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ABSTRACT

This paper studies the problem of designing square differential
microphone arrays (SDMAs). It presents a multistage approach,
which first divides an SDMA composed of M2 microphones into
(M − 1)2 subarrays with each subarray being a 2 × 2 square array
formed by four adjacent microphones. Then, differential beam-
forming is performed with each subarray in the first-stage. The
first-stage differential beamformers’ outputs are subsequently used
as the inputs of the second stage to form (M − 2)2 subarrays and a
second-stage differential beamforming is then performed. Continu-
ing this process till the (M−1)th stage, we obtain the final output of
the SDMA. The SDMA designed in such a multistage structure has
two important properties. First, the global weighting matrix is equal
to the two dimensional convolution of weighting matrices from the
first stage to the last one. Second, the global beampattern is equal to
the product of beampatterns from all stages. Consequently, we can
combine different kinds of beamformers in different stages and have
better control of the performance metrics.

Index Terms—Microphone arrays, square arrays, differential
beamforming, multistage structure, frequency invariance.

1. INTRODUCTION

Design of microphone arrays and associated beamformers to en-
hance a signal of interest from noisy observations have attracted a
significant amount of research attention [1–9]. Among the many
beamforming methods developed in the literature, the so called dif-
ferential beamforming has attracted much research and engineering
interest over the past few decades as it can form frequency-invariant
beampatterns and achieve high directivity gains with small size ar-
rays [10–14]. One of the most widely-used methods to design differ-
ential beamformers, or equivalently differential microphone arrays
(DMAs), is based on the multistage structure [15–18], in which a
first-order DMA is obtained by subtracting the outputs of two close-
ly spaced omnidirectional sensors and then a second-order DMA is
formed by subtracting the outputs of two first-order DMAs. With the
same principle, an N th-order DMA is obtained by subtracting the
outputs of two DMAs of order N − 1. With the same kind of beam-
pattern shapes, the higher the DMA order, the larger is the directivity
factor (DF). In other words, in this multistage approach, more stages
will generally lead to higher DFs, which are desirable for practical
applications. This multistage method has been extended to different
forms. For example, a method was recently developed to design D-
MAs based on null constraints on the beampattern in the short-time
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Fourier transform (STFT) domain [11], which is equivalent to the
multistage method if the number of microphone sensors is equal to
the DMA order plus one [19]. The advantage of this method is that it
brings flexibility not only for the design of differential beamformers
but also in dealing with DMA robustness by exploiting more sensors.

In [2, 20–22], a differential Kronecker product beamformer was
proposed, which decomposes a uniform linear array into two virtu-
al sub-arrays and the corresponding sub-beamformers are then de-
signed individually. In [23, 24], the multistage approach is extended
by defining a spatial difference operator, where differential beam-
formers are constructed in two main stages: Differential and beam-
forming. While it serves as the basis for DMA design and differential
beamforming, the multistage method has been investigated mainly
for linear DMAs so far. How to design DMAs with array geometries
other than linear is still a challenging problem and further efforts in
this perspective is indispensable.

This paper extends the multistage theory to the design of square
differential microphone arrays (SDMAs). We divide the design of
SDMAs composed of M2 microphones into M − 1 stages and in
every stage we deal with the design of SDMAs with only four micro-
phones. With this decomposition, the global beamforming weighting
matrix is equal to the two dimensional (2-D) convolution of weight-
ing matrices from the M − 1 stages, and the global beampattern is
equal to the product of beampatterns from all stages. The proposed
multistage approach makes the design of SDMAs easy and flexible.
Since in each stage a different beamforming method can be used, we
can combine different kinds of beamformers through this multistage
structure, thereby gaining flexible control of the beampattern shape,
directivity factor, and white noise gain of the overall SDMA.

2. SIGNAL MODEL AND PERFORMANCE MEASURES

Consider a square array, which consists of M2 (with M > 2) om-
nidirectional microphones. In the Cartesian coordinate system with
axes x, y, and z, the square array which lies on the first draqant of the
xy plane, is composed of M identical uniform linear arrays (ULAs),
with M elements each, parallel to the x axis, and the interelement in
any of these ULAs is equal to δ; this is also equivalent to having M
identical ULAs parallel to the y axis.

Let us consider the farfield and anechoic acoustic model and
denote elevation angle by θ (0 6 θ 6 π) and azimuth angle by φ
(0 6 φ 6 2π). The steering matrix Dθ,φ (ω) of size M × M can
then be expressed as

[Dθ,φ (ω)]mn = eȷϖ sin θ[(m−1) cosφ+(n−1) sinφ], (1)
m,n = 1, 2, . . . ,M,

where ȷ is the imaginary unit with ȷ2 = −1, ϖ = ωδ/c, ω = 2πf
is the angular frequency, f > 0 is the temporal frequency, c is the



speed of sound in air, i.e., c = 340 m/s, and the steering vector of
length M2 is defined as

dθ,φ (ω) = vec [Dθ,φ (ω)] , (2)

with vec[·] being an operator that stacks the columns of a matrix into
a vector. In the rest, in order to simplify the notation, we drop the
dependence on the angular frequency, ω.

Now, assume that the signal of interest (also called the desired
signal), propagates from the direction {θd, φd}. Throughout this pa-
per, we consider fixed beamforming with small values of the interele-
ment spacing, δ, of the array, like in differential [11, 15] or superdi-
rective [25] beamforming, where the main lobe points to {θd, φd}
from which the desired signal propagates. For that, we apply a beam-
forming filter h of length M2 to the outputs of the square array,
whose coefficients depend on what kind of response we want. E-
quivalently, the filter can be written as h = vec (H), where H is a
weighting matrix of size M×M , whose elements are Hmn, m, n =
1, 2, . . . ,M .

To evaluate the fixed beamformers, we use three common mea-
sures. They are

• the beampattern:

Bθ,φ (h) = dH
θ,φh (3)

=

M∑
m=1

M∑
n=1

Hmne
−ȷϖ sin θ[(m−1) cosφ+(n−1) sinφ],

where the superscript H is the conjugate-transpose operator,
• the white noise gain (WNG):

W (h) =

∣∣hHdθd,φd

∣∣2
hHh

, (4)

• and the directivity factor (DF):

D (h) =

∣∣hHdθd,φd

∣∣2
hHΓh

, (5)

where the elements of the M2 ×M2 matrix Γ are given by

(Γ)ij = sinc

[
ϖ

√
(mi −mj)

2 + (ni − nj)
2

]
, (6)

i, j = 1, 2, . . . ,M2,

with sinc(x) = sinx/x, ni = ⌈i/M⌉, mi = i−M(ni−1),
nj = ⌈j/M⌉, mj = j − M(nj − 1), and ⌈·⌉ is the ceiling
function.

Furthermore, the distortionless constraint in the direction of the
source of interest is always desired, i.e.,

hHdθd,φd = 1. (7)

3. THE MULTISTAGE STRUCTURE

The basic unit in the multistage structure is a 2 × 2 square array
formed by 4 adjacent microphones. This structure divides the square
array with M2 microphones into (M − 1)2 subarrays. In a mul-
tistage approach, a first-stage differential beamformer is applied in
each subarray, then a second-stage differential beamformer is ap-
plied to the first-stage outputs, as shown in Fig. 1. We denote the
frequency-domain signal received by the microphone at the mth row
and nth column as Xmn; then, the first-stage outputs are

Y (1)
mn =

2∑
i=1

2∑
j=1

X(m+i−1)(n+i−1)

[
H

(1)
ij

]∗
, (8)

m,n = 1, 2, . . . ,M − 1,
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Fig. 1. Illustration of the multistage structure for SDMAs.

where the superscript () is added to emphasize the stage with the
number inside the parentheses indicating the stage, the complex
weight H(1)

ij is the (i, j)th element of the first-stage weighting ma-
trix H(1) of size 2× 2, the first-stage beamforming filter is obtained
by h(1) = vec

[
H(1)

]
, and the superscript ∗ is the complex-

conjugate operator. Then, the first-stage outputs are treated as the
inputs of the second stage and, similarly, the second-stage outputs
are obtained by

Y (2)
mn =

2∑
i=1

2∑
j=1

Y
(1)

(m+i−1)(n+i−1)

[
H

(2)
ij

]∗
, (9)

m,n = 1, 2, . . . ,M − 2,

where the definition of the second-stage beamforming filter is similar
to the one of the first stage. Continuing this process, the final output
is obtained as

Y
(M−1)
11 =

2∑
i=1

2∑
j=1

Y
(M−2)
ij

[
H

(M−1)
ij

]∗
. (10)

SDMAs implemented with the multistage structure have two
prominent properties, which are listed bellow.

Property 3.1. The global weighting matrix is equal to the 2-D con-
volution of weighting matrices from the first stage to the last one,
i.e.,

H = H(1) ⋆H(2) ⋆ · · · ⋆H(M−1), (11)

where ⋆ denotes the 2-D convolution [26], H is the global weighting
matrix of size M×M , and H(i) of size 2×2 is the weighting matrix
in the ith (i = 1, 2, . . . ,M − 1) stage.



Proof. By substituting (8) into (9), we get

Y (2)
mn =

2∑
i′=1

2∑
j′=1

[
H

(2)

i′j′

]∗
×

2∑
i=1

2∑
j=1

X(m+i+i′−2)(n+j+j′−2)

[
H

(1)
ij

]∗
. (12)

If we set p = i+ i′ − 1 and q = j + j′ − 1, (12) can be written as

Y (2)
mn =

3∑
p=1

3∑
q=1

X(m+p−1)(n+q−1)×

2∑
i=1

2∑
j=1

[
H

(1)
ij H

(2)

(p−i+1)(q−j+1)

]∗
(13)

=
3∑

p=1

3∑
q=1

X(m+p−1)(n+q−1)

[
H(1) ⋆H(2)

]∗
pq

.

Continuing on, we obtain the final output as

Y
(M−1)
11 =

M∑
p=1

M∑
q=1

Xpq

[
H(1) ⋆H(2) ⋆ · · · ⋆H(M−1)

]∗
pq

=

M∑
p=1

M∑
q=1

XpqH
∗
pq, (14)

which completes the proof.

Property 3.2. The global beampattern of SDMAs is the product of
beampatterns from all stages, i.e.,

Bθ,φ (h) =

M−1∏
i=1

Bθ,φ

[
h(i)

]
. (15)

Proof. Taking the 2-D Z-transform of the convolution of weighting
matrices in the first two stages, we have

Z
[
H(1) ⋆H(2)

]
=

3∑
p=1

3∑
q=1

[
2∑

i=1

2∑
j=1

H
(1)
ij H

(2)

(p−i+1)(q−j+1)

]
z
−(p−1)
1 z

−(q−1)
2

=
2∑

i=1

2∑
j=1

H
(1)
ij z

−(i−1)
1 z

−(j−1)
2

2∑
i′=1

2∑
j′=1

H
(2)

i′j′z
−(i′−1)
1 z

−(j′−1)
2

= Z
[
H(1)

]
×Z

[
H(2)

]
, (16)

where Z[·] stands for the 2-D Z-transform. Continuing this process,
we get

Z
[
H(1) ⋆H(2) ⋆ · · · ⋆H(M−1)

]
=

M−1∏
i=1

Z
[
H(i)

]
. (17)

Since the beampattern can be written as [27]

Bθ,φ (h) = Z (H)
∣∣
z1=eȷϖ sin θ cosφ,z2=eȷϖ sin θ sinφ , (18)

it follows immediately that the global beampattern is the product of
beampatterns from all stages. This completes the proof.

Given the multistage structure, the design of SDMAs with M2

microphones can be divided into the design of M − 1 SDMAs with
four microphones, which provides a lot of flexibility.

Fig. 2. Beampatterns of the proposed beamformers in the xy plane:
(a.1) hQ and (b.1) hC; and in 3-D: (a.2) hQ and (b.2) hC. Conditions
of simulation: M = 2, δ = 1 cm, and f = 1 kHz.

4. DESIGN EXAMPLES

For the design examples, in this paper we follow the null-constrained
method in the design of circular DMAs [28], where the beampat-
tern can be steered to different azimuth angles that correspond to the
direction of sensor positions. In this example, we focus on the de-
sign of beampatterns that are symmetric about the axis φ = φd ↔
φd + π. We set the desired direction at {θd, φd} = {π/2, π/4},
so we have Bθ,φ (h) = Bθ,π/2−φ (h) and H

(i)
12 = H

(i)
21 with i =

1, 2, . . . ,M − 1. Therefore, the symmetric SDMA with four micro-
phones can be determined by solving the following linear system of
equations: 

dH
θd,φd

dH
θ1,φ1

dH
θ2,φ2

cT

h =

 1
0
0
0

 , (19)

where

c =
[
0 1 −1 0

]T
is the symmetry constraint, 0 6 θ1, θ2 6 π/2, and π/4 6 φ1, φ2 6
5π/4.

There are many other design methods that can be used, such as
the one based on series approximations [13, 29], which may achieve
a better steering flexibility, but the design process is similar.

4.1. SDMAs with One Stage

First, we consider the design of SDMAs with only one stage, i.e.,
SDMAs with four microphones. The first example is the quadrupole,
which has two distinct nulls at {θ, φ} = {π/2, π/2} and {π/2, π}.
The solution to (19) is hQ and the corresponding weighting matrix
is

HQ =
1(

e−ȷ
√
2ϖ/2 − 1

)2 [
1 −1
−1 1

]
. (20)

Substituting hQ = vec (HQ) into (4), we get the WNG as

W (hQ) =
[
1− cos

(√
2ϖ/2

)]2
. (21)



Fig. 3. Beampatterns of the proposed beamformers in the xy plane:
(a.1) hQ/Q and (b.1) hC/Q; and in 3-D: (a.2) hQ/Q and (b.2) hC/Q.
Conditions of simulation: M = 3, δ = 1 cm, and f = 1 kHz.

For the second example, we consider the design of the second-order
cardioid, which has two distinct nulls at {θ, φ} = {π/2, 3π/4} and
{π/2, 5π/4}. In this scenario, the solution to (19) is hC and the
corresponding weighting matrix is

HC =
1

2 cos
(√

2ϖ
)
− 2

[
eȷ

√
2ϖ −eȷ

√
2ϖ/2

−eȷ
√

2ϖ/2 1

]
. (22)

Substituting hC = vec (HC) into (4), we get the WNG as

W (hC) =
[
1− cos

(√
2ϖ

)]2
. (23)

Figure 2 plots the beampatterns of the proposed beamform-
ers, hQ and hC, at frequency f = 1 kHz. It is seen from
Figs 2(a.1) and (b.1) that both beampatterns satisfy the constraints.
Figure 2(a.2) also shows that the three dimensional (3-D) beam-
pattern of hQ has a null at the top, which can be verified as
B0,φ (hQ) =

∑2
m=1

∑2
n=1 HQ,mn = 0. This will be useful

in applications for suppressing the noise from the top.

4.2. SDMAs with Two Stages

Next, we consider the design of SDMAs with two stages, i.e., 3× 3
SDMAs. As discussed, SDMAs with two stages can be formed from
the combination of two SDMAs with one stage, so the first example
is the combination of two quadrupoles. The global weighting matrix
can be obtained by

HQ/Q = HQ ⋆HQ

=
1(

e−ȷ
√

2ϖ/2 − 1
)4

 1 −2 1
−2 4 −2
1 −2 1

 (24)

and the global beamforming filter is hQ/Q = vec
(
HQ/Q

)
. Substi-

tuting hQ/Q into (4), we can get the WNG:

W
(
hQ/Q

)
=

4

9

[
1− cos

(√
2ϖ/2

)]4
. (25)

The second example is the combination of the second-order cardioid
and quadrupole. The global weighting matrix can be obtained by

HC/Q = HC ⋆HQ (26)
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Fig. 4. Performance of proposed beamformers: hQ and hC with
M = 2; hQ/Q and hC/Q with M = 3. (a) DF and (b) WNG.
Conditions of simulation: δ = 1 cm.

and the global beamforming filter is hC/Q = vec
(
HC/Q

)
. Substi-

tuting hC/Q into (4), we get the WNG as

W
(
hC/Q

)
=

4
[
1− cos

(√
2ϖ/2

)]2 [
1− cos

(√
2ϖ

)]2[
2 + cos

(√
2ϖ/2

)]2 . (27)

Figures 3(a.1) and (a.2) plot the beampatterns of hQ/Q at f =
1 kHz. Compared to the quadrupole, the beamformer hQ/Q has a
similar pattern but with wider nulls. Figures 3(b.1) and (b.2) plot
the beampatterns of hC/Q. It is clearly seen that the combination of
the second-order cardioid and quadrupole leads to four nulls in the
beampattern, i.e., {θ, φ} = {π/2, π/2}, {π/2, 3π/4}, {π/2, π},
and {π/2, 5π/4}, and there is also a null at the top.

Figure 4 plots the DF and WNG of the proposed differential
beamformers, hQ, hC, hQ/Q, and hC/Q. In Fig. 4(a), we see that
the DFs remain almost constant in the studied frequency range,
which further illustrates an interesting property of SDMAs, i.e.,
frequency-invariant beampattern and DF. In Fig. 4(b), it can be seen
that the WNG of the differential beamformers is small at low fre-
quencies, indicating the problem of white noise amplification; but
the WNG increases with the frequency; so, the problem of white
noise amplification becomes less serious as the frequency increase.
If the frequency is sufficiently high, there is even white noise reduc-
tion.

5. CONCLUSIONS

We have studied the design of SDMAs with a multistage structure.
In the first stage, every four adjacent microphones are used to form
a 2 × 2 square subarray, and a differential beamformer is designed
and applied to such a subarray. Then, the outputs of the first stage
are used as the inputs of the second stage. In a similar manner, the
outputs of one stage are used as the inputs of the next one, and this
operation is continued till we get the final output. The multistage ap-
proach divides the design of SDMAs with M2 microphones into the
design of M − 1 SDMAs with four microphones, where the global
weighting matrix is equal to the 2-D convolution of weighting matri-
ces from the M−1 stages, and the global beampattern is equal to the
product of beampatterns from all stages. Clearly, with the proposed
approach, we can design different kinds of beamformers in differ-
ent stages, leading to flexible method to combine different kinds of
beamformers. Consequently, we can better control the beamforming
performance in terms of the beampattern shape, DF, and WNG.
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