שהיא ומראים שונים, אות-הד ביחסי המוצעת המערכת ביצועי את בוחנים אנו כן כמו ביניהם. הנכון

של הביצועים כי מראים אנו לבסוף, מאוד. נמוכים אות-הד יחסי של מאתגרים בתנאים במיוחד יעילה

במספר קודמים, מחקרים מבוססות אחרות, מערכות של מהביצועים יותר טובים המוצעת המערכת

של לבעיה היטב מתאימה המוצעת המערכת כי מסיקים אנו שיורי. הד לביטול שקשורים מדדים

נמוך. אות-הד ביחס שיורי הד ביטול
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תקציר

בעיה הינו אקוסטי הד שיורי. הד וביטול אקוסטי הד ביטול של התחומים את חוקרים אנו זה בחיבור

נקלט הרמקול ידי על המופק האות כאשר נוצר אקוסטי הד דו-כיווניות. תקשורת במערכות נפוצה

באיכות לירידה לגרום עלול להד הרצוי האות בין זה צימוד הרצוי. האות עם יחד המיקרופון, ידי על

בו ישיבות בחדר מתרחשת אשר פגישה כגון רבות, יום-יומיות בסיטואציות בעיה שמהווה מה השיחה,

ההד בעיית פתרון לצורך נעשה רב מחקר רמקול. באמצעות מושמע מקוונים משתתפים של הדיבור

למידה לטכנולוגיית הודות מרשימים לביצועים הגיעו אקוסטי הד מבטלי האחרונות, בשנים האקוסטי.

שואף זה חיבור קודמים. במחקרים לעומק נחקרו לא התחום של היבטים מספר זאת, למרות עמוקה.

אקוסטי הד מבטל של נכונה בחירה שונים: היבטים שלושה של מחקר ידי על הזה הפער את לסגור

עם דיבור-כפול מזהה של הנכון השילוב עמוקה, למידה מבוססות שיורי הד ביטול במערכות לינארי

נמוך אות-הד יחס של במצבים שיורי הד וביטול עמוקה, למידה מבוססת שיורי הד ביטול מערכת

במיוחד.

קונבולוציה רשת עם לינארי אקוסטי הד מבטל משלבת אשר הד ביטול מערכת מציגים אנו תחילה,

האקוסטי ההד מבטל של המסנן מקדמי שיורי. הד ביטול מבצעת אשר עמוקה סדרתית מרוכבת

סימן-שגיאה). (אלגוריתם מנורמל סימן-שגיאה-ריבועים-פחותים אלגוריתם בעזרת נקבעים הלינארי

ריבועים-פחותים) (אלגוריתם מנורמל ריבועים-פחותים אלגוריתם עם הזה האלגוריתם את משווים אנו

כן, כמו השיורי. ההד לביטול העמוקה הלמידה מודל עם מהם אחד כל של השילוב את וחוקרים

כחלופה מדיבור רעשים סינון לצורך מראש שאומן עמוקה למידה מודל של השימוש את חוקרים אנו

על עדיפים סימן-שגיאה אלגוריתם של שהביצועים מראות התוצאות ייעודי. שיורי הד ביטול למודל

עצמם, בפני עומדים הם כאשר – השונים המצבים בכל ריבועים-פחותים אלגוריתם של הביצועים פני

ביטול מודל של הביצועים השונות. השיורי ההד ביטול למערכות כקלט שלהם בפלט משתמשים וכאשר

הרעשים סינון שמודל למרות זאת, הרעשים. סינון מודל של הביצועים על עדיפים המוצע השיורי ההד

ומגוונים. שונים במצבים שונים דיבור אותות של רבות שעות על אומן הוא ובנוסף יותר, ומורכב גדול

של הפלט הוא שלו הקלט כאשר יותר טובים הרעשים סינון מודל של שהביצועים מראים אנו בנוסף,

המודל ביצועי בין ההבדלים ריבועים-פחותים. אלגוריתם של הפלט מאשר סימן-שגיאה אלגוריתם

אינדיקציה שמהווה מה המערכות, לשאר בהשוואה ביותר הגדולים הם הללו האלגוריתמים שני עם

לדיבור. מאשר לרעש יותר דומה סימן-שגיאה אלגוריתם של במוצא השיורי שההד לכך

במיוחד, נמוך הוא האות-הד יחס שבהם במצבים במיוחד מאתגרת האקוסטי ההד ביטול בעיית

שומע משוחחים איתו שהאדם כך גבוהה, בעוצמה מופעל הרמקול כאשר סלולרי בטלפון שיחה למשל

זה, בחיבור הסלולרי. בטלפון שמשתמש האדם של הדיבור עם יחד עצמו שלו הדיבור של ההד את

יחס של במצבים מתמקד אשר שיורי הד לביטול שלבים שני בעל עמוקה למידה מודל מציעים אנו

i





חשמל להנדסת בפקולטה ברדוגו ברוך וד"ר כהן ישראל פרופסור של בהנחייתם בוצע המחקר

ומחשבים.

במהלך בכתב-עת למחקר ושותפיו המחבר מאת כמאמר פורסמו זה חיבור של 4 פרק של התוצאות

הינה: ביותר העדכנית גרסתו אשר המחבר, של המגיסטר מחקר תקופת

Eran Shachar, Israel Cohen, and Baruch Berdugo. Double-talk detection-aided residual echo
suppression via spectrogram masking and refinement. Acoustics, 4(3):637–655, 2022.

וביטול סימן-שגיאה-מינימום-ריבועים אלגוריתם עם אקוסטי הד "ביטול שכותרתו נוסף, מאמר

פורסם לא עדיין אך Algorithms MDPI בכתב-העת לפירסום התקבל עמוקה" למידה בעזרת שיורי הד

החיבור. הגשת בזמן

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר זה חיבור מחבר

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

תודות

ברוך ודר' כהן ישראל פרופסור שלי, המחקר למנחי הרבה והערכתי התודה הכרת את להביע ברצוני

לימדו הם הזה, המסע במהלך שלהם. וההכוונה התמיכה ללא מתאפשר היה לא הזה המחקר ברדוגו.

הקשיים על להתגבר לי ועזרו משמעותיים, כישורים ללמוד לי איפשרו יותר, טוב חוקר להיות איך אותי

תודה. מוקיר אני זה ועל שבדרך, הרבים

וחלקו הקשים ברגעים בי ותמכו אותי שליוו שלי, ולמשפחה בתאל זוגתי לבת להודות גם ברצוני

בלעדיהם. מתאפשר היה לא הזה ההישג הזה. התהליך של הטובים הרגעים את איתי
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