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Abstract
We propose a nonlinear acoustic echo cancellation system,
which aims to model the echo path from the far-end signal to
the near-end microphone in two parts. Inspired by the physi-
cal behavior of modern hands-free devices, we first introduce a
novel neural network architecture that is specifically designed
to model the nonlinear distortions these devices induce between
receiving and playing the far-end signal. To account for vari-
ations between devices, we construct this network with train-
able memory length and nonlinear activation functions that are
not parameterized in advance, but are rather optimized during
the training stage using the training data. Second, the network
is succeeded by a standard adaptive linear filter that constantly
tracks the echo path between the loudspeaker output and the mi-
crophone. During training, the network and filter are jointly op-
timized to learn the network parameters. This system requires
17 thousand parameters that consume 500 million floating-point
operations per second and 40 kilo-bytes of memory. It also
satisfies hands-free communication timing requirements on a
standard neural processor, which renders it adequate for embed-
ding on hands-free communication devices. Using 280 hours of
real and synthetic data, experiments show advantageous perfor-
mance compared to competing methods.
Index Terms: Nonlinear acoustic echo cancellation, deep
learning, hands-free communication, on-device implementation

1. Introduction
Hands-free communication often involves a conversation be-
tween two speakers located at near-end and far-end points. The
near-end microphone captures the desired-speech signal and
two interfering signals: echo produced by a loudspeaker play-
ing the far-end signal, and background noises. The acoustic
coupling between the loudspeaker output and the microphone
may lead to degraded speech intelligibility in the far-end due
to echo presence [1]. This problem prompted numerous studies
regarding acoustic echo cancellation (AEC) systems that aim
to remove echo and preserve the near-end speech [2]. In re-
cent years, however, miniaturization of electronic components
in hands-free devices, e.g., smart phones, smart speakers, and
wearable devices, caused non-negligible nonlinear (NL) distor-
tions in the echo path between the far-end signal and the loud-
speaker output [3].Consequently, AEC systems that assume an
echo path that is linear often fail in practice [4].

To mitigate this mismatch, various nonlinear acoustic echo
cancellation (NLAEC) approaches were proposed to identify
the NL echo path. The Volterra series showed success in
modeling systems with weak nonlinearities and memory us-
ing NL basis functions, while often requiring high computa-
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tional complexity [5]. A simplified version is given by the
block-oriented Hammerstein and Wiener models, which de-
scribe NL systems without memory and linear systems with
memory [6]. Also, adaptive functional link filters [7], Bayesian
state-space modeling [8], and kernel-based methods [9] are
commonly used for NLAEC. Avargel and Cohen considered
this problem from a time-frequency point-of-view and applied
multiplicative function approximation [10], sub-band adaptive
filtering [11], and an efficient Volttera series modeling using
cross-band terms [12], [13]. Neural networks (NNs) provide an
alternative framework for a more accurate NL modeling com-
pared to classic approaches [14], [15], [16], [17]. For instance,
Malek and Koldovsky [18] estimated the NL echo path with
a fully-connected NN (FCNN) that assumes the Hammerstein
model, followed by an adaptive linear filter to track the acoustic
path. Recently, Halimeh et al. [19] constructed an FCNN that
assumes the Wiener-Hammerstein model and captures both the
NL and linear echo paths.

Despite showing promising results, the performance of
these methods is still challenging in real-life scenarios, which
may be associated with two of their attributes. First, these mod-
els are not accurately designed according to the physical behav-
ior of distortions that modern hands-free devices apply to the
far-end signal. Second, they are mostly parametric, i.e., they
require that memory lengths and NL basis functions are prede-
termined. E.g., in [5], [6], the presented models assume a given
number of memory taps, and in [18], [19], fixed NL activation
functions are employed inside the NN. These drawbacks may
produce sub-optimal solutions in real setups.

To address these two gaps, we make two contributions that
are inspired by the physical behavior of modern hands-free de-
vices. We first introduce a novel NN architecture that is specif-
ically designed to model the distortions these devices induce
between receiving and playing the far-end signal. Second, we
construct this NN with trainable memory length and NL acti-
vation functions that are not parameterized in advance, but are
rather optimized during the training stage based on the training
data. The NN output is inserted into a standard adaptive lin-
ear filter that constantly tracks the acoustic path from the loud-
speaker output to the microphone. The end-to-end system, from
the input of the NN to the output of the linear filter, forms the
proposed NLAEC system. During training, the NN and the lin-
ear filter are jointly optimized to learn the NN parameters. In
testing, the NN is used for inference and is not updated, while
the linear filter is adapted to the time-varying acoustic paths.

This system requires 17 thousand parameters that consume
500 million floating-point operations per second (Mflops) and
40 kilo-bytes (KB) of memory, which renders it applicable for
embedding on hands-free communication devices. It also meets
the timing requirements of the AEC challenge [20], and more
generally the constraints of hands-free communication stan-
dards [21] on a standard neural processor.
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Figure 1: NLAEC scenario and proposed system (bordered).
The nonlinear components are modeled with a neural network
and the acoustic path with a standard adaptive linear filter.

Performance is evaluated against two recent NN-based
NLAEC methods in [18] and [19], and to a linear AEC method.
Experiments are conducted with 280 h of both synthetic and
real data, which include half-duplex and full-duplex periods af-
filiated with various acoustic environments, devices, speakers,
and noise and echo levels. Results show leading performance
of the proposed NLAEC system in terms of echo cancellation
and speech distortion levels, generalization and stability to var-
ious setups, robustness to high levels of noise and echo, and
convergence and re-convergence rates.

The reminder of this paper is organized as follows. In Sec-
tion 2, we formulate the problem. In Section 3, we introduce the
proposed NLAEC system. In Section 4, we describe the exper-
imental setup. In Section 5, we demonstrate the performance of
the proposed system. Finally, we conclude in Section 6.

2. Problem Formulation
Figure 1 depicts the scenario and proposed system for NLAEC.
Let s (n) be the near-end speech signal and let x (n) be the far-
end speech signal. The microphone signal m (n) is given by

m (n) = s (n) + y (n) + w (n) , (1)

where w (n) represents additive environmental and system
noises and y (n) is a nonlinear reverberant echo that is gen-
erated from x (n). The far-end signal, x (n), is first dis-
torted by electrical components that produce xNL (n), and then
xNL (n) propagates via a linear acoustic path h (n), namely
y (n) = xNL (n) ∗ h (n). The proposed NLAEC system at-
tempts to estimate y (n) by using an NN to find x̂NL (n), which
is an estimate for xNL (n), and filtering the result with an adap-
tive linear filter that tracks the acoustic path, denoted by ĥ (n):

ŷ (n) = x̂NL (n) ∗ ĥ (n) . (2)

The signal transmitted to the far-end is given by

ŝ (n) = m (n)− ŷ (n) = s (n) + (y (n)− ŷ (n)) + w (n) .
(3)

Our goal is to cancel the echo y (n) by eliminating the term
y (n)− ŷ (n), without distorting the speech signal s (n).

3. Nonlinear Acoustic Echo Cancellation
The proposed NLAEC system is comprised of two parts. First,
an NN models the physical behavior of distortions applied be-
tween the far-end signal and the loudspeaker output, caused by
non-ideal electrical components in practical hands-free devices.
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Figure 2: Proposed neural network architecture.

Second, a standard adaptive linear filter tracks the acoustic echo
path from the loudspeaker output to the microphone.

In order to understand our system, it is helpful to under-
stand how the above-mentioned electrical components behave.
Modern hands-free devices often apply distortions between re-
ceiving the far-end signal and playing it in the near-end. These
distortions are created by three different electrical components;
a digital-to-analog converter (D/A), a power amplifier, and a
loudspeaker [22], [23], [24], [25]. This study uses a 16-bit
data precision, so the signal-to-quantization-noise ratio is suf-
ficiently high and the D/A distortions are numerically negligi-
ble [22]. Thus, the D/A is not modeled. Ideally, the power
amplifier should increase the energy of its input signal without
distortions by using the power supply from the device battery.
However, low-powered hands-free devices drive the amplifier to
operate close to saturation, which yields distortions. The spe-
cific NL behavior of each amplifier depends on its saturation
curve, ranging from a soft-clipped sigmoid, to a hard-clipped
rectified function, and in extreme cases, it may exhibit a square
waveform behavior [22].

The loudspeaker component is responsible for the majority
of distortions. In this study, the widely-used electro-dynamic
loudspeaker model is considered, which exhibits four major
types of nonlinearities; electrical, magnetic, mechanical, and
acoustical [25]. The electrical signal, I (n), is received from the
amplifier output and creates a magnetic field signal of strength
H (n) around the voice coil, which renders it an electromagnet.
The relation between I (n) andH (n) is NL and depends on the
coil displacement signal, ∆ (n). Both I (n) and H (n) lead to
polarity changes in the electromagnet that moves the coil back
and forth with force that also has NL relations with∆ (n). This
movement creates air pressure that is translated into acoustic
sound waves that depend on ∆ (n) and its temporal derivatives.
This relation is NL as well due to wave propagation and me-
chanical nonlinearities, caused by stiffness of the loudspeaker
spider. Both the power amplifier and loudspeaker components
may depend on previous observations.

The above NL behavior is modeled using an NN that is
comprised of two cascaded parts: a power amplifier model, and
a loudspeaker model, depicted in Figure 2. First, the ampli-
fier is modeled with 3 identical gated recurrent units (GRUs)
that contain 16 cells each [26] and dropout [27] in the recur-
rent layers, an FCNN with a one-neuron output, and a piece-
wise linear unit activation function layer (PLU) with trainable
parameters [28]. This entire NL model (NLM) is fed with
the far-end and microphone waveform signals, since the latter
contains information about the distortions of the former. Sec-
ond, the loudspeaker is modeled by a sequence of 3 consec-
utive NLMs. It receives the output of the amplifier, i.e., the
estimated excitation current Î (n) that drives the loudspeaker.
Similarly to the amplifier model, Î (n) is concatenated to the
microphone signal, and the first NLM learns the electrical-to-



magnetic NL model from Î (n) to Ĥ (n). Then, the predicted
Ĥ (n) is concatenated to Î (n) and inserted to the second NLM,
which learns the magnetic-to-mechanical NL model and pre-
dicts ∆̂ (n). Then, ∆̂ (n) is inserted to the third NLM, which
learns the mechanical-to-acoustic NL model and estimates the
distorted far-end signal at the output of the loudspeaker, i.e.,
x̂NL (n). Since ∆̂ (n) also affects Ĥ (n), the first NLM is fed
with the output of the second NLM using a skip-connection.
The NLM unit is adjusted to receive between 1 to 3-dimensional
input signals across the NN model. Following this NN, a linear
adaptive filter models the acoustic path between the loudspeaker
output and the microphone. This filter contains 150 samples
and was developed by Phoenix Audio TechnologiesTM using a
filter bank approach. The NN and the linear filter construct the
proposed end-to-end NLAEC system.

To the best of our knowledge, the proposed NN architecture
is used in this study for the first time. The NN is based on the
GRU, whose internal gate-based mechanism is optimized for
NL sequence-to-sequence mapping in the waveform domain.
Also, the GRU keeps relevant past information without discard-
ing it through time, while neglecting irrelevant data. Thus, the
optimal memory length is implicitly learned by the NN during
training and should not be set in advance. The trainable PLU pa-
rameters are also adjusted during training to optimally describe
various saturation curves of the power amplifier and other NL
behaviors exhibited by the loudspeaker. Thus, the NL behavior
of the NN is not restricted to a predetermined set of NL basis
functions. In addition, the GRU consumes low computational
resources and requires short inference time.

The NLAEC system contains 17 thousand parameters that
consume 500 Mflops and 40 KB of memory. Thus, its integra-
tion on hands-free devices is enabled, e.g., using the NDP120
neural processor by SyntiantTM [29]. Timing constraints of
hands-free communication on that processor are also met [21].

4. Experimental Setup
4.1. Database Acquisition

Two data corpora are employed in this study; the AEC challenge
database [20], and a database recorded in our lab, both sampled
at 16 kHz. These corpora include single-talk and double-talk
periods both with and without echo-path change. In the case of
no echo-path change, there is no movement in the room during
the recording. In the other case, either the near-end speaker or
the device are constantly moving during the recording. In [20],
two open sources of synthetic and real recordings are intro-
duced. The synthetic data includes 100 h, and the real data
contains 140 h of audio clips, generated from 5, 000 hands-free
devices that are used in various acoustic environments. In both
real and synthetic cases, signal-to-echo ratio (SER) and signal-
to-noise ratio (SNR) levels were distributed on [−10, 10] dB
and [0, 40] dB, respectively. Additional real recordings were
conducted in our lab to test the generalization of the system
to unseen setups and its robustness to extremely low levels of
SERs. This database is fully described in [30]. For completion,
it contains 40 h of recordings from the TIMIT [31] and Lib-
riSpeech [32] corpora with SNR levels of 32 ± 5 dB and SER
levels distributed on [−20,−10] dB.

Formally, the SER and SNR captured by the micro-
phone are defined as SER=10 log10

[
‖s (n) ‖22/‖y (n) ‖22

]
and

SNR=10 log10
[
‖s (n) ‖22/‖w (n) ‖22

]
in dB, and are calculated

with 50% overlapping time frames of 20 ms.

Table 1: Performance metrics for NLAEC.

Measure Definition

ERLE 10 log10
‖m(n)‖22
‖ŝ(n)‖22

∣∣∣
Far-end single-talk

SDR 10 log10
‖s(n)‖22

‖ŝ(n)−s(n)‖22

∣∣∣
Double-talk

4.2. Data Processing, Training, and Testing

The real and synthetic data from [20] is randomly split to create
185 h of training set and 45 h of validation set. The test set con-
tains only real data that is comprised of the remaining 10 h from
[20] and all 40 h from [30]. Each set is divided into 10 s seg-
ments that contain recordings in different setups. This leads to
frequent re-convergence during transitions between segments,
both without and with echo-path change. These sets are bal-
anced to prevent bias in results, as detailed in [30].

During training, the NN and the succeeding linear filter are
jointly optimized to learn the NN parameters. Optimization is
done by minimizing the `2 distance between the output of the
NLAEC, ŝ (n), and the desired-near-end speech s (n). To train
the NN, back-propagation through time is used with a learning
rate of 0.0005, mini-batch size of 32 ms, and 20 epochs, us-
ing Adam optimizer [33]. Also, automatic differentiation [34]
is applied, since the loudspeaker modeling involves temporal
derivatives of its input signals. Training duration was typically
15 minutes per 10 h of data on an Intel Core i7-8700K CPU @
3.7 GHz with two GPUs of type Nvidia GeForce RTX 2080 Ti.

During testing, the NN is used for inference only and is not
updated. The linear filter receives the outputs of the NN and
is continuously adapted to account for time variations of the
acoustic path. An artificial gain may be introduced by the NN,
which is compensated as shown in [35].

4.3. Performance Measures

To evaluate performance, the echo return loss enhancement
(ERLE) [36] is used. It measures echo reduction between the
degraded and enhanced signals when only a far-end signal and
noise are present. For double-talk periods, we use the signal-
to-distortion ratio (SDR) [35] that takes echo suppression and
speech distortion into account, and the perceptual evaluation of
speech quality (PESQ) [37], [38]. The PESQ is calculated over
an entire 10 s segment. The ERLE and SDR are calculated with
50% overlapping frames of 20 ms, and are defined in Table 1.

5. Experimental Results
The performance of the proposed NLAEC system is compared
against two competing NN-based methods in [18] and [19], no-
tated “Malek” and “Halimeh”, respectively. To approximate the
linear echo path, the proposed system and “Malek” are imple-
mented here with an identical adaptive linear filter mentioned in
Section 3, while “Halimeh” employs a linear echo approxima-
tion via an NN. As benchmark, the linear filter is also applied
alone, and this method is denoted by “Linear”. Measures are
reported by their mean and standard deviation (std) values, with
respect to the test set specified in each experiment. Unless stated
otherwise, the format of the results is presented as mean±std.
In this study, convergence was reached if the normalized mis-
alignment between consecutive linear echo approximations was
lower than −30 dB [39].



Table 2: Performance with no echo-path change.

Proposed Halimeh Malek Linear
ERLE 26.4±5.1 23.1±5.9 22.6±6.7 21.3±7.2
PESQ 3.17±0.4 2.88±0.5 2.64±0.5 2.02±0.7
SDR 5.37±0.4 4.83±0.6 4.37±0.8 3.01±0.9

Table 3: Performance with echo-path change.

Proposed Halimeh Malek Linear
ERLE 23.2±6.0 19.2±7.7 18.0±8.3 16.9±8.9
PESQ 2.92±0.5 2.54±0.7 2.31±0.6 1.91±0.6
SDR 5.08±0.6 4.25±0.9 3.82±0.9 2.52±1.0

Table 4: Performance before convergence.

Proposed Halimeh Malek Linear
ERLE 19.7±7.5 14.9±8.1 13.8±8.8 11.0±9.6
PESQ 2.56±0.6 1.98±0.7 1.91±0.7 1.75±0.6
SDR 4.71±0.9 3.58±1.2 3.04±1.3 1.54±1.3

Table 5: Convergence time in seconds.

Proposed Halimeh Malek Linear
4.6±0.7 6.6±1.1 7.3±1.4 7.9±1.8

Results for segments with no echo-path change are given
in Table 2 and for segments with echo-path change are given
in Table 3, both after convergence. Compared to competition,
the proposed method achieves enhanced echo cancellation in
single-talk periods according to the ERLE measure. In double-
talk periods, less speech distortion and better speech quality are
obtained, as suggested by the SDR and PESQ scores, respec-
tively. Also, a lower std measure is achieved, which projects
better stability of our method across various setups. Scenarios
of echo-path change lead to overall decline in performance rela-
tive to no echo-path change, as expected. However, our method
still prevails competition across all measures in terms of both
higher mean and lower std. Based on the above, our method al-
lows enhanced modeling of the NL echo path, which improves
both the estimation of acoustic paths with no echo-path change,
and the tracking of acoustic paths with echo-path change.

In addition, we investigate the performance before conver-
gence and during re-convergence for segments with no echo-
path change. Due to the test set segmentation described in Sec-
tion 4.2, re-convergence frequently occurs during transitions be-
tween segments. As shown in Table 4, performance is collec-
tively impeded relative to the converged case in Table 2. How-
ever, our method still prevails across all measures in terms of
both mean and std values. This indicates the high sensitivity
of competing methods to converged echo approximation, while
our model captures the behavior of the echo even from degraded
measurements. We also examine the convergence time of each
method. According to Table 5, our method achieves the short-
est convergence time compared to competition. Again, it can be
suggested that enhanced modeling of the NL echo path is ob-
tained by the proposed NN, which allows the succeeding linear
filter to be adjusted more accurately and rapidly.

Next, performance with no echo-path change is examined
in various SNR and SER levels, after convergence. As shown in
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Figure 3: Comparison of average PESQ and SDR measures in
various SNR and SER levels.

Figure 3, all methods suffer from decline in performance when
acoustic conditions deteriorate. However, our method outper-
forms competition in both PESQ and SDR measures across all
SNR and SER levels, which projects high generalization ability
to various levels of noise and echo. The relatively stable behav-
ior of the proposed method, especially in low levels of SNRs
and SERs, indicates high robustness to high levels of noise and
echo that often occur in practice. Interestingly, in severely de-
graded conditions of 0 dB SNR and of −20 dB SER, the pro-
posed method achieves roughly 1 dB higher SDR and 0.5 higher
PESQ score on average than the competition in second place.

6. Conclusion
We have presented an NLAEC system that comprises a novel
NN architecture and a succeeding standard adaptive linear fil-
ter. To describe the distortions modern hands-free devices in-
duce between receiving and playing the far-end signal, we con-
structed the NN of a power amplifier model followed by a loud-
speaker model. The adaptive filter is fed by the NN and tracks
the acoustic path from the loudspeaker output to the micro-
phone. The NN parameters are updated during training using
joint optimization of the NN and the filter. The NLAEC im-
plementation is adequate for integration on hands-free devices,
and can meet timing requirements of hands-free communica-
tion standards on a standard neural processor. Experiments with
280 h of real and synthetic recordings demonstrate the improved
performance of our method compared to competition in terms
of echo suppression and desired-signal distortion, generaliza-
tion and stability in various setups, robustness to high levels of
noise and echo, and convergence and re-convergence times.
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