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ABSTRACT

While differential beamformers have been widely used in voice com-
munication and human-machine speech interface systems to enhance
speech signals of interest, how to design such beamformers that on
the one hand can achieve the highest possible directivity factor (DF)
and on the other hand are able to obtain a certain level of white noise
gain (WNG), so that they are robust enough to sensors’ self noise
and array imperfections is still a challenging issue. This paper stud-
ies the problem of robust differential beamforming with small-size
arrays to achieve a high DF. It presents a method for the design of
differential beamformers with uniform linear arrays. We first gener-
ate differential pressure signals by applying the recently developed
forward spatial difference operator to the outputs of the array with
pressure sensors. The pressure microphone observation signals and
the differential pressure signals are then put together, and a com-
bined beamformer is subsequently designed, which consists of two
sub-beamformers, one operates on the pressure microphone obser-
vations and the other on the differential pressure signals. A new
class of combined differential beamformers are introduced, which
can achieve different levels of compromises between DF and WNG
using an adjustable parameter.

Index Terms— Microphone arrays, differential beamforming,
white noise gain, directivity factor.

1. INTRODUCTION

Microphone array beamforming has been extensively studied and
many beamforming methods have been proposed in the literature [1–
6], such as superdirective beamforming [7–9], adaptive beamform-
ing [10–12], and differential beamforming [13–19]. Among those,
differential beamforming has attracted dramatic interest [20–25].
Generally, differential beamformers have two prominent properties:
1) compact sizes, so that arrays can be easily embedded into such
small devices as wearable and portable ones [26–28]; 2) high direc-
tivity, so beamformers are effective in enhancing broadband acous-
tic signals while suppressing spatial noise and reverberation [20,29].
However, differential beamformers are also sensitive to sensors’ self
noise and array imperfections and, therefore, how to design such
beamformers that can achieve a relatively high DF with a reasonable
value of WNG is an important issue [1, 30, 31].

In [32], a new method of differential beamforming with uniform
linear arrays (ULAs) was proposed. It introduced a forward spa-
tial difference operator, where any order of the spatial difference of
the observation signals can be represented as a product of a differ-
ence operator matrix and the microphone array observations. Then,
the optimal beamforming filter was designed and applied to the dif-
ferential signals. Generally, with M microphones, the P th-order
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differential operator generates an M − P dimensional signal. A
potential way to increase the number of degrees of freedom is by
considering the new observation signal as a combination of pressure
and differential pressure observations. However, the combined dif-
ferential beamformer that is derived from maximization of either the
WNG or the DF does not give any flexibility to compromise between
DF and WNG. In this paper, we analyze the limitation of this beam-
former and present a new class of combined differential beamform-
ers. The proposed beamformers offer flexibility in compromising
between DF and WNG through an adjustable parameter.

2. SIGNAL MODEL, CONVENTIONAL BEAMFORMING,
AND PERFORMANCE MEASURES

We consider a source signal of interest (plane wave), in the farfield,
that propagates in an anechoic acoustic environment at the speed of
sound, i.e., c = 340 m/s, and impinges on a ULA consisting of M
(with M ≥ 2) omnidirectional microphones and with an interele-
ment spacing of δ. If we denote the steering angle (in this work we
consider the two dimensional case and only the azimuth angle) as θ,
the steering vector (of length M ) is then written as [33]

dθ (ω) =
[

1 e−$θ(ω) · · · e−(M−1)$θ(ω)
]T
, (1)

where  is the imaginary, $θ (ω) = ωδ cos θ/c, ω = 2πf is the an-
gular frequency, f > 0 is the temporal frequency, and the superscript
T is the transpose operator.

The frequency-domain observation signal vector of length M
can be expressed as [1]

y (ω) = [ Y1 (ω) Y2 (ω) · · · YM (ω) ]
T

= dθs (ω)X (ω) + v (ω) , (2)

where Ym (ω) is themth microphone signal,X (ω) is the zero-mean
desired source signal, and v (ω) is the zero-mean additive noise sig-
nal vector defined similarly to y (ω), dθs (ω) is the signal propa-
gation vector (note that the relative path attenuation is neglected),
which is in the same form as the steering vector, and θs is the inci-
dence angle of the source signal of interest. To simplify the nota-
tion, we drop the dependence on the angular frequency, ω, in the rest
of this paper. In differential beamforming, we assume the desired
source signal propagates from the endfire direction (θs = 0) [14,20],
so (2) becomes

y = d0X + v. (3)

To approximate the true acoustic pressure differentials with finite
differences of the microphones’ outputs, the interelement spacing,
δ, should much smaller than the acoustic wavelength, λ = c/f , i.e.,
δ � λ [14, 20].

Conventional beamforming consists of applying a complex-
valued linear filter, h of length M , to the observed signal vector
to get an estimate of the source signal, i.e.,

Z = hHy, (4)



where the superscript H is the conjugate-transpose operator. In our
context, the distortionless constraint is desired, i.e.,

hHd0 = 1. (5)

For fixed beamformers, the three commonly used performance
measures are

• the beampattern, which describes the sensitivity of the beam-
former to a plane wave impinging on the array from the di-
rection θ, is defined as

Bθ (h) = dHθ h, (6)

• the WNG, which evaluate the sensitivity of the beamformer
to some array imperfections, is defined as [34]

W (h) =

∣∣hHd0

∣∣2
hHh

, (7)

• and the DF, which quantifies the ability of the beamformer to
suppress spatial noise from directions other than the endfire
direction, is defined as [20, 35]

D (h) =

∣∣hHd0

∣∣2
hHΓdh

, (8)

where Γd is the pseudo-coherence matrix of the diffuse noise,
whose (i, j)th (i, j = 1, 2, . . . ,M ) element is

(Γd)ij = sinc [$0(i− j)] , (9)

with sinc(x) = sinx/x and $0 = ωδ/c.

3. DIFFERENTIAL BEAMFORMING THEORY

Following the framework in [32], the pth-order (p = 0, 1, . . . , P ,
with 1 ≤ P < M ) forward spatial difference of y is defined as

∆Yi = Yi+1 − Yi, i = 1, 2, . . . ,M − 1,

...

∆pYi = ∆p−1 (∆Yi) = ∆p−1Yi+1 −∆p−1Yi

=

p∑
j=0

(−1)p−j
(
p
j

)
Yi+j , i = 1, 2, . . . ,M − p, (10)

where
(
p
j

)
= p!

j!(p−j)! is the binomial coefficient. It is more

convenient to write (10) in a vector/matrix form as

∆(p)y = y(p), (11)

where

∆(p) =


cT(p) 0 · · · 0

0 cT(p) · · · 0
...

...
. . .

...
0 0 · · · cT(p)

 (12)

is a matrix of size (M − p)×M , with

c(p) =

[
(−1)p

(
p
0

)
· · · (−1)1

(
p

p− 1

)
1

]T
(13)

being a vector of length p + 1. By definition, we write ∆(0) = IM
and ∆(0)y = IMy = y, where IM is the M ×M identity matrix.

Substituting (3) into (10), we get

∆pYi = τp0 e
−(i−1)$0X + ∆pVi, i = 1, 2, . . . ,M − p, (14)

where τ0 = e−$0 − 1. In a vector form, (14) becomes

∆(p)y = τp0 d0,M−pX + v(p) = y(p), (15)

where

d0,M−p =
[

1 e−$0 · · · e−(M−p−1)$0
]T (16)

is the steering vector of length M − p at θ = 0 and v(p) = ∆(p)v.
The P th-order (P < M ) differential beamformer is designed by

applying a complex-valued linear filter, h(P ) of length M − P , to
the differential observed signal y(P ), i.e.,

Z(P ) = hH(P )y(P ) = Xfd,(P ) + Vrn,(P ), (17)

where Z(P ) is the estimate of X , Xfd,(P ) = XτP0 hH(P )d0,M−P is
the filtered desired signal, and Vrn,(P ) = hH(P )v(P ) is the residual
noise.

Now, the WNG and DF are, respectively,

W
(
h(P )

)
=
|τ0|2P

∣∣hH(P )d0,M−P
∣∣2

hH(P )∆(P )∆T
(P )h(P )

(18)

and

D
(
h(P )

)
=
|τ0|2P

∣∣hH(P )d0,M−P
∣∣2

hH(P )∆(P )Γd∆T
(P )h(P )

, (19)

and the power beampattern is∣∣Bθ (h(P )

)∣∣2 = |τθ|2P
∣∣∣hH(P )dθ,M−P

∣∣∣2 , (20)

where τθ = e−$0 cos θ − 1.

4. COMBINED DIFFERENTIAL BEAMFORMERS

Generally, the optimal P th-order differential beamformers can be
derived from the maximization of the WNG or the DF. A potential
way to achieve compromises between high DF and robustness is by
considering the observed signal vector as a combination of pressure
and difference pressure observations. For example, by taking the
first P components of y, a new observation signal vector of length
M can be constructed as

−→y =
[
Y1 Y2 · · · YP yT(P )

]T
=
[

yTP yT(P )

]T
=
−→
d 0X +−→v , (21)

where
−→
d 0 =

[
dT0,P τP0 dT0,M−P

]T (22)

is the steering vector of length P at θ = 0 and −→v = [vTP vT(P )]
T is

defined in a similar way to −→y .
Consequently, the proposed beamformer output is

Z−→
h

=
−→
hH−→y , (23)

where
−→
h is a beamforming filter of lengthM . In this case, the WNG

is

W
(−→

h
)

=

∣∣∣hH(P )

−→
d 0

∣∣∣2
hH(P )

−→
∆(P )

−→
∆T

(P )h(P )

, (24)



where

−→
∆(P ) =

[
IP 0
∆(P )

]
(25)

is an M ×M matrix with IP being the P ×P identity matrix and 0
being the P × (M − P ) zero matrix. The DF is

D
(−→

h
)

=

∣∣∣hH(P )

−→
d 0

∣∣∣2
hH(P )

−→
∆(P )Γd

−→
∆T

(P )h(P )

. (26)

4.1. Direct Optimization

A straightforward way to derive the optimal beamformers is maxi-
mizing the WNG in (24), which gives the maximum WNG (MWNG)
differential beamformer [32]:

−→
h MWNG =

(−→
∆(P )

−→
∆T

(P )

)−1−→
d 0

−→
dH

0

(−→
∆(P )

−→
∆T

(P )

)−1−→
d 0

, (27)

and maximizing the DF in (26), which gives the maximum DF
(MDF) beamformer:

−→
h MDF =

(−→
∆(P )Γd

−→
∆T

(P )

)−1−→
d 0

−→
dH

0

(−→
∆(P )Γd

−→
∆T

(P )

)−1−→
d 0

. (28)

We show that the MWNG beamformer is identical to the delay-
and-sum (DS) beamformer while the MDF beamformer is equal to
the well-known superdirective beamformer.

Proof. From (21) and (22), we have

−→y =
−→
∆(P )y, (29)

−→
d 0 =

−→
∆(P )d0. (30)

Since
−→
∆(P ) is a full-rank matrix, we have(−→

∆(P )

−→
∆T

(P )

)−1

=
(−→
∆T

(P )

)−1−→
∆−1

(P ), (31)(−→
∆(P )Γd

−→
∆T

(P )

)−1

=
(−→
∆T

(P )

)−1

Γ−1
d

−→
∆−1

(P ). (32)

Substituting (30) and (31) into (27), we get

−→
h MWNG =

(−→
∆T

(P )

)−1

d0

dH0 d0
=

(−→
∆T

(P )

)−1

d0

M
. (33)

Then, by substituting (29) and (33) into (23), the MWNG beam-
former output can be written as

Z−→
h

=
−→
hH

MWNG
−→y =

dH0
−→
∆−1

(P )

M

−→
∆(P )y

=
1

M
dH0 y = hHDSy, (34)

where hDS = d0/M is the DS beamformer [1]. So, the MWNG
differential beamformer is identical to the DS beamformer.

Substituting (30) and (32) into (28), we get

−→
h MDF =

(−→
∆T

(P )

)−1

Γ−1
d d0

dH0 Γ−1
d d0

. (35)

Then, by substituting (30) and (35) into (23), the MDF beamformer
output can be written as

Z−→
h

=
−→
hH

MDF
−→y =

dH0 Γ−1
d

−→
∆−1

(P )

dH0 Γ−1
d d0

−→
∆(P )y

=
dH0 Γ−1

d

dH0 Γ−1
d d0

y = hHSDy, (36)

where hSD =
Γ−1
d

d0

dH0 Γ−1
d

d0
is the superdirective beamformer [34].

So, the MDF differential beamformer is equal to the superdirective
beamformer.

This shows that the combined differential beamformer that is de-
rived from the maximization of the WNG (resp. DF) is theoretically
equal to the conventional DS (resp. superdirective) beamformer,
which does not offer any extra flexibility in compromising between
DF and WNG.

4.2. Separate Optimization

A certainly better way to achieve compromises is to optimize sep-
arately the two beamformers corresponding to the pressure and dif-
ference pressure observations. In this case, we set

−→
h =

[
hTP hT(P )

]T
, (37)

where hP is a beamformer of length P applied to yP and h(P ) is a
beamformer of length M − P applied to y(P ). The beamformer’s
output can be written as

Z−→
h

=
−→
hH−→y (38)

= hHP yP + hH(P )y(P )

=
(
hHP d0,P + hH(P )τ

P
0 d0,M−P

)
X + hHP vP + hH(P )v(P ).

To satisfy the distortionless constraint at the desired direction, we
require

hHP d0,P + τP0 hH(P )d0,M−P = 1. (39)

We can set

hHP d0,P = α,

hH(P )d0,M−P =
1

τP0
(1− α),

where 0 ≤ α ≤ 1 is a real coefficient that determines the level of
compromise.

For the beamformer h(P ) applied to the difference pressure ob-
servations y(P ), we attempt to maximize the corresponding WNG in
(18), which is obtained from the following optimization:

min
h(P )

hH(P )∆(P )∆
T
(P )h(P )

s. t. hH(P )d0,M−P =
1

τP0
(1− α). (40)

The solution is the P th-order MWNG differential beamformer:

h(P ),MWNG =
(1− α)

(
∆(P )∆

T
(P )

)−1
d0,M−P

(τ∗0 )P dH0,M−P

(
∆(P )∆

T
(P )

)−1

d0,M−P

, (41)

where the superscript ∗ is the complex-conjugate operator. The
beamformer h(P ) can also be derived from maximization of the DF
in (19), which is equivalent to

min
h(P )

hH(P )∆(P )Γd∆T
(P )h(P )

s. t. hH(P )d0,M−P =
1

τP0
(1− α), (42)



Fig. 1. Beampatterns of different kinds of differential beamformers
with a ULA: (a)

−→
h MWNG, (b)

−→
h MDF, (c)

−→
h C,1, (d)

−→
h C,2, (e)

−→
h C,3, and (f)

−→
h C,4. Conditions: M = 4, δ = 1.5 cm, α = 0.2,

and f = 2 kHz.

from which we deduce the P th-order MDF differential beamformer:

h(P ),MDF =
(1− α)

(
∆(P )Γd∆T

(P )

)−1
d0,M−P

(τ∗0 )P dH0,M−P

(
∆(P )Γd∆T

(P )

)−1

d0,M−P

. (43)

For the beamformer hP applied to the pressure observations yP ,
it can be derived from maximization of the WNG, which gives the
MWNG (also the DS) beamformer:

hP,MWNG =
α

P
d0,P . (44)

The beamformer hP can also be derived from maximization of the
DF, which leads to the MDF beamformer:

hP,MDF =
αΓ−1

d,Pd0,P

dH0,PΓ−1
d,Pd0,P

. (45)

where Γd,P is the pseudo-coherence matrix of the diffuse noise cor-
responding to a ULA consisting of P sensors, which is defined in a
similar way to (9).

Finally, we get four kinds of combined differential beamformers:
−→
h C,1 =

[
hTP,MDF hT(P ),MWNG

]T
, (46)

−→
h C,2 =

[
hTP,MWNG hT(P ),MWNG

]T
, (47)

−→
h C,3 =

[
hTP,MDF hT(P ),MDF

]T
, (48)

−→
h C,4 =

[
hTP,MWNG hT(P ),MDF

]T
. (49)

5. SIMULATIONS

In this section, we study the performance of the proposed differential
beamformers. We use a ULA consisting of four closely spaced mi-
crophones, with δ = 1.5 cm. The desired source signal propagates
from the endfire direction, i.e., θs = 0◦.
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Fig. 2. WNGs and DFs of different kinds of differential beamform-
ers as a function of the frequency: (a) DF and (b) WNG. Conditions:
M = 4, δ = 1.5 cm, and α = 0.2.

Figure 1 shows plots of the beampatterns (at f = 2 kHz) of
the MWNG beamformer, MDF beamformer, and the proposed four
kinds of combined differential beamformers (with a chosen parame-
ter α = 0.2). Figure 2 plots the WNG and DF of the aforementioned
beamformers as a function of the frequency, f . One can see that the
MWNG beamformer (which is equal to the DS beamformer) has a
low yet frequency dependent DF, which limits its use in practice;
but it achieves the largest WNG among all the studied beamformers.
The MDF beamformer (which is equal to the superdirective beam-
former) has three nulls in the range between 0◦ and 180◦, which
corresponds to the third-order hypercardioid [20]. While the MDF
beamformer can achieve the maximum DF, it suffers from signifi-
cant white noise amplification, particularly at low frequencies. In
comparison, the combined differential beamformers can achieve a
tradeoff performance between the MDF and MWNG beamformers,
and their DFs are frequency invariant. Consequently, by choosing a
proper value of the parameter α, we can achieve a good compromise
between a large value of DF and high value of WNG.

6. CONCLUSIONS

This paper studied the problem of robust differential beamforming
with small-size microphone arrays to achieve a high directivity. It
presented a differential beamforming method, which combines the
pressure microphone observations and differential pressure signals
obtained using the so-called forward spatial difference operator. To
achieve a good compromise between the contradicting performance
metrics of large DF values and high WNG, the two sub-beamformers
that operate on the pressure microphone observations and differential
pressure signals are optimized individually, each of which is derived
either from the maximization of WNG or DF. A new class of four
different combined differential beamformers were then introduced,
which can achieve different levels of compromises between DF and
WNG using an adjustable parameter.
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