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ABSTRACT

State-of-the-art deep-learning-based voice activity detec-
tors (VADs) are often trained with anechoic data. However,
real acoustic environments are generally reverberant, which
causes the performance to significantly deteriorate. To mit-
igate this mismatch between training data and real data, we
simulate an augmented training set that contains nearly five
million utterances. This extension comprises of anechoic
utterances and their reverberant modifications, generatedby
convolutions of the anechoic utterances with a variety of room
impulse responses (RIRs). We consider five different mod-
els to generate RIRs, and five different VADs that are trained
with the augmented training set. We test all trained systemsin
three different real reverberant environments. Experimental
results show20% increase on average in accuracy, precision
and recall for all detectors and response models, compared
to anechoic training. Furthermore, one of the RIR models
consistently yields better performance than the other mod-
els, for all the tested VADs. Additionally, one of the VADs
consistently outperformed the other VADs in all experiments.

Index Terms— Voice activity detection, reverberation,
room impulse response, deep learning

1. INTRODUCTION

Voice activity detection (VAD) aims to determine the bound-
aries in which speech exists in an observed audio signal.
State-of-the-art deep-learning-based VADs are often trained
with anechoic data. However, real-life acoustic environ-
ments are reverberant, which deteriorates VAD performance
in practical scenarios. In this study, we mitigate the mismatch
between training data and real data by generating an aug-
mented training set that integrates anechoic and reverberant
audio signals. The reverberant training corpus is generated
by convolving anechoic utterances with a simulated room
impulse responses (RIRs). Enhanced VAD in reverberant en-
vironments may benefit a variety of audio-based applications
such as speech enhancement [1–3], dereverberation [4,5] and
speech and speaker recognition [6,7].
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Deep-learning-based VADs have attained leading per-
formances during recent years, due to the ability of neural
networks to learn non-linear relations and complex patterns
of audio signals. To detect voice activity, Ariav and Cohen [8]
encoded spectral audio features via an auto-encoder that fed
a recurrent neural network. Wagner et al. [9] introduced au-
tomatic feature engineering through the convolutional layers
of a deep neural network. Leading performance was obtained
by Kim and Hahn [10] that integrated an attention model to
weight context information into existing deep learning archi-
tectures. Combined end-to-end VAD system was introduced
by Ariav et al. [11], that comprised of WaveNet for feature
extraction and a deep residual network for speech detection.
Ivry et al. [12] applied ensemble learning with two deep
encoder-decoder structures to learn the unique temporal and
spatial patterns of speech through the diffusion maps method.

In latest decades, several RIR models were proposed to
produce reverberant utterances via simulations. An extension
of the known image method [13] to arbitrary polyhedra was
first introduced by Borish [14]. Vorländer [15] suggested a
combined modeling that considers both the image method and
ray-tracing techniques. Rindel [16] employed reflection coef-
ficients that are incidence angle-dependent in the frequency
domain, to offer a more accurate characterization of a room
response. A similar model was implemented by Lam [17],
but it focused on low frequencies for more realistic boundary
conditions. Valeaua et al. [18] applied the diffusion equation
to predict room acoustics.

We consider the aforementioned five deep-learning-based
VADs [8–12] and five RIR models [14–18]. First, we show
that training these detectors with solely anechoic corpus and
testing them in real reverberant rooms and spaces leads to a
significantly impeded detection capability. To include unique
acoustic patterns of reverberant data during training, we gen-
erated an augmented training set of nearly five million utter-
ances. This extended corpus comprises of anechoic and re-
verberant signals, where the latter is generated by convolving
the anechoic signals with a variety of RIRs, generated using
a fixed RIR model. Then, all five VADs are independently
trained with this augmented training set. This experiment is
repeated for each of the five RIR models. All trained detec-
tion systems are tested in three real reverberant spaces of a



classroom, a large concert hall, and an octagon shaped li-
brary. Experimental results demonstrate that the performance
of all detectors is enhanced in each of the tested reverberant
environments, regardless of the RIR model employed during
training. Evaluation measures such as accuracy, precision
and recall increase by20% on average, compared to non-
reverberant training. An interesting outcome shows that the
leading accuracy of each detector was consistently achieved
by the Valeaua RIR model [18]. In a similar manner, the
detector introduced in Ivry [12] prevailed competing VADs
across all experiments.

The remainder of this paper is organized as follows. In
Section 2, we describe the database. In Section 3, experimen-
tal results are given. We conclude in Section 4.

2. DATABASE GENERATION

In this section, we detail the construction of two disjoint
datasets: An augmented training set and a test set. The train-
ing set contains both anechoic and reverberant utterances,
that are generated by simulating a fixed RIR model and con-
volving the anechoic data with it. In contrast, the test set is
constructed with real reverberant conditions, not simulations.

For the training stage, we employ the TIMIT [19] train-
ing dataset that contains 4620 anechoic utterances, sampled
at 16 kHz. Since this corpus is imbalanced and does not
comprise of noises, we perform several preprocessing steps.
Initially, since in TIMIT there are more speech frames than
silence frames, we manually add 2 s of silence for each
existing recording in the corpus. Next, we acquire record-
ings of stationary noises such as white and colored Gaussian
noise, musical instruments and babble. These noises are
randomly added to both speech and silence frames in signal-
to-noise-ratios (SNRs) that are distributed uniformly between
10-20 dB relative to clean anechoic speech.

We perform augmentation of this anechoic training set, so
it holds both anechoic and simulated reverberant data. To sim-
ulate varied reverberant environments,50 rectangular spaces
are considered, such that the length, width and height are uni-
formly chosen from the range3 − 20 m. This permits both
small, medium and large spaces. To cover various scenarios,
each of the50 spaces is simulated20 times, with different
locations of the speaker and the receiver. To obtain a real-
istic setting, the speaker and the microphone are limited to
height range of1− 2 m, and a distance of at least0.5 m from
each other. Each room is simulated with a reverberation time
(RT60) that is chosen uniformly from the interval0.1 − 1 s,
such that both low and high reflective surfaces are accounted
for.

Given an RIR model, we simulate50 × 20 RIR signals.
Each of these responses is convolved with the anechoic utter-
ances in [19], which results in a reverberant training set. The
augmented training set is simply a composition of the original
anechoic signals with their aforementioned reverberant mod-

ifications. Ultimately, for a given RIR model, the training set
comprises of4620× 1001 utterances.

In the test stage, we use100 anechoic utterances from the
TIMIT test dataset. To obtain the reverberant test set, convo-
lution is applied between this corpus and real recordings of
room responses. These RIRs are taken from three reverberant
environments [20] of a classroom, a large concert hall and an
octagon shaped library. For each environment,130 recordings
are available, from various locations in the room. Thus, three
test sets are formed, each comprises of100× 130 reverberant
utterances.

3. EXPERIMENTAL RESULTS

In the following experiments, voice activity detection perfor-
mance is evaluated by several measures. The receiver oper-
ating characteristic (ROC) curve is used to present a trade-
off between speech detection and false-alarm rates in various
operation points. The robustness of the VAD and the sensi-
tivity of its classifier to noises is derived by the area under
curve (AUC) measure. Accuracy, precision, recall and F1-
score [21] are also employed in this study. When combined,
all measures strongly indicate on the accuracy, generalization
and robustness abilities of the detector.

In this study, we considerFIVE VADs [8–12] and address
them as Ariav-R, Wagner, Kim, Ariav-W and Ivry, respec-
tively. Also, we employ five RIR models [14–18], and refer
them as Borish, Vorlnder, Randel, Lam and Valeaua, corre-
spondingly. We perform the following experiment, comprises
of two-stages; training stage and test stage. In the first part,
a fixed RIR model is simulated. Then, the steps described
in Section 2 are implemented with respect to the chosen RIR
model. As a result, an augmented training set is obtained.
Next, a VAD system is chosen and trained with the derived
training set. We repeat this experiment for each VAD sys-
tem and for each RIR model. Ultimately, this stage yields
5× 5 trained VAD systems. In the second stage, we test each
trained detector on three test sets, generated in three reverber-
ant environments of a classroom, a large concert hall and an
octagon shaped library, as detailed in Section 2. An experi-
ment conducted by the authors of this study showed that these
three acoustic spaces are characterized by long (1 s), medium
(0.8 s) and short (0.6 s) reverberation time, in correspondence.

By observing Fig. 1, several conclusions can be derived.
First and foremost, if the training set contains merely ane-
choic data, then the performance of all VADs is significantly
degraded when tested in real reverberant conditions. Respec-
tively, employing the suggested augmented training set that
comprises of reverberant utterances consistently enhances
VAD performance in practical scenarios. The reason is that
acoustic patterns and features highly differ between reverber-
ant and anechoic environments, and this mismatch between
the training data and real data is mitigated by the reverberant
augmented training set. Another interesting derivation isthat



the RIR model introduced by Valeaua [18] consistently leads
to the highest performance, relative to competing RIR mod-
els, for all VADs and in all tested acoustics. One explanation
is that the model proposed in [18] predicts room acoustics
better than the remaining models. It should be noticed that
training with Valeaua RIR model leads to rapid convergence
of the ROC curves and leading AUC values. These results
indicate that detectors trained with Valeaua impulse response
achieve wide margins of separation between speech and si-
lence. Therefore, these detectors experience high robustness
from noises and interferences that might shift the classifier.

Further derivations can be made based on Fig 2. The
reported results reaffirm that augmentation of the training
set with respect to Valeaua RIR model leads to enhanced
VAD performance in reverberant conditions, compared to
training that merely considers anechoic data. This enhance-
ment can be quantified by approximately20% gap across
all performance measures of accuracy, precision, recall and
F1-score. This conclusion also implies high generalization
ability of all VADs that are trained with [18], since they
consistently achieve enhanced performance for all measures
and in all three acoustic environments. Next, let us focus
on the interpretation of the accuracy, precision and recall
measures. Since the training and test sets are balanced, these
values strongly characterize the capabilities of the detector.
The accuracy measure confirms that the Valeaua model leads
to accurate detection in frames of both speech and silence.
Also, the enhanced precision measure correspondingly low-
ers the false-positive value, i.e., non-speech frames has lower
probability of being classified as speech. This result highly
benefits applications such as speech enhancement, in which
interferences may lead to severe degradation in practical
performance. In a similar manner, the increase in recall de-
creases the false-negative measure. Thus, loss of information
that typically lies in speech frames is obviated with higher
probability.

Additional results are depicted in Fig. 3. Here, we focus
on Ivry VAD [12] that achieved leading performance in all
previous experimental results of this study. It can be de-
duced that this detector obtains a state-of-the-art performance
of 95% in all reported measures when trained with Valeaua
RIR model, which prevails competing VAD methods. Also,
this detection system obtains leading accuracy, precisionand
recall measures across all tested reverberant setups. This
outcome points on high generalization ability, robustnessfor
noises and interferences, and prime accuracy in correctly
distinguishing speech from silence.

4. CONCLUSIONS

In this study, we have considered five different state-of-the-art
deep-learning-based voice activity detectors that are trained
with merely anechoic data. We have shown that these detec-
tors experience substantial degradation in performance when
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Fig. 1. Detection rate versus false alarm rate in a reverberant
setup of a classroom. Comparison is made between the five
different training RIR models. VADs (top to bottom): Ivry,
Ariav-W, Kim, Wagner and Ariav-R.
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Fig. 2. Performance of the five VADs in real reverberant con-
ditions of (top to bottom): classroom, large concert hall, oc-
tagon library. Comparison is made between employing ane-
choic training (dark) and augmented training with Valeaua
RIR model (light).

tested in reverberant conditions. To mitigate this mismatch,
we simulated an augmented training set that contains both an
anechoic corpus and its reverberant transformation, wherethe
latter was calculated by convolution of the anechoic corpus
with a fixed room impulse response model. This extension
permitted detectors to learn unique patterns and audio-based
features that represent reverberant settings. All five detec-
tion systems were trained with this augmented training set.
This experiment was performed independently with five dif-
ferent room impulse response models. The training augmen-
tation led to enhanced performance of all VAD systems when
tested in three different real-life reverberant spaces. Improve-
ment was obtained in terms of both accuracy, generalization
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Fig. 3. Performance of Ivry VAD [12] in real reverberant
conditions of (top to bottom): classroom, large concert hall,
octagon library. Comparison is made between the five RIR
training models.

and robustness abilities. Also, an average increase of20%

was held in accuracy, precision and recall measures with re-
spect to non-reverberant training corpus. This study has also
shown that the response model introduced by Valeaua [18]
consistently leads to the best performance, regardless of the
detector and the tested acoustic environment. That and more,
the VAD introduced by Ivry [12] has achieved leading perfor-
mance across all experiments. In future work, additional as-
pects such as feature engineering and dedicated architecture
will be addressed in order to further enhance Ivry detector and
adjust it for practical and reverberant acoustic scenarios.
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