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Abstract

Tuberculosis (TB) has long been recognized as a significant health concern worldwide.
Recent advancements in noninvasive wearable devices and deep learning (DL) tech-
niques have enabled the development of rapid and cost-effective TB testing, which has
the potential to facilitate real-time TB detection. However, DL models can face chal-
lenges in achieving high performance when working with small datasets standard in
biomedical and chemical engineering domains. In particular, small datasets can lead
to overfitting issues that can hinder the success of ML models. To address this chal-
lenge, we propose various data preprocessing methods and DL approaches, including
Long Short Term Memory (LSTM), Convolutional Neural Network (CNN), Gramian
Angular Field-CNN (GAF-CNN), and Multivariate Time Series with MinCutPool (MT-
MinCutPool), for the classification of a small TB dataset consisting of multivariate time
series (MTS) sensor signals.

To evaluate the efficacy of our proposed methods, we compared them with state-of-
the-art models commonly used in multivariate time series classification (MTSC) tasks.
Our experimental results demonstrate that lightweight models are more suitable for
small-dataset problems. Moreover, the average performance of our proposed models
surpassed that of the baseline methods in all aspects. Specifically, the GAF-CNN model
achieved the highest accuracy of 0.639 and the highest specificity of 0.777, indicating
its superior effectiveness for MTSC tasks. Additionally, our proposed MT-MinCutPool
model outperformed the baseline MTPool model in all evaluation metrics, demonstrat-
ing its viability for MTSC tasks. The proposed approach can be applied to other
domains that suffer from small datasets or involve MTS signals.

In conclusion, our proposed approaches can be applied to similar domains that suffer
from small datasets or involve MTS signals. The results of our study suggest that the
proposed models can help to improve the classification performance of MTS signals in
small TB datasets and provide a promising avenue for the development of rapid and
cost-effective TB testing methods.
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Abbreviations

AUC : Area Under the Curve
BCE : Binary Cross Entropy
CI : Confidence Interval
CNN : Convolution Neural Network
CV : Computer Vision
DL : Deep Learning
DNNs : Deep Neural Networks
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FPR : False Positive Rate
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GAF-CNN : Gramian Angular Field-CNN
GCN : Graph Convolution Network
GNN : Graph Neural Network
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KL-
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ML : Machine Learning
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ROC : Receiver Operating Characteristic
SC : Spectral Clustering
TB : Tuberculosis
TL : Transfer Learning
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TPR : True Positive Rate
TSC : Time Series Classification
VAE : Variational Auto Encoder
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Notations

A the adjacency matrix.
Ã the symmetrically normalized adjacency matrix.
Apool the coarsened symmetrical adjacency matrix.
arccos(·) The inverse cosine function.
b a bias term.
cov(·) the covariance between two variables.
Cxy the Pearson Correlation Coefficient between sample x and y.
d the number of the new feature dimension.
D the degree matrix.
D distance matrix.
diagonal(·) the diagonalized function.
DKL(·||·) the Kullback-Leibler divergence.
d(p, q) distance between p and q.
DTW (·, ·) the dynamic time warping algorithm.
f the output tensor of the convolution layer.
fh(·) state update function.
g activation vector.
G(·) the graph convolution function.
Hp(q) the cross-entropy between distribution p(·) and q(·).
I projection matrix.
in the number of the input channels.
ks the number of the kernel size.
L the Laplacian matrix.
Lu the cut loss term.
max(·) maximum operation to find the biggest value in a set of numbers or a function.
med(·) the median function.
MLP (·) the multilayer perceptron operation.
min(·) minimum operation to find the smallest value in a set of numbers or a function.
n the number of sensors.
N a constant factor.
out the number of output channels.
P, Q two time-series sensor signals.
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Peak(·) the peak point of the input signal.
p(y) the predicted probability.
q(y) the true distribution.
r the radius of the transformed time stamp.
ReLU(·) the Rectified Linear Unit activation function.
s stride step.
S the cluster assignment matrix.
T the number of total time steps.
tanh(·) hyperbolic tangent function.
ti time step i.
{u, f, o, c} represent the input, forget, output, and the cell state gates.
var(·) the variance of a variable.
W weight matrix.
W a warping path consists of a contiguous set of matrix indices.
X A univariate or multivariate time series.
X̂ the normalized X.
X̃ the output feature matrix after graph convolution.
Xdense the flattened feature vector.
xi the i-th element of the time series X.
x̃i the rescaled i-th element of the time series X.
Xpool the coarsened graph representation feature matrix.
XT C temporal feature matrix.
Y one hot label vector.
⊕ element-wise summation.
⊗ element-wise multiplication.
σ(·) logistic sigmoid function.
ϕ the angular cosine value.∑ the summation function.
|| concatenation operation.
* convolution operation.
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Chapter 1

Introduction

Tuberculosis (TB) is an ancient, chronic disease caused by the bacillus Mycobacterium
tuberculosis, which threatens an estimated 25% of the world’s population, with a 5%-
10% life-long risk of developing into TB disease. It usually affects the lungs and can
spread from person to person through the air. Patients with pulmonary TB symptoms
include a chronic cough, weight loss, chest pain, weakness, fatigue, night sweats, and
fever [1]. TB has affected humanity for over 4,000 years, and over 10 million people
get infected annually. Therefore, it remains one of the leading causes of morbidity and
mortality worldwide, especially in developing countries. Early recognition of TB and
prompt detection of drug resistance is critical to reducing its global burden. To over-
come this problem, Vishinkin et al. [2] proposed a novel diagnostic pathway to detect
TB in a noninvasive, reliable, and rapid manner. They developed a new biomedical
apparatus containing a wearable and flexible polymer pouch for collecting and storing
TB-specific volatile organic compounds (VOCs) that can be detected and quantified
from the air above the skin (the skin’s headspace). An abnormal pattern of VOC con-
centrations that deviates from the healthy pattern may indicate either TB infection or
a high risk of infection with TB. The collected VOCs will then be fed into a set of spe-
cially designed nanomaterial-based sensors capable of detecting a variety of skin-based
TB VOCs [3–6]. Finally, the sensors will translate these collected VOCs into time series
resistance signals. Ultimately, the output multivariate time series (MTS) sensor signals
will be used as feature inputs in DL models for the final discrimination between positive
TB cases and healthy controls. Machine learning (ML) has gained much popularity in
recent years, where deep neural networks (DNNs) have achieved considerable success
in many tasks, such as computer vision (CV), speech, and natural language processing
(NLP). The main characteristics that favored the rise of these algorithms are i) the
use of large annotated datasets, and ii) networks with deep structures [7]. However,
the first requirement cannot be fulfilled in some natural settings like medicine, biology,
and chemical engineering for several reasons. First, the resource can be limited. Ob-
taining and labeling data can be costly and might take an extended period. Therefore,
it is unrealistic to have large datasets under such conditions. Secondly, the standard
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deeper structure means a model with higher complexity and a more significant num-
ber of trainable parameters. This is highly prone to cause overfitting problems and
poor results, especially when the trainable samples are limited. Finally, some standard
DL networks are unsuitable for small data settings compared with big data scenarios
since insufficient training samples can compromise the learning success [8]. Therefore,
learning from a small dataset is highly challenging, and many unresolved problems still
need to be solved in small dataset scenarios. Recent studies have shown that several
sub-domains of DL are trying to solve the small dataset problem from different per-
spectives [8]. One is by trying to mitigate the necessity of big training data such as
transfer learning, which aims to learn representations from one domain and then trans-
fer the learned features to a similar and closely related domain [7]. Another approach
is using surrogate data, which can be generated from random numbers to imitate the
distribution of the original dataset [9]. The first approach is more prevalent in CV
and NLP tasks since many large datasets can be used to train the models. The second
approach is more common in time series analysis. The diagnosis of TB is an example
of the application of DL to small dataset problems. In this paper, we present our work
based on [2] and mainly focus on developing several DL-based networks to classify the
input sensor signals and predict their corresponding labels.

Hypothesis Statement:

• This study proposes that employing lightweight DL models with reduced layers
and parameters can be advantageous in scenarios where the available dataset is
small.

• Additionally, alternative approaches such as graph neural networks (GNN) and
transforming time series into images are expected to offer valuable contributions
to addressing MTS problems.

Objective Statements:

• Utilize multiple data preprocessing techniques and provide a data preprocessing
pipeline, such as sensor signal extraction, data normalization, data calibration,
and sensor selection, with the aim of applying those techniques to similar tasks
involving MTS sensor signals.

• Propose various DL-based models with fewer layers and parameters compared
to common complex DL architectures to classify the small TB dataset. And
try to tackle the problem from different perspectives, such as utilizing GNN and
transforming the MTS signals into 2D images.

• Compare the performance of the proposed models with several state-of-the-art
methods commonly used in multivariate time series classification (MTSC) tasks.

• Discuss and analysis the results based on the experiments and reveal the research
findings.
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• To encourage further research on MTSC with small-dataset problems, provide
an open-source of our work accessible at https://github.com/ChenxiLiu6/
TB-Classification.git.

The structure of this thesis is as follows. In Chapter 2, we introduce the related work
on nanomaterial-based sensors for disease diagnosis by using disease-related VOCs, and
describe the sensors employed in this study and their working mechanisms. Besides, we
also provide some essential background information on MTSC tasks and describe some
state-of-the-art approaches for solving MTSC tasks. Next, in Chapter 3, we present
the dataset we use in our study and the data preprocessing methods we employed.
Then, we describe the four proposed DL-based classification models in detail, namely
LSTM, CNN, GAF-CNN, and MT-MinCutPool, which are appropriate for small TB
dataset classification problems. In Chapter 4, we introduce the evaluation metrics
used in this study and the experimental setup for each model. Then, we present the
results and performance of each model in terms of accuracy, sensitivity, specificity,
and the area under the curve (AUC), and compare our proposed methods with several
baseline MTSC methods. Finally, in Chapter 5, we discuss the experiment findings,
draw our conclusions, and point out some possible directions for future work based on
our research.

9
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Chapter 2

Background

2.1 Related Work

Traditional detection methods for TB, including sputum microscopy, culture test, radi-
ology, drug susceptibility testing, whole genome sequencing, and clinical signs/symptoms,
have proven effective in acid-fast bacilli detection, point-of-care diagnosis, and cost ef-
ficiency. However, these approaches exhibit shortcomings, such as low sensitivity, time
consumption, and poor efficacy, which may produce false-negative results, lack of differ-
entiation between various bacterial strains, inability to detect bacterial viability, and
unsuitability for resource-limited settings. [10–12]. These limitations may delay TB
diagnosis, which may further exacerbate infection severity, raise mortality risk, and en-
able bacilli transmission in the healthy population. Moreover, erroneous diagnosis can
result in imprecise treatment, eventually leading to the development of drug-resistant
in affected patients. [13] Therefore, the World Health Organization (WHO) has stated
that there is an urgent need for a rapid, cost-effective, and sputum-free triage test to
detect TB in real-time.

In addition, the importance of developing new diagnostic and detection technologies
for the growing number of clinical challenges is rising each year. The analysis of disease-
related VOCs represents a new frontier in medical diagnostics due to its noninvasive
and inexpensive for illness detection. Specific VOC species and their concentration
changes for each disease are unique and, thus, make them valuable biomarkers for dis-
ease detection [14] [15]. Spectrometry and spectroscopy techniques have demonstrated
their efficacy in detecting VOCs directly from the headspace of the disease-related cells
via urine, blood, skin, or exhaled breath. However, despite their effectiveness, these
techniques are often hindered by their high cost, the level of expertise, and the time
required to operate the sophisticated equipment necessary for sample analysis [16] [17].
To overcome these challenges, some researchers proposed a novel pathway that enables
the use of sensor matrices based on nanomaterials as a clinical and point-of-care di-
agnostic tool. Nanomaterials have several advantages, including high sensitivity, fast
response and recovery time, and synergetic properties when combined. Furthermore,
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nanomaterial-based sensors can be integrated into portable, low-cost devices through
mass manufacturing, enabling noninvasive, easy-to-use, personalized disease diagnosis
and follow-up. Existing studies [3] [14] [15] have shown the potential of nanomaterial-
based sensors for VOC-based disease diagnosis.

Paper [14] reviewed two complementary approaches to profiling disease-related
VOCs by nanomaterial-based sensors: selective and cross-reactive sensing. Our re-
search is based on work [2], where they utilized the cross-reactive approach. This
method broadly responds to various TB-specific VOCs emitted from the skin headspace.
The VOC selectivity is gained through pattern recognition by obtaining information
on the vapor’s identity, properties, and concentration exposed to the sensor array.

In [3], they reported an artificially intelligent nanoarray for noninvasive diagnosis
and classification of 17 diseases from the exhaled breath VOCs, work [2] employed
a similar type of sensor, consisting of chemiresistive films containing spherical gold
nanoparticles (GNPs; core diameter 3–4 nm) capped with different organic ligands, two
dimensional (2D) random networks of single-walled carbon nanotubes (RN-SWCNTs)
capped with different organic layers, and polymeric composites, The inorganic nano-
materials within the films are responsible for electric conductivity. In contrast, the
organic component provides sites for VOCs adsorption. Upon VOC exposure, they
are either absorbed onto the sensing surface or diffused into the sensing film, react-
ing with the organic phase or functional groups that cap the inorganic nanomaterials.
This reaction/interaction results in volume expansion/shrinkage of the nanomaterial
film, causing changes in the conductivity between the inorganic nanomaterial blocks.
For sample collection, 40 sensors are employed, each with different functional groups
capping the inorganic nanomaterial. This ensures that each sensor yields a distinct re-
sponse to individual or patterned VOCs within the sample, generating a full metabolic
profile of the tested state. Thus, resulting in a pattern of resistance changes detected
by the sensor array to a given vapor.

Previous studies primarily concentrated on developing nanomaterial-based sensors
for accurately detecting disease-related VOC patterns. However, they did not furnish
comprehensive details on the applied classification procedures that procured the results.
Furthermore, the dependability and progress of discriminant data classifiers cannot be
ensured. Besides, existing ML approaches are more prevalent in large dataset scenarios.
However, approaches such as transfer learning is widely used in small dataset settings
as introduced in Chapter 1; there is currently a deficiency of similar and extensive
datasets that can be utilized as the source domain in transfer learning for our task.
Therefore, it is critical to developing dependable and suitable ML models pertinent
to data-deficient problems that can be combined with other domains and foster their
development.
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2.2 Time series classification

The rapid expansion of data availability has led to the development of time series
classification (TSC) in a wide range of fields ranging from human recognition [18],
electronic health records [19] to acoustic scene classification [20] and stock market
prediction [21]. Thus TSC has drawn the attention of a large number of researchers.
The definition of a TSC task can be categorized into two types:

Definition 1. A univariate time series X = {x1, x2, · · · , xT } is an ordered set of
real values with timestamps. The length of X equals the number of real values T .

Definition 2. A dataset D = {(X1, Y1), (X2, Y2), · · · , (XN , YN )} consists of a
collection of N pairs of (Xi, Yi), where (Xi, Yi) is the ith sample, where Xi is either a
univariate or multivariate time series accompanied by Yi as its one-hot label vector.

The TSC task aims to train a classifier over dataset D to map from the time series
inputs to a probability distribution over class labels. Our task can be categorized as
an instance of the MTSC problem, where each sample comprises a set of MTS inputs
denoted as X and a single corresponding label represented as Y .

2.3 Encoding Time Series as Images

The Gramian Angular Field (GAF) is one of the most widely used frameworks for
encoding univariate time series as 2D images [22]. This approach has recently gained
popularity due to its ability to capture cyclical patterns and correlations present in the
original time series data, thus enabling researchers to take advantage of the success of
deep learning architectures in CV and transfer it into the time series domain. The GAF
transformation mainly involves two main steps: encoding the univariate time series into
polar coordinates and then computing the Gramian matrix of the encoded data.

Before GAF transformation, the input time series X = {x1, x2, ..., xn} first needs
to be normalized within the interval [−1, 1] by

x̃i = (xi −max(X) + (xi −min(X)))
max(X)−min(X)

. (2.1)

Then in the first step, the normalized time series X̃ = {x̃1, x̃2, ..., x̃n} of n real-valued
time steps can be represented in polar coordinates by encoding the value as the angular
cosine and time stamp as the radius using

{
ϕ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃ ,

r = ti

N
, ti ∈ N .

(2.2)

The equation presented above defines the value of the time stamp ti and incorporates a
constant factor N to regulate the range of the polar coordinate system. In the second
step, pairs of angular values from the polar coordinate representation are taken, and
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their outer product is calculated according to

G =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) · · · cos(ϕ2 + ϕn)

...
... . . . ...

cos(ϕn + ϕ1) cos(ϕn + ϕ2) · · · cos(ϕn + ϕn)

 (2.3)

These outer products are then aggregated to form a Gramian matrix, which can be
visualized as a 2D image. The resulting GAF image is a compact and information-rich
representation of the original time series data. It captures the cyclical patterns and
correlations present in the data and allows for the application of a wide range of image
processing techniques for subsequent analysis.

2.4 The Long Short Term Memory Network

Figure 2.1: The structure of LSTM network.

A recurrent neural network (RNN) is a neural network that can simulate discrete-
time dynamical systems with an input xt, a hidden state ht, and an output yt [23]. The
dynamical systems can be defined by:

ht = fh(xt, ht−1) = tanh(Wht−1 + Ixt) (2.4)
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yt = fo(ht) = softmax(Wht) (2.5)

where the subscript t represents the time step. fh, fo are the state update function, and
output function respectively. where fh can use the hyperbolic tangent function tanh(·),
while the output function can usually use the softmax(·) function that can output a
valid probability distribution as the model prediction. W, I represent the recurrent
weight matrix and the projection matrix respectively, which serve as the parameters of
the functions.

However, RNNs are often faced with vanishing gradient problems. Long short-
term memory is an improved version of RNN [24] incorporating gating functions in the
dynamical system to overcome this problem [25]. In a typical LSTM architecture, a
memory vector m, an LSTM hidden state vector h, and the input x are employed to
update the state and generate output at every time step, which can be expressed more
precisely according to [26] by

gu = σ(Wuht−1 + Iuxt)

gf = σ(Wf ht−1 + If xt)

go = σ(Woht−1 + Ioxt)

gc = tanh(Wcht−1 + Icxt)

mt = gf ⊗mt−1 + gu ⊗ gc

ht = tanh(go ⊗mt)

(2.6)

where W, I, g denote the recurrent weight matrices, projection matrices, and activation
vectors, respectively, and the superscripts {u, f, o, c} represent the input, forget, out-
put, and the cell state gates. The activation function includes the hyperbolic tangent
denoted by tanh(·), and the logistic sigmoid function σ(·). ⊗ represents the element-
wise multiplication. The computation pipeline for the LSTM network is depicted in
Figure 2.1.

2.5 The Graph Neural Network Model

Graph neural networks (GNNs) are a general framework for modeling deep neural
networks using graph information, such as nodes, edges, and graph structures. The goal
with GNNs is to generate representations of nodes based on the graph structure and
any feature information of the graph. In recent years, GNNs have become increasingly
popular due to their ability to capture complex relationships and dependencies among
elements in the graph. It has been successfully applied to various problems, such as
node classification, graph classification, etc. In Section 3.6, we first transformed the
MTS signal into graph-structured nodes and then employed GNN to classify the node
representation.
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2.5.1 Spectral Clustering and MinCutPool

Spectral clustering (SC) is a widely-used technique to identify strongly-connected com-
munities within a graph [27]. In the context of GNNs, it can be employed to perform
pooling operations that aggregate nodes belonging to the same cluster, which can effec-
tively reduce the dimensionality of the input graph by replacing groups of nodes with a
smaller set of nodes, each of which represents a cluster of similar nodes. The new coars-
ened graph can help to improve computational efficiency while enabling more effective
modeling of high-level graph features. However, most SC relies on the eigendecomposi-
tion of the graph Laplacian matrix to project the graph nodes into a lower-dimensional
space [28], which can be very expensive, and the result is also graph-specific. Therefore,
to overcome the limitations of SC, Bianchi et al. [27] propose a novel graph clustering
method that enables rapid computation of cluster assignments without the need for
spectral decomposition. Then they apply the generated cluster assignment matrix S

as an input to the MinCutPool layer, which serves to coarsen the graph by aggregat-
ing nodes that belong to the same cluster while preserving the salient features of the
original graph.

2.6 Binary Cross Entropy

The binary cross entropy (BCE)function is commonly used in binary classification tasks
and it can be expressed as:

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.7)

where y is the label (0 for active TB samples and 1 for non-TB samples), and p(y) is
the predicted probability of the samples being non-TB samples for all N samples. We
assume the samples follow the distribution p(y), and they are coming from the true
(unknown) distribution q(y). To make the two distributions as close to each other
as possible, a measure of dissimilarity between both distributions is needed, and the
Kullback-Leibler divergence (KL Divergence) enables this measurement, which can be
expressed as:

DKL(p||q) = Hp(q)−H(q) (2.8)

where the cross-entropy is

Hp(q) = −
C∑

c=1
q(yc) · log(p(yc))

and the entropy is

H(q) = −
C∑

c=1
q(yc)log(q(yc))
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Then the KL-Divergence can be expressed as

DKL(p||q) =
C∑

c=1
q(yc) · [log(q(yc))− log(p(yc))] (2.9)

The closer between both distributions p(y) and q(y), the lower DKL(p||q) is, so as
the cross-entropy Hp(q). Therefore, minimizing Hp(q) will give us a p(y) that is the
closest distribution to the actual distribution q(y). So we will minimize the cross-
entropy between both distributions Hp(q). Since we have N total number of samples
and the probability for each sample q(yi) is 1

N , then the cross-entropy Hp(q) becomes
Hp(q) = − 1

N

∑N
i=1 log(p(yi)).

In this binary classification task, the labels are either 0 or 1, yi = log(p(yi)) when
the label is 1, and yi = log(1 − p(yi)) when the label is 0. It means for each non-TB
sample (y=1), it adds log(p(y)) to the loss. Conversely, for active TB samples (y=0),
it adds log(1 − p(y)) to the loss. After plugging this manipulation into the original
formula, the cross-entropy becomes:

Hp(q) = − 1
Nactive + Nnon

[
Nactive∑

i=1
log(1− p(yi)) +

Nnon∑
i=1

log(p(yi))]

= − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi))

And we get the final binary cross-entropy expression.

2.6.1 Dynamic Time Warping (DTW)

The Euclidean distance metric is a widely used approach for measuring distance. How-
ever, its susceptibility to sensitivity and distortion in time axis [29] has led us to explore
alternative options. Among the existing distance measurement approaches, Dynamic
Time Warping (DTW) is the best solution for time series tasks due to its ability to
align two similar time series that are locally out of phase in a non-linear manner [30].
Therefore, we employed DTW to measure the similarities between each time series
sensor signal as it provides great flexibility in handling such scenarios.

DTW is a versatile method that can handle time series of both equal and unequal
lengths. However, in our task, we performed middle part extraction during the data
preprocessing step, resulting in time series with equal lengths. Therefore, we will
describe the computation of DTW similarities using equal-length time series.

When using DTW to compute the distance between two-time series sensor signals,
denoted as P = (p1, p2, · · · , pn) and Q = (q1, q2, · · · , qn), the following steps are under-
taken:

1. Initialization: We will first need to construct a distance matrix D ∈ Rn×n which
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is shown as follows:

D =


d(p1, q1) d(p1, q2) · · · d(p1, qn)
d(p2, q1) d(p2, q2) · · · d(p2, qn)

...
... . . . ...

d(pn, q1) d(pn, q2) · · · d(pn, qn)


where each element d(pi, qj) of distance matrix D is the distance between the i-th
point of P and the j-th point of Q. Specifically, d(pi, qj) = (pi − qj)2.

2. Constraints: A warping path W is a contiguous set of matrix indexes that
defines a mapping between P and Q: W = {w1, w2, · · · , w2n−1}, which is subject
to the following constraints [31]:

(a) w1 = d(p1, q1) and w2n−1 = d(pn, qn)

(b) Given wk+1 = d(pi, qj) and wk = d(pi′ , qj′):
0 ≤ i− i′ ≤ 1 for all i < 2n− 1
0 ≤ j − j′ ≤ 1 for all j < 2n− 1

3. Computation: Given that there may exist multiple warping paths, the objective
of the DTW algorithm is to find the pathW that can minimize the warping cost,
which can be mathematically expressed as:

DTW (P, Q) = min
W ={w1,w2,··· ,w2n−1}

2n−1∑
k=1

wi (2.10)

The optimal distance W is obtained by solving the following recurrence relation:

DTW (pi, qj) = d(pi, qj) + min


DTW (pi−1, qj)
DTW (pi, qj−1)

DTW (pi−1, qj−1)
(2.11)

where the final distance is DTW (p2n−1, q2n−1). Thus, we finally obtain the DTW
similarity distance between two equal-length time series following the steps above.
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Chapter 3

Nano-material based sensor
signal processing and
classification methods

3.1 Introduction

In this chapter, we aim to improve the accuracy of DL models for TB classification.
To achieve this goal, we introduce a comprehensive data preprocessing pipeline and
propose four different DL models. The success of DL on any given task depends heavily
on the quality and representation of the data. Thus, we begin by describing the data
preprocessing pipeline in Section 3.2, which involves removing irrelevant and redundant
information, normalizing the data, and calibrating the signal. We also explain how we
select the best sensor signals while removing noisy and unreliable ones.

With the preprocessed data, we then explore four DL models for our TB classi-
fication task. We present each model in a dedicated section, highlighting its unique
features and contributions to the classification task. The first two models directly feed
the preprocessed data into proposed lightweight LSTM and CNN models, which we de-
scribe in Sections 3.3 and 3.4, respectively. In Section 3.5, we propose the third model,
GAF-CNN, which first transforms the MTS sensor signals into 2D images using GAF
and then uses the images as feature inputs for subsequent classification. Lastly, we
introduce the fourth model MT-MinCutPool, in Section 3.6, which explores the MTS
data from a graph perspective. In this section, we first obtain a global representation
of the MTS and then cluster similar nodes together to coarsen the graph. Finally, we
classify the coarsened graph-level embedding as the final output labels. Through these
models, we hope to provide insights into the potential of the proposed DL models in
enhancing the accuracy of the TB classification.
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Figure 3.1: The original 40 sensor signals corresponding to one sample before data
preprocessing.

3.2 Data Preprocessing

3.2.1 Dataset Description

In [2], during the sample collected phase, the study included 928 subjects between
the ages of 22 and 60. To establish a robust method for TB detection and eliminate
the influence of environmental factors on the samples, the samples and analysis were
conducted in three different locations, including New Delhi in India, Cape Town in
South Africa, and Riga in Latvia. The study population consisted of 461 healthy
controls, including both healthy volunteers and confirmed non-TB samples, denoted by
label 1, and 467 newly diagnosed and confirmed pulmonary-active TB patients, each
represented by label 0.

As TB involves many bodily systems, it isn’t easy to be diagnosed with only one
unique biomarker when collecting VOCs from the skin headspace. To overcome the
lack of specific biomarkers [32], a combination of 40 non-selective nanomaterial-based
sensors is used simultaneously to detect a variety of TB-specific VOCs, thus providing
a comprehensive metabolic assessment of each sample’s tested state. Then, each sensor
will translate the detected VOCs into resistance signals with a duration of T time steps.
The raw sensor signals’ time length T corresponding to each sample may differ. The
translated 40 original sensor signals corresponding to one sample are shown in Figure
3.1, and each raw sensor signal is like the one shown in Figure 3.2. Figure 3.4 displays
the change in the sensor resistivity (i.e., ∆Rend/Rb) under different storage conditions,
including vacuum, ambient air, and pure nitrogen respectively for nine months. As
can be seen, the resistivity change in the room air is the largest (35%), followed by
vacuum (19%), and pure nitrogen (17%) [2]. Therefore, it supports the observation of
the sensor signal’s characteristics in Section 3.2.2. During the sample measurement,
the wearable device is applied directly to the skin on the sample’s chest and anterior
arm regions. (Figure 3.3).

The dataset can be represented by (X, Y ), where X ∈ RN×n×T represents the
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samples, and Y ∈ RN is the corresponding label which is either 0 or 1. Note that N is
the number of samples, n denotes the number of sensors (or nodes), and T represents
the total time steps of each resistance signals.

3.2.2 Middle Part Signal Extraction

The multivariate time series sensor signals are recorded under three different conditions,
including vacuum, pure N2, and sample exposure [2] (see Figure 3.2). The sensor’s
baseline responses were recorded for 5 min in a vacuum, 5 min under pure nitrogen
(99.999%), 5 min in a vacuum, and 5 min under the sample exposure, followed by a
further 3 min under vacuum conditions [2]. Only the resistance signals obtained under
the ambient air on skin samples are valuable signals that need to be extracted from the
full signals before applying DL models, which corresponds to the middle peak part of
the signal, where the signal curve presented the characteristics of a flat line, a rising
peak, and then a return to a flat state.

To achieve this, we first computed the three peak points of the entire signal denoted
by P1, P2, and P3, respectively. Since the length of the middle part signal of each
sample varied and could fluctuate within a certain range, setting a fixed length in
advance and moving P2 or P3 separately to intercept the signal was not feasible. To
overcome this problem and obtain the start and end points of the rough middle part
signal extracted from each sample, we moved P2 and P3 to the left by 40 and 10 time
steps, respectively.

The reason for the different time steps used to move P2 and P3 was to account
for the varying lengths observed in the roughly extracted middle part signal across
samples. To ensure that the final middle part signal obtained from each sample was
of equal length, we first needed to find the minimum length denoted by lmin among
all extracted signals. We achieved this by shifting P3 to the left by a shorter distance
10, reserving space for the final signal interception to a consistent length. Accordingly,
the final middle part signal of each sample was defined as spanning the starting index
and the minimum length by [start, start + lmin]. This was a crucial preprocessing step
that helped standardize the signal features and enhance the accuracy of the subsequent
analysis.

3.2.3 Data Normalization

Data normalization is one of the essential preprocessing approaches [33]. However, dur-
ing the signal generation and collection phase, due to different sampling times and the
external environments (e.g., pressure, temperature, humidity, etc.) and the characteris-
tics of each sensor itself [34], the resistance values measured by each sensor corresponds
to each sample have various starting points and large ranges in O(107). Therefore, to
improve the data quality, we need to normalize the data to the same scale and give
each feature a uniform contribution. Inspired by the normalization methods from [33],
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Figure 3.2: Nanomaterial-based sensor resistance signals, where the x-axis is the time
cycles, and the y-axis is the resistance values. Useful signals are obtained under the
exposure of the skin sample (within the red dotted line).

Figure 3.3: Wearable sensor devices on a
volunteer’s chest and anterior arm.

Figure 3.4: The change in the sensor resis-
tivity (i.e. ∆Rend/Rb) for different stor-
age conditions at the starting point (M0)
and after 9 months (M9).

we use a transformed median normalization method to preserve better relationships of
the resistance values, which is defined as follows:

X
′ = X

med(X[0,30])
(3.1)

X̂ = X
′ −min (X ′) (3.2)

where X is the input signal, min(·) denotes the minimum resistance value from all
timestamps, and med(·) denotes the median value of the input. We first divide each X
by the median of its first 30 resistance values as shown in equation 3.1 and get X

′ , then
we obtain the normalized signal by shifting each X

′ by its minimum value as shown
in equation 3.2. After the data normalization, all signals will have the same minimum
point 0, and a smaller same scale between [0, 1].
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Figure 3.5: The original 40 sensor signals correspond to one sample after middle part
extraction, data normalization, and data calibration.

3.2.4 Data Calibration

To supervise the sensor’s functionality during the experiment and to overcome possible
sensor response drift, therefore making the character of the sample resistance curve align
with the original curve of the corresponding sensor, a baseline resistance is measured
as a calibration signal before measuring the sample signals. The way we calibrate each
sample signal is as follows:

X̂ = X̂ · Peak(Ĉ)
Peak(X̂)

(3.3)

where X̂ and Ĉ are the normalized sample signal and its corresponding normalized
calibration signal. We first compute the range ratio between X̂ and Ĉ. Since the
minimum value for both normalized signals is 0, we only need to consider the peak
point of each signal denoted by Peak(·) in this setting. Then each X̂ is calibrated by
multiplying its corresponding range ratio.

3.2.5 Sensor Selection by Using Pearson Correlation Coefficient Ma-
trix

As wearable sensors have become more prevalent in settings that require reliability
and accuracy, such as in healthcare and clinical diagnosis. Several sensors are usually
combined together in order to overcome relative weaknesses of other sensors, such as
sensor uncertainty, limited spatial coverage, imprecision, and malfunction [35], and
also with the aim of improving the overall accuracy, robustness, and reliability of a
decision-making process and finally enhance the overall performance of a system [36].

In our case, during the actual sample collection phase, each sample was measured
by 40 sensors simultaneously, each useful sensor signal after middle part extraction,
normalization, and calibration is shown in Figure 3.5, where some sensors were placed
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(a) unstable sensor matrix heat map (b) good sensor matrix heat map

Figure 3.6: Pearson correlation coefficient matrix heat maps for both unstable sensors
(a) and good sensors (b).

on the subject’s anterior arm, while others were placed on the subject’s chest, as shown
in Figure 3.3. However, not all of these 40 sensors have effective and stable signal
outputs, as shown in Figure 3.5. Jagged signal fluctuations can be seen in some sensors
that produce noisy, and unstable outputs. As a matter of fact, we cannot rely on
all of the sensors that were used during measurements, and it is very important to
select sensors that can produce a stable and clear signal output so that we can have
a better representation of the entire system, thus improving the model performance in
the subsequent decision-making process.

An indicator of a bad sensor is that the output signal is highly unstable, with
large fluctuations and sawtooth patterns. Therefore, we use the Pearson correlation
coefficient [37] to measure the signal similarities of each sensor in different samples.
For bad sensors, the similarity coefficient is expected to be small, and for good stable
sensors, the similarity coefficient will be large. To reduce the possible contingency
of selection and obtain a robust selection result, while not excluding sensors that are
critical to determining whether a sample is an active TB patient or not during the
decision-making phase.

In the first step, the samples are divided into two groups, one group containing
active TB patients, and the other group containing healthy controls. Then 10 lists of
indices are generated from each group respectively, where each list contains 15 sample
indices. Next, we iterate over from the 40 sensors to compute the Pearson correlation
coefficient between different samples randomly selected corresponding to each sensor
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Figure 3.7: Selected 29 sensor signals of a sample after middle part extraction.

according to:

Cxy =
∑T

i=1(xi − x̄)(yi − ȳ)√∑T
i=1(xi − x̄)2 ∑T

i=1(yi − ȳ)2
= cov(x, y)√

var(x) · var(y)
(3.4)

where Cxy is the Pearson correlation coefficient between signal x and signal y. Then
the mean coefficient values from the randomly chosen samples are computed to rep-
resent each sensor’s stableness, where sensors with a mean coefficient less than 0.65
are considered non-stable sensors, while the rest are considered good sensors to re-
tain. The Pearson correlation coefficient matrices for both the bad sensors and the
good sensors can be seen in Figure 3.6a 3.6b. In the end, both the active TB group
and the healthy control group screened out the same 11 unstable sensors and kept the
same 29 good sensors, which is shown in Figure 3.7. Note that in the initial stage, the
dataset was divided into two distinct sets: the training-validation set and the test set.
Subsequently, the sensor selection process was conducted independently on both the
training-validation set and the test set. Notably, the outcome of this process revealed
that both sets yielded identical sets of unstable sensors.

The stability of a signal is mainly attributed to the inherent characteristics of the
sensor itself. However, it is essential to note that we cannot rule out the case that when
dealing with a different dataset denoted as Xb, a sensor set Sa that is considered stable
when used on a particular dataset Xa may not exhibit the same stability when employed
on Xb. Therefore, to ensure a stable sensor selection process that generalizes to new
data and guarantees accurate subsequent classification, it is advisable to calculate new
sensor stabilization values and choose an alternative set of stable sensors denoted as Sb

when using only Xb.
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Figure 3.8: The proposed LSTM model architecture.

In cases when using both Xa and Xb as input, it is feasible to use an intersection of
the stable sensors to achieve reliable classification outcomes. Specifically, Sc = Sa ∩ Sb

can be used to select the common set of sensors shared between the two datasets.

3.3 Long Short Term Memory (LSTM) Network

The TB samples consist of multivariate time series sensor signals, and LSTMs are good
at learning temporal dependencies [38]. Thus we first employ the LSTM network to
learn the temporal features from the multivariate time series inputs. The first layer
of the LSTM model architecture consists of an LSTM layer that includes 32 LSTM
node units. The unfolded internal LSTM network structure is shown in Figure 2.1.
Subsequently, a dropout layer with a dropout rate of 0.2 is applied. Following this, the
resulting features are flattened into a vector, which is then forwarded into a dense layer
containing 16 units, and activated by the ReLU activation function. The final layer
is a single-node output dense layer, where the predicted labels are generated via the
sigmoid activation function. The proposed LSTM model can be seen in Figure 3.8.

Due to the fact that large complex architectures with a big size of parameters
are very prone to have overfitting problems when training with a small size dataset.
Therefore, we only use a small number of units in each layer together with a dropout
layer in our model, aiming to avoid or minimize the overfitting problem during the
training phase. Finally, a total of 8481 parameters are included in the whole LSTM
model. The detailed layer and parameter information is shown in Table 3.1.

During the training phase, we use the Adam optimizer and the BCE function as the
loss function, which is a widely used loss function for binary classification problems,
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Table 3.1: LSTM model layers and parameters.

Layer(Type) Output Shape Activation Parameter
Number

LSTM (bs, 32) − 7936
Dropout (bs, 32) − 0
Dense (bs, 16) ReLU 528
Dense (bs, 1) Sigmoid 17

the detailed description of BCE loss can refer to 2.6, and it can be expressed as:

BCE = − 1
N

N∑
i=1

[yi · log(p(yi)) + (1− yi) · log(1− p(yi))] (3.5)

where N is the total number of the input samples, yi is the actual label for sample
i, which is either 0 for active TB patients or 1 for non-TB samples in our case, and
p(yi) is the corresponding predicted probability for the positive class. The BCE loss
function provides a useful measure of the discrepancy between the true labels and the
predicted probabilities. A lower value of the BCE loss indicates a better fit between
the predicted probabilities and the true labels. Conversely, the loss will be large if the
predicted probability is far from the true label.

The LSTM model input is (X, Y ), where X ∈ RN×n×T and Y ∈ RN , the detailed
description of the input dataset can refer to 3.2.1, where T equals 147 after middle
part extraction, and n equals 29 which represents the number of stable sensors after
the sensor selection.

3.4 Convolution Neural Network (CNN)

In recent years, deep learning (DL) has been successfully applied in various domains,
including image recognition problems, natural language processing tasks, etc. In light
of the tremendous success of DL architectures in these different domains, researchers
have begun adopting them for time series analysis as well [39].

Most deep learning-based TSC methods can be divided into two types: generative
and discriminative [40]. Generative methods, characterized as model-based methods in
the TSC community, are designed to find a suitable time series representation before
training a classifier. In contrast, discriminative methods directly learn the mapping
between the raw time series and the class probability distributions. The implementation
of generative models is more complex than that of discriminative models, while the
performance could be better. Thus the researchers focus primarily on discriminative
models, notably on end-to-end approaches for TSC classification tasks [41].

According to the recent comprehensive review of DL-based TSC methods in [39],

27



Figure 3.9: CNN model architecture.

CNN is found to be the most commonly used structure for TSC tasks due to its ro-
bustness and less training time than other DL architectures. Therefore, we propose a
CNN architecture to classify the MTS sensor signals. The overall architecture of the
proposed CNN is depicted in Figure 3.9.

The proposed CNN model takes a set of MTS sensor signals as input with the shape
of (bs, T, n), where bs is the batch size, T equals 147 is the time steps of each sensor, and
n equals 29 is the number of sensors used corresponds to each sample. The proposed
model comprises two one-dimensional convolutional layers with different kernel sizes
and output channels. Specifically, the first convolutional layer has a kernel size of 20
with 16 output channels, and the second convolutional layer has a kernel size of 2 with
four output channels. Each CNN layer is followed by batch normalization and a ReLU
activation function to model the interactive relationships between multivariate dimen-
sions and the sequential information of time series. Furthermore, a one-dimensional
max-pooling layer with a pooling kernel of size 2 is employed to reduce the spatial di-
mension of the output from the convolution layer while retaining features with stronger
identification. The outputs of the convolutional layers are then flattened into a dense
vector and then processed with two fully connected layers with 16 and 1 unit respec-
tively. Finally, the classification results are obtained by computing the probability of
each class by using the sigmoid activation function after the final fully-connected layer.
The detailed parameter setting of the CNN model is shown in Table 3.2.

3.5 GAF-CNN

Inspired by [42], we first encoded each univariate time series sensor signals into polar
coordinates using the amplitude and phase of the time series. This encoding captures
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Table 3.2: CNN model parameter setting.

Layer Stride Activation Kernel Input Output Parameter
Size Shape Shape Number

Conv1D 1 ReLU 20 (bs, 147, 29) (bs, 128, 16) 9296
MaxPooling1D 2 - 2 (bs, 128, 16) (bs, 64, 16) 0
Conv1D 2 ReLU 2 (bs, 64, 16) (bs, 32, 4) 2116
MaxPooling1D 2 - 2 (bs, 32, 4) (bs, 16, 4) 0
Flatten - - - (bs, 16, 4) (bs, 64) 0
Dense - ReLU - (bs, 64) (bs, 16) 1040
Dense - Sigmoid - (bs, 16) (bs, 1) 17

Table 3.3: GAF-CNN model parameter setting.

Layer Stride Activation Kernel Input Output Params
Size Shape Shape

Conv2D 1 ReLU (5, 5) (bs, 147, 147, 29) (bs, 143, 143, 12) 8712
MaxPooling2D 2 - (2, 2) (bs, 143, 143, 12) (bs, 71, 71, 12) 0
Conv2D 1 ReLU (5, 5) (bs, 71, 71, 12) (bs, 67, 67,6) 1806
MaxPooling2D 2 - (2, 2) (bs, 67, 67, 6) (bs, 33, 33, 6) 0
Flatten - - - (bs, 33, 33, 6) (bs, 6534) 0
Dense - Sigmoid - (bs, 6534) (bs, 1) 6535

the temporal structure of the time series and allows us to apply the GAF transformation
to create the image representation, which has been previously introduced in Section 2.3.
The transformed images have a fixed shape of (batch_size, height, width, channels),
where the height and width are equal to the time steps 147, and the input channels are
similar to the number of sensors (29 in this case).

The resulting images are then input to the proposed GAF-CNN model, which con-
sists of two 2D convolutional layers, each followed by a ReLU activation function and
a 2D MaxPooling layer. The first and the second convolutional layer has 12 and 6
filters, respectively, where the kernel size for both layers is (5× 5). The 2D max pool-
ing operation uses 2 × 2 windows with a stride of 2. After the second max pooling
layer, the output is flattened and passed through a fully connected layer with a single
neuron and a Sigmoid activation function. The resulting output value is between 0 and
1, representing the probability of the corresponding sample belonging to the positive
class. Table 3.3 shows the model’s detailed parameter setting.
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Figure 3.10: GAF-CNN model architecture.

3.6 MTSC with Graph Laplacian and MinCutPool

In [43], a novel graph pooling-based framework Multivariate Time Series Classifica-
tion with Variational Graph Pooling (MTPool), is proposed to obtain an expressive
global representation of MTS. This study is one of the few approaches that adopt GNN
to solve the MTSC problem from a graph perspective. In contrast, others solve the
MTSC problems using transformer-based frameworks (e.g., [44]), ensemble methods
that ensemble over several univariate classifiers independently and then aggregates the
predictions from each classifier to generate a single probability distribution for each
TSC task (e.g., [45]), and variants of recurrent neural networks (e.g., Multivariate
LSTM fully convolutional network (MLSTM-FCN) [46]).

This section proposes the MT-MinCutPool framework, a modified MTPool to solve
the MTSC task. The main differences are that we employ the graph Laplacian matrix to
construct the graph and use the MinCutPool to cluster similar nodes within a graph into
one cluster to coarsen the graph. This section mainly contains five parts: Graph Struc-
ture Learning Using Laplacian Matrix, Temporal Feature Extraction, Spatial-Temporal
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Figure 3.11: MTMinCutPool model architecture.

Modeling, Graph Coarsen by MinCutPool, and Graph-Level Embedding Classification.

3.6.1 Graph Structure Learning Using Laplacian Matrix

Graph-based representations and algorithms for handling structured data rely heavily
on constructing meaningful graphs. Dong et al. [47] addressed the problem of learning
the graph Laplacians, which is equivalent to learning the graph topologies, such that
the input data will be transformed into graph signals with smooth variations in the
resulting topology. Therefore, we also use the graph Laplacian matrix to represent the
graph structure in the first part of the framework. The main steps of building the
Laplacian matrix to represent the graph structure are shown in Figure 3.12

The dynamic time warping method (DTW) will likely produce a more reliable sim-
ilarity assessment between two time series than other distance measurement methods,
such as Euclidean distance, which matches timestamps regardless of feature values. For
the input samples X = {x1, x2, · · · , xN} ∈ Rn×T , where N, n, T represent the number
of samples, sensors, and total timestamps respectively. We first use the DTW method
to calculate the distance matrix DTW ∈ RN×n×n between each sensor within MTS
samples. Then we’ll construct an adjacency matrix A that can be used to calculate the
following degree matrix D and the Laplacian matrix L. In the meantime, to improve
the model’s overall training efficiency, enhance the model’s robustness, and reduce the
impact of the noise introduced by the sensors, a threshold θ is set to make the distance
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Figure 3.12: Summary of main steps of building the Laplacian matrix to represent the
graph structure.

matrix DTW sparse:

Aij =

1, if DTW[i, j]< θ ,

0, if DTW[i, j] > θ .
(3.6)

After having adjacency matrix A ∈ RN×n×n, the elements of each row in matrix A

are first added up to obtain vector a ∈ RN×n, which is then diagonalized to generate
degree matrix D. Finally, after having the adjacency matrix A and the degree matrix
D. By definition, the graph Laplacian matrix L can be obtained through D −A. The
detailed process of constructing the graph Laplacian matrix is shown in Algorithm 3.1.

3.6.2 Temporal Feature Extraction

The purpose of temporal convolution is to extract features along the time axis, as well
as to design a temporal feature matrix XT C ∈ RN×n×d, where d is the dimension of
the new extracted features, that can serve as a strong reference for the subsequent
classification step. When analyzing time series data, it is essential to consider both
numerical values and long-term patterns. Therefore, to extract features from the time
dimension and keep as much origin pattern as possible, we adopt the method employed
in the prior work as presented in [43], which employs multiple convolutional neural
network channels with varying kernel sizes:

XT C = ||mi=1fi = ||mi=1σ(Wi ∗X + b) (3.7)

where ||mi=1 denotes the concatenation operation that merges the feature maps generated
by the first to the m-th CNN filters, where the subscript i = {1, 2, · · · , m} represent
the specific CNN filter number. Each fi ∈ RN×n×di is the output tensor of each
convolution layer containing the extracted temporal feature. And it is given by the
convolution of the input tensor X with the learnable filter Wi ∈ Rout×in×ks, where out

is the number of output channels, in is the number of input channels, and ks is the
kernel size of the filter. Then followed by an elementwise bias addition b ∈ Rout, and
an activation function σ(·) such as ReLU(·), to introduce non-linearity into the model.
The operator ∗ denotes the convolution operation. After applying the convolutional
layer with a given kernel size ks, the new sequence length can be computed according to
di = (T−ks)/s+1, where ks and s are the kernel size and stride step from the learnable
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filter W respectively. Finally, we get the temporal feature matrix XT C ∈ RN×n×dT C

by concatenating each convolved tensor fi, where dT C =
∑m

i=1 di is the new sequence
dimension. The concatenation of the extracted temporal features from various time
scales provides a reliable reference for the subsequent classification task.

3.6.3 Spatial-Temporal Modeling

Spatial-temporal modeling is an essential task in many applications such as skeleton-
based action recognition [48], traffic forecasting [49], etc. GNNs have demonstrated
promising results on spatial-temporal modeling tasks. Their ability to directly apply
filters on the graph nodes and their neighbors enables the model to learn representations
that capture both the spatial dependencies and the temporal patterns of the data.

Graph convolution networks (GCNs) are a specific type of GNN designed to deal
with graph-structured data. Therefore, in this part, we adopt GCN to operate on
the input graph-structured data, typically represented as an adjacency matrix A that
indicates whether an edge connects two nodes and a feature matrix X that contains the
features of each node in the graph. The Graph Convolution operation can be defined
as:

X̃ = G(A, XT C , W, b) = σ(A ∗XT C ∗W + b) (3.8)

where X̃ is the output feature matrix. G(·) is the graph convolution function, which
takes the adjacency matrix A, the input feature matrix XT C , a learnable weight matrix
W of the convolutional filter, and a bias term b as input.

In the graph convolutional layer, the feature matrix XT C ∈ RN×n×dT C is first
multiplied by the adjacency matrix A ∈ RN×n×n, which in our case is the graph
Laplacian matrix, it allows the information to be propagated from every single node
to its neighbors in the graph. Then the output is linearly transformed by a weight
matrix W ∈ RN×n×dout through another multiplication. After adding the bias term
b, the new feature matrix is transformed using a nonlinear activation function such
as ReLU or tanh, where σ(·) is the activation function. And finally get the resulting
output X̃ ∈ RN×n×dout . The graph convolution process updates the graph’s node
representation, and the output node features X̃ can be used for the subsequent graph
classification task.

3.6.4 Graph Coarsen by MinCutPool

To reduce the computational complexity of the GNN while at the same time preserving
its expressive power, we combine the clustering method with the MinCutPool pooling
method proposed in [27] in this part of our framework to coarsen the graph.

Let Ã = D− 1
2 AD− 1

2 ∈ RN×n×n be the symmetrically normalized adjacency matrix,
where D is the degree matrix. The cluster assignment matrix S is computed using a
multilayer perceptron (MLP) activated by a softmax function to map each node feature
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xi into the i-th row of matrix S. Specifically, it can be expressed as:

X̄ = GNN(X̃, Ã, WGNN ) (3.9)

S = MLP (X̄, WMLP ) (3.10)

where X̃ is the matrix of the representation generated from the previous graph con-
volution layer, and X̄ is the new feature matrix yielded by one or more subsequent
graph convolution layers. WGNN and WMLP are the trainable parameters. Then the
cluster assignment matrix S and the normalized adjacency matrix Ã are fed into the
MinCutPool layer to get the pooling node representations of the coarsened graph. The
pooling process is computed according to:

Apool = ST ÃS; Xpool = ST X (3.11)

where the entry xpool
j,k from Xpool

i ∈ RC×d is the sum of feature k among the items in
cluster j from sample i, which is weighted by the cluster assignment scores from S,
where i = {1, · · · , N} is the sample index, C is the number of clusters, and d is the
new sequence feature length after graph convolution. Apool

i ∈ RC×C is the coarsened
symmetrical adjacency matrix, where the matrix element aj,k is the weighted sum of
the edges between cluster j and k. The entries aj,j is the weighted sum of the node
edges within a cluster. Each MinCutPool layer will generate a cut loss term Lu [27],
and the weight parameters WGNN and WMLP are optimized by minimizing Lu during
training, thereby increasing the likelihood of clustering similar nodes together.

3.6.5 Graph-Level Embedding Classification

After obtaining the graph-level embedding from the MinCutPool layer, the resulting
output graph representation Xpool ∈ RN×C×d is flattened into a vector form, referred
to as X

N×(C∗d)
dense . Subsequently, Xdense is forwarded to the succeeding fully connected

layers for the final classification.

3.7 Conclusions

This chapter presented a comprehensive data preprocessing pipeline and four different
DL models for TB classification. The preprocessing data pipeline includes steps of
middle part extraction, normalizing data, calibrating the signal, and selecting the best
sensor signals while removing noisy and unreliable ones. The four proposed DL models
are lightweight LSTM, CNN, GAF-CNN, and MT-MinCutPool. Each model has its
unique features and contributions to the TB classification task. By exploring different
DL models and optimizing the preprocessing data pipeline, we expect to achieve better
performance in TB classification, which is crucial for the early detection and effective
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Algorithm 3.1 Build Laplacian Adjacency matrix.
Input: X ∈ RN×n×T , θ
Output: L ∈ RN×n×n

1: (1) Build Distance Matrix DTW
2: DTW ← empty matrix with shape RN×n×T

3: for i = 1 to N do
4: x ← X[i]
5: distance ← empty matrix with shape Rn×n

6: for j = 1 to n do
7: for k = 1 to n do distance[j, k] ← dtw(x[j], x[k]) {dtw(·) is the dynamic time

warping distance function}
8: end for
9: end forDTW[i] ← distance

10: end for
11: (2) Build Degree Matrix D
12: D ← empty array with shape RN×n×T

13: A ← int(DTW < θ)
14: for i = 1 to N do
15: adj ← A[i]
16: D[i] ← diagonal(∑n

k=1 adj[k, :]) {diagonal(·) is the diagonalized function}
17: end for
18: (3) Build Laplacian Matrix L
19: L = D − A

treatment of TB. Overall, this chapter provides a foundation for future studies on TB
classification using DL techniques.
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Chapter 4

Experiments and Result Analysis

4.1 Introduction

This chapter presents the results of our proposed DL models from the previous chapter
and compares them with various state-of-the-art baseline approaches commonly used
in MTSC tasks.

In Section 4.2, we introduce the evaluation metrics that we use to assess model
performance. We also outline the experimental evaluation process employed in our
study, which includes dataset splitting, stratified cross-validation, and multiple 10 runs
to ensure the reliability of our results. In Section 4.3, we provide a comprehensive
display of the results obtained from both the proposed models and the baseline models.
We present a result table, receiver operating characteristic (ROC) curves, and confusion
matrices for each model. Finally, we discuss the findings and draw conclusions based on
the results obtained. The structure of this chapter is intended to provide a logical and
formal progression of our research methodology, experimental design, and empirical
results, culminating in a clear and insightful analysis of our findings.

4.2 Experiments

4.2.1 Evaluation Metrics

To evaluate the performance of our proposed models with some state-of-the-art methods
for the MTSC problem, we utilize several widely used binary classification metrics,
including:

• Accuracy: It measures the proportion of the correct predictions among all the
predictions made by the models.

• Sensitivity (True Positive Rate (TPR)): It measures the proportion of true pos-
itive models made by the model out of all actual positive samples. It indicates
the ability of the model to correctly identify the positive samples, which is very
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important for clinical settings. It indicates the ability of a model to identify
negative samples correctly.

• Specificity (True Negative Rate (TNR)): It measures the proportion of true neg-
ative predictions made by the model out of all actual negative samples.

• AUC: It considers the performance of a classifier over all possible threshold values,
taking into account both the TPR (sensitivity) and the false positive rate (FPR:
1−specificity).

The above metrics can be expressed by the following formulas:

accuracy = TP + TN
TP + TN + FP + FN

(4.1)

sensitivity = TP
TP + FN

(4.2)

specificity = TN
TN + FP

(4.3)

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and
False Negative, respectively. A higher value indicates better performance for all the
evaluation metrics, while a low value indicates poor performance.

4.2.2 Experimental Setup

During the experiment phase, the dataset (X, Y ) was partitioned into training, valida-
tion, and test sets to ensure a reliable evaluation of the model’s performance. Specifi-
cally, 80% of the data is used for training and validation, while the remaining 20% is
reserved for testing. This enabled the model to be trained and tuned on a subset of
the data, with the held-out test set serving as an unbiased measure of its performance
on unseen data. Since we only have a total of 928 samples, which is a relatively small
dataset for DL classification tasks. To efficiently use the existing data to train the
model and better represent each model’s performance, we adopt the widely used tech-
nique of stratified cross-validation for model training and evaluation. Cross-validation
presents numerous advantages over conventional methods, including mitigating overfit-
ting issues, particularly prevalent in scenarios involving small datasets, improved data
utilization, a robust performance evaluation, and the capability for hyperparameter
tuning.

In our experiment, we employed a rigorous evaluation process to ensure the reliabil-
ity of our results. Firstly, we set the number of folds to 5. Then during each training
iteration, the model is trained on four-folds, i.e., 80% of the train-validation dataset. At
the same time, the remaining held-out fold, i.e., 20% of the train-validation dataset, is
reserved for validation. This process is repeated for each fold, with a different fold held
out as the validation set each time. After training each fold with a single model, we
saved and loaded the models and performed 5-fold cross-validation on the training and

38



validation sets again. Each fold was evaluated using its corresponding trained model.
We then selected the best-performing model based on its accuracy on the validation
dataset and assessed it on the unseen test dataset using various metrics, including ac-
curacy, sensitivity, specificity, and the AUC score. To further increase the robustness
of our evaluation, we repeated this process ten times, each using a unique random seed
to split the training and validation dataset. Finally, we computed the mean and the
standard deviation of test accuracies, sensitivities, specificities, and AUCs, across the
ten rounds to obtain the final performance and the confidence intervals (CI) of each
model, where the true value of the parameter falls within the corresponding CI with
95% confidence level. This thorough evaluation process allowed us to ensure the reliabil-
ity of our results and provide a more comprehensive understanding of the performance
of each model.

The proposed LSTM, CNN, MTMinCutPool, and GAF-CNN are trained with 2000,
1000, 500, and 500 epochs, respectively, with a learning rate of 1e− 5, 5e− 5, 1e− 6,
and 1e−6. In all cases, the early stopping patience was set to 50, and a batch size of 32
was used. Each model’s parameters are updated throughout the training process using
the BCE loss and the stochastic gradient descent. In the case of the MTMinCutPool
model, in addition to the BCE loss, the mincut loss, which is generated from the graph
coarsen process in Section 3.6.4, is incorporated as an additional component of the
overall loss function.

4.3 Results and Discussion

4.3.1 Main Results

The evaluation results of the proposed models and the baseline models are presented
in Tables 4.1 and 4.2, respectively. The actual mean performance of each evaluation
metric with their corresponding CIs for both the 4 proposed and the 3 baseline models
are calculated and displayed in the last column of each table, which provides a high-
level overview of each group’s respective performance and also helps us to gain insights
into the relative performance of each model. We highlighted the highest test scores for
each metric in bold for both the baseline models and the proposed models.

Our experimental findings reveal that the mean performances of our proposed mod-
els outperform those of the state-of-the-art baseline approaches for all evaluation met-
rics. Specifically, the average accuracy, sensitivity, specificity, and AUC score of the
proposed models are all higher than those of the baseline models. GAF-CNN demon-
strates the best overall performance among all proposed models, achieving the highest
test accuracy, sensitivity, and AUC score. The LSTM model exhibits the highest speci-
ficity. The GAF-Attention model performs best among all baseline models, with the
highest accuracy, specificity, and AUC score. Additionally, the MLSTM-FCN model
attains the highest sensitivity score. GAF-CNN has the highest accuracy of 0.639 and
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Table 4.1: Train and validation accuracy, sensitivity, specificity, and AUC values for
the proposed models.

LSTM CNN GAF- MT-Min Model
CNN CutPool Mean

Accuracy
train 0.646 0.916 0.659 0.688 −
valid 0.69 0.687 0.692 0.69 −
test 0.611 ±

0.02
0.606 ±
0.02

0.639 ±
0.008

0.604 ±
0.013

0.615 ±
0.031

Sensitivity
train 0.618 0.931 0.766 0.76 −
valid 0.675 0.715 0.78 0.756 −
test 0.631 ±

0.073
0.694 ±
0.025

0.777 ±
0.02

0.728 ±
0.039

0.71 ±
0.087

Specificity
train 0.676 0.901 0.544 0.612 −
valid 0.704 0.658 0.597 0.619 −
test 0.594 ±

0.054
0.533 ±
0.028

0.532 ±
0.021

0.5 ±
0.037

0.54 ±
0.073

AUC test 0.634 ±
0.016

0.657 ±
0.022

0.692 ±
0.007

0.661 ±
0.011

0.661 ±
0.03

the highest sensitivity of 0.777 among all models. In contrast, the GAF-Attention
model has the highest specificity of 0.637 and the highest AUC score of 0.695.

We employed the AUC-ROC curve to visualize each model’s performance better.
The ROC is a probability curve that plots the TPR against the FPR, and AUC rep-
resents the degree of each model’s separability. The higher the AUC, the better the
model distinguishes between positive TB patients and healthy controls. We can see
from Figure 4.1 that the order of model performance from high to low (in terms of
AUC-ROC) is as follows: GAF-Attention > GAF-CNN > MT-MinCutPool > CNN >
MLSTM-FCN > LSTM > MTPool.

The training and validation accuracy and loss curves for each selected model with
the highest accuracy score on the validation dataset are shown in Figures 4.2–4.5.

4.3.2 Discussion

The MT-MinCutPool model is modified according to the MTPool model. It performs
relatively well compared to the proposed LSTM and CNN models since it has higher
sensitivity and AUC scores. Furthermore, its accuracy, sensitivity, specificity, and
AUC score are all higher than those obtained using the MTPool model. This might
be due to the following two reasons. Firstly, in MT-MinCutPool, we use the Laplacian
matrix to represent the graph topology, which contains more graph information than the
correlation coefficient matrix employed in MTPool. Secondly, MinCutPool is designed
to preserve important information by retaining highly connected nodes in the graph.
Unlike other widely-used graph pooling approaches such as GraphSAGE [50], which
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Table 4.2: Train and validation accuracy, sensitivity, specificity, and AUC values for
the baseline models.

MTPool GAF- MLST- Model
Attention FCN Mean

Accuracy
train 0.563 0.755 0.733 −
valid 0.577 0.663 0.693 −
test 0.517 ± 0.024 0.631 ± 0.017 0.586 ± 0.026 0.578 ± 0.044

Sensitivity
train 0.682 0.78 0.757 −
valid 0.683 0.688 0.733 −
test 0.655 ± 0.119 0.622 ± 0.063 0.664 ± 0.067 0.647 ± 0.17

Specificity
train 0.436 0.728 0.709 −
valid 0.464 0.636 0.651 −
test 0.4 ± 0.125 0.637 ± 0.072 0.521 ± 0.071 0.519 ± 0.182

AUC test 0.538 ± 0.02 0.695 ± 0.015 0.648 ± 0.02 0.627 ± 0.036

learns to aggregate feature information from each node’s nearby neighbors, MinCutPool
directly identifies similar nodes that are strongly connected and aggregate them into
one cluster. This approach ensures that important information is preserved during the
pooling process. Thus, by employing the graph Laplacian to build the graph structure
and using MinCutPool to replace the Adaptive Pooling layer in MTPool, we get a
better performance than the MTPool model.

To better adapt to small data sets in our experiment, the proposed CNN and
LSTM are lightweight models with fewer layers to extract adequate input features. As
a result, both models showed an overall superior performance in comparison to the
average performance of the baseline models.

Furthermore, the results of our proposed GAF-CNN model demonstrate superior
performance compared to the baseline GAF-Attention model in terms of accuracy and
sensitivity. Specifically, GAF-CNN achieved an accuracy of 0.639 and the highest
sensitivity of 0.777 among all models, while the GAF-Attention model achieved an
accuracy of 0.631 and a sensitivity of 0.622. However, the GAF-Attention model has
the highest specificity of 0.637 among all models, and its AUC, i.e., 0.695, is slightly
higher than that of GAF-CNN, i.e., 0.692. These results suggest that both models
have their unique strengths and limitations and may be more suitable for different
applications depending on the specific requirements of the task. Our task focuses on
TB diagnosis, where accurately identifying positive cases is of utmost importance due
to the potentially severe consequences associated with missing a positive case. In this
context, sensitivity plays a vital role as it measures the true positive rate and reflects the
ability of each model to effectively detect positive cases. Consequently, when evaluating
the models based on sensitivity, the GAF-CNN model performs best compared to all
other models considered.
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Figure 4.1: The Receiver Operating Characteristic (ROC) curve of each model.

The effectiveness of using GAF image conversion and the GAF-CNN makes us
believe that these methods can be extended to a wider range of contexts and similar
applications beyond our immediate Tuberculosis MTSC task. Specifically, we suggest
further investigation in the following potential areas:

1. Medical diagnosis: GAF image conversion could further assist in identifying a
range of medical conditions, from electrocardiogram (ECG) rhythms to signals of
Alzheimer’s. GAF image conversion in these fields may allow for better clinical
decision-making and enhance the accuracy of machine-learning models.

2. Financial time-series analysis: GAF image conversion could be leveraged to pre-
dict stock prices and fluctuations in the currency market and further enhance the
effectiveness of ML algorithms in predicting trends and changes.

3. Speech recognition: GAF-based image classification could enable more accurate
identification of speech patterns, phonemes, and speech denoising. The use of
images could be particularly effective in noisy environments where traditional
audio inputs may be challenged.

In conclusion, converting time series into images has excellent potential; further exper-
imentation and research in these suggested areas are recommended to explore the full
potential of this method.
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Figure 4.2: The training and validation accuracy and loss curve for the best LSTM
model.

Figure 4.3: The training and validation accuracy and loss curve for the best CNN
model.

To better visualize the results, we also compute the confusion matrices for the
proposed models (shown in Figure 4.6) and the baseline models (shown in Figure 4.7).

4.4 Conclusions

This chapter presented the main results of our proposed DL models for MTSC Tu-
berculosis classification and compared them with various state-of-the-art baseline ap-
proaches. The experimental evaluation process, including dataset splitting, stratified
cross-validation, and multiple runs, ensured the reliability of our results.

Our findings demonstrated that lightweight models are better suited for small-
dataset problems and the average performance of our proposed models outperformed
that of the baseline methods in all aspects. Specifically, the GAF-CNN model achieved
the highest accuracy and specificity, indicating its superior effectiveness for MTSC
tasks. Additionally, our proposed MT-MinCutPool model demonstrated its viability
for this problem by outperforming the corresponding baseline MTPool model in all
evaluation metrics. These results suggest that our proposed approaches can be extended
to other domains that face similar challenges.
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Figure 4.4: The training and validation accuracy and loss curve for the best GAF-CNN
model.

Figure 4.5: The training and validation accuracy and loss curve for the best MTMin-
CutPool model.

In summary, this chapter presents a logical and formal progression of our research,
outlining our methodology, experimental design, and empirical results in a coherent
and structured manner.
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CNN confusion matrix LSTM confusion matrix

GAF-CNN confusion matrix MT-MinCutPool confusion matrix

Figure 4.6: The average confusion matrices computed from 10 runs for each of the
proposed models: CNN, LSTM, GAF-CNN, and MT-MinCutPool.
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MLSTM-FCN confusion matrix MTPool confusion matrix

GAF-Attention confusion matrix

Figure 4.7: The average confusion matrices computed from 10 runs for each of the
baseline models: MLSTM-FCN, MTPool, and GAF-Attention.
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Chapter 5

Conclusions

5.1 Summary

This study presented several DL-based approaches, including LSTM, CNN, GAF-CNN,
and MT-MinCutPool, to tackle the small TB dataset classification problem with 928
samples containing multivariate time series sensor signals. Firstly, We demonstrated a
standard pipeline of some data preprocessing approaches. Subsequently, we evaluated
both the proposed DL models and the baseline models on the TB dataset and then
compared their results with several state-of-the-art baseline methods.

Our proposed methods exhibit better overall performance compared to the base-
line models. In addition, we observed that lightweight models performed better than
complex models, highlighting their efficacy for small dataset scenarios. At the same
time, the complex models are typically more appropriate for larger dataset scenar-
ios. Specifically, the proposed MT-MinCutPool model outperformed MTPool in all
aspects, demonstrating its viability and effectiveness in classifying multivariate time
series sensor signals.

The findings of this study have practical implications for TB diagnosis, as the
proposed models can assist in the early detection of the disease. Moreover, our approach
could be applied to other medical conditions involving small datasets with multivariate
time series signals. Overall, the results of this study underscore the potential of DL-
based methods for improving medical diagnosis and decision-making.

5.2 Future Work

While our study has demonstrated promising results in classifying the TB dataset
using DL approaches, it is essential to acknowledge certain limitations that must be
considered in interpreting the findings.

One of the primary limitations of our work is the focus on a single TB dataset.
Although our proposed models exhibited an overall better performance compared to
several state-of-the-art baseline approaches, the efficacy of the models may vary when
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applied to different types of datasets or other medical domains.
Furthermore, our study is limited by the small size of the TB dataset with only

928 samples available for analysis. While we have demonstrated the effectiveness of
the proposed lightweight models for small datasets, it’s worth exploring the proposed
models or even more complex models with a larger dataset. And it’s also worthwhile
exploring other DL models suitable for small dataset classification tasks.

Besides the limitations, this study may also include the following factors that may
influence the results:

1. The severity of the target condition (TB) varied among the study population, and
this heterogeneity might have introduced variability and increased the uncertainty
in the model predictions. Future research could explore the incorporation of
severity scores to improve accuracy.

2. The limited data size is a potential factor that may impact the quality of the
results, where it’s quite challenging to capture the full features associated with
TB patterns from the MTS signals with the only available 928 samples.

3. The sensor data used in this study, although multivariate time series signals, may
not encompass all the necessary information required to accurately characterize
TB disease patterns. The signals measured by the sensors might not fully capture
the nuanced variations in TB disease due to the underlying mechanisms and the
complexity of the disease process. This limitation in information content could
contribute to the challenges faced in achieving higher accuracies.

In light of the limitations mentioned above, several avenues for future research can
be explored to build upon our findings and further advance the field of TB classification
using DL models.

1. First, future research could extend our work by exploring the efficacy of the
proposed models on other types of TB datasets or similar tasks in the field of
multivariate time series classification problems. This could help to determine our
findings’ generalizability and validate the proposed models’ effectiveness across
different datasets or contexts, especially in medical domains, as this could have
significant implications for medical diagnosis and treatment. Such efforts could
help develop more robust and versatile machine-learning models that can be ap-
plied across different medical contexts.

2. Second, given the limited size of the TB dataset used in our study, it would be
beneficial to investigate the performance of the proposed models on larger datasets
to determine their scalability and identify any potential trade-offs between model
complexity and performance.

3. Third, another avenue worth exploring for small dataset classification tasks is
utilizing DL models beyond the traditional approaches. Transfer learning (TL),
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in particular, has gained increasing attention due to its ability to construct robust
classifiers using a limited amount of data from the target domain. This is achieved
through pre-trained models trained on substantial amounts of labeled data in the
source domain. Thus, if a more extensive and similar source domain dataset can
be found, the potential of transfer learning is worth considering as a solution to
the problem of small TB dataset classification tasks. It offers an opportunity
to leverage the existing knowledge and structures of the pre-trained models to
address the challenges posed by limited target domain data.

4. Fourth, one of the most widely used solutions for the limited dataset problem
in DL is using surrogate data. Surrogate data refers to artificially generated
data similar to the original dataset. Various techniques can be employed to
generate surrogate data, including data augmentation and generative DL models.
Data augmentation is a technique that involves transforming the existing data
to create new data points that are still representative of the original dataset.
This can be achieved through flipping, rotating, jittering, scaling, permutation,
cropping, adding noise, or shifting the data slightly [51]. On the other hand,
Generative DL models are designed to learn the underlying distribution of the
original dataset and generate new data points that are similar to the original data.
One such model is the Variational Auto Encoder (VAE), which can generate new
data by sampling from the learned distribution of the original dataset. VAEs
are particularly useful in small dataset scenarios, where they can cause new data
points that are representative of the original data and can be used to improve the
performance of DL models.

5. Fifth, to improve the quality of the sensor data and enhance the capture of
TB disease patterns, future research could explore additional data sources or
complementary modalities. This could involve integrating other types of data,
such as clinical measurements or biomarkers, that may provide richer information
related to TB disease. Additionally, the acquisition of larger datasets and more
comprehensive data collection strategies would be essential to further investigate
the relationships between sensor data and TB disease patterns.

6. Finally, as interpretability becomes increasingly essential in the field of DL, future
research should explore the interpretability of the proposed models in the context
of tuberculosis diagnosis. This could include using visualization techniques or
feature importance analysis to provide insights into the model’s decision-making
process.
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