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ABSTRACT

A common approach for acoustic source localization is based
on finding the maximum of a spatial cost function, such as
the steered response power (SRP) function. The shape of the
SRP highly depends on the constellation of sensors within the
array layout, and have a direct impact on the performance.
Thus, an array may be specifically designed to produce high
localization performance and small error regions, especially
when a spatially prioritized source location distributionfunc-
tion is taken into account. We introduce a new measure called
power spread, which quantifies the localization error region.
Then, we propose a greedy algorithm for a sparse array de-
sign, aiming to minimize the power spread for optimal local-
ization error region in a given area of interest. Simulations
demonstrate that the proposed design, compared to standard
linear array design and random array design, obtains superior
performance in terms of power spread and localization error,
with a reasonable computational effort.

Index Terms— Source localization, greedy sparse design

1. INTRODUCTION

A common approach in acoustic source localization (ASL)
[1, 2, 3, 4, 5] is based on defining a spatial cost function that
is calculated from the signals received at different synchro-
nized microphones, and searching for a spatial point in which
this function obtains its maximal value. A well-known such
function, called steered response power (SRP) [6, 7, 8, 9, 10],
calculates the output power of a delay-and-sum (DAS) beam-
former matched to each point in space. The properties of this
power function, and especially the sharpness of its peak in the
source’s vicinity, highly depends on the positioning of mi-
crophones within the array, and have a significant effect on
the size of localization error regions in noisy environments.
Furthermore, these properties varies significantly for differ-
ent source locations. Thus, an array design for optimized
localization performance in a certain area of interest, must
take into account the SRP properties produced by the array
for sources in that area. A previous work dealing with the
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error based optimization of sensor positioning was proposed
in [11], in which an error predictor is estimated by the delay
variance of each sensors pair, and the array design is done by
a Monte Carlo approach for minimizing the average localiza-
tion standard deviation in particular positions. We propose
a new measure for quantifying the error region which called
power spread. This measure enables an evaluation of the ar-
ray expected localization performance in terms of the likely
error region size. Based on this measure, a greedy algorithm
for a sparse array design is developed, aiming to minimize the
power spread around the true location peak, thus optimizing
the expected localization performance, for a set of randomly
chosen source locations drawn from a spatially prioritization
distribution function.

2. ASL USING SRP

2.1. Signal Model

For simplicity, we may focus on the 2-D localization case, al-
though the models and algorithms in this paper may easily be
generalized to the 3-D case. We considers(t) to be an acous-
tic signal generated from a point source at locationr s ∈ R

2.
The signal is received in an array ofM synchronized micro-
phones, with locations{rm}Mm=1 ∈ R

2. The mathematical
model for themth microphone signal after propagation is

xm(t) = s(t− τm), (1)

whereτm = ||r s − rm||/c is the propagation delay from the
source to themth microphone,c is the speed of sound and
|| · || is the euclidean norm. By arbitrarily setting the first mi-
crophone to be a reference, the model can be rewritten as [12]

ym(t) = x1(t− τm1) + nm(t), (2)

whereτm1 = τm − τ1 = [||r s − rm|| − ||r s − r1||] /c is the
difference between propagation delays from the source to the
mth microphone and to the first microphone, andnm(t) is
a noise term assumed to be a statistically independent white
gaussian noise with uniform variance, i.e,

n(t) = [n1(t), · · · , nM (t)]
T ∼ N (0, σ2IM ). (3)

2.2. Steered Response Power

Given a hypothesized source locationr ∈ R
2 it is im-

mediate to calculate the corresponding propagation delays



{τm(r )}Mm=1. The SRP of locationr is defined as the output
power of a DAS beamformer that matches this location, i.e.
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By transforming to the frequency domain, replacing the order
of summation and integration, and taking a desired frequency
range, Eq. (4) can be written as [7],[12]

PSRP(r) =
∫ fmax

fmin

M
∑

k=1

M
∑

l=1

Yk(f)Y
∗

l (f)e
j2πfτkl(r)df, (5)

where (·)∗ represents complex conjugate andYm(f) =
e−j2πfτm1X1(f) + Nm(f). The SRP function is maxi-
mized when the hypothesized location coincides with the
actual source location (i.e.r = r s). Thus, the localization
problem can be formulated as

r̂ s = argmax
r

PSRP(r). (6)

An efficient and elegant method for calculating the SRP func-
tion by means of geometric projection ofM−dimensional
complex vectors is introduced in [12].

3. POWER SPREAD AND ERROR REGION

3.1. Array Effect on Error Region

In a noisy environment, the SRP function blurs and the iden-
tification of the maximum position becomes vulnerable to er-
rors, which is highly effected by the shape of the SRP function
in the source’s vicinity. An example to this effect is encoun-
tered in distant source localization using a uniform linearar-
ray (ULA), for which the acoustic wavefront is assumed to be
planar upon reaching the array, resulting in the steering vector

dULA(r s, f)≈
[

1, e−j2π δ

c
sin θ, · · · , e−j2π(M−1) δ

c
sin θ

]

, (7)

whereδ andθ are the array spacing and angle to the source,
respectively. The distance independent steering vector pro-
duces a large error region along theθ axis. Using numerous
smaller ULAs with different deployment angles, the error re-
gion can be significantly reduced, as illustrated in Fig. 1.

3.2. Power Spread and Distribution Ellipse

A quantification of the error region size is needed to analyze
the effect of the array constellation. Inspired by the confi-
dence ellipse concept [13, 14, 15], herein we introduce the
power spread quantity, which is a measurement for the er-
ror region. The idea is to estimate an ellipse of 2 standard
deviations in each orthogonal axis of high power values, de-
scribing the significant probability mass of source location es-
timation, and then to quantify its size. Unlike a confidence
ellipse of localization error, calculated after multiple local-
izations of a single source, our proposed ellipses are based
on the spatial power function that the array induces. Given
PSRP(r ), the maximal power valueM is found, and a thresh-
old value is set as a predefined percentage of the maximum

(e.g. T = 0.9M). All grid points r = (x, y) in which the
power is greater than the threshold are stacked into vectors,

(x, y) = {(xi, yi), i = 1, 2, ... : PSRP(xi, yi) > T }. (8)

The covariance matrix of the joint set(x, y) is

Cx,y=
1

N − 1

N
∑

i=1

[

(xi − x̄)2 (xi − x̄)(yi − ȳ)
(xi − x̄)(yi − ȳ) (yi − ȳ)2

]

, (9)

whereN is the number of elements and̄x, ȳ are the arith-
metic averages ofx, y respectively. The eigenvalue decom-
position of the covariance matrix isCx,y = UΣU−1, where

U =

[

u11 u12

u21 u22

]

,Σ =

[

σ2
1 0
0 σ2

2

]

, andσ1 ≥ σ2 so

that u1 = [u11, u21]
T is defined as the principle axis. The

distribution ellipse of the set is defined as
[

xe(t)
ye(t)

]

=

[

x̄
ȳ

]

+

[

cosα − sinα
sinα cosα

] [

xc(t)
yc(t)

]

, (10)

whereα = tan−1
(

u11

u21

)

, and

[xc(t), yc(t)] = [2σ1 cos(t), 2σ2 sin(t)], t ∈ [0, 2π]. (11)

The power spread is defined as the area of the distribution
ellipse, i.e.

S = 4πσ1σ2. (12)

The power functionPSRP(r), and thus the power spread, de-
pend on both the source and the microphone locations. Thus,
the power spread can be written asS(r s, {rm}Mm=1). Figure 1
illustrates these quantities.
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Fig. 1. SRP function (colormap) produced for a given true source
location (black circle), and a nine microphones array (black squares),
as a single ULA (left) and as three distributed subarrays (right). The
estimated distribution ellipse (black line) and the estimated source
location (black cross) are also presented.

4. SPARSE ARRAY DESIGN ALGORITHM

4.1. Motivation

When designing a microphone array for localization, the main
performance measure is the error region. The array is often
constrained to a certain size, number of microphones and re-
gion of deployment. Moreover, in many cases there is some



kind of area of interest for which the localization performance
is more important. An example of such a case may occur
when the array placement is constrained to a corner of some
room, and the main area of interest is the center of this room
(which corresponds to a certain range of angles). This area of
interest will be described by a spatial priority function. We
hereby propose an algorithm for a greedy sparse array design,
subject to a given spatial priority function, that iteratively se-
lects microphones which statistically maximize the localiza-
tion performance.

4.2. Algorithm

We begin with a spatial priority function0 ≤ W (r) ≤ 1,
where lower values indicate low priority for sources located in
the corresponding locations, and vice versa. Based onW (r),
we then randomly chooseNrs source locations, each located
in r s(i), i ∈ {1, 2, ..., Nrs}. We define a grid ofM poten-
tial microphone locations{rg(j)}Mj=1, determined according
to given physical deployment constraints. The algorithm’s
goal is to chooseK ≪ M microphone locations that max-
imize the average localization performance for all the chosen
Nrs source locations, simultaneously. This is done iteratively,
where in each stepk ∈ {1, ...,K} we begin with a fixed ar-
ray{ra}(k−1) of k−1 microphones from the predefined grid,
and add a new microphone from the remaining grid, such that
the average power spread over all sources locationsr s(i), i ∈
{1, 2, ..., Nrs}, is minimized for the next step. The array is
initialized with the first microphone{ra}(1) = rg(j1), where
j1 ∈ {1, 2, ...,M} is chosen deterministically or randomly.
We also initialize an array containing the remaining (unused)
grid indices, i.eJrem = {1, 2, ...,M}\{j1}. In each follow-
ing stepk ∈ {2, 3, ...,K}, we initialize a histogramh(k) as
an all-zeros vector of sizeM . We then iterate over all source
locationsr s(i), i ∈ {1, ..., Nrs}. For each locationr s(i) we
define an areaAi as a square of sizeDx×Dy[m] with r s(i) as
its center. We temporarily add each of the remaining micro-
phones to the previous array, i.e.{ra}(k−1,j) = {ra}(k−1) ∪
rg(j), j ∈ Jrem, and calculate the SRP in the areaAi and its
corresponding power spread,Si,j , S(r s(i), {ra}(k−1,j)).
We then may search for the indexĵ ∈ Jrem for which the
power spreadSi,j is minimized, and increase the histogram
h(k) value in the index̂j, thus counting the corresponding
new microphone choosing occurrences over different source
locations. After going through all source locations, we search
for the index̂l of the histogram’s maximal value (or the low-
est indexed maximal value if there is a tie), and we update the
designed array by adding the microphone of corresponding
index, i.e.{ra}(k) = {ra}(k−1) ∪ rg(l̂).

We also remove this index from the remaining grid, i.e.
Jrem = Jrem\{l̂}. The new array locally minimizes the av-
erage power spread over all source locations, with respect to
all possible new microphones added to the previous array. At
the end ofK iterations, we get the array{ra}(K), with K
microphones. The algorithm is described in Alg. 1.

Algorithm 1 Minimal Spread Algorithm (MSA)

Input: W (r), K, {rg}, Nrs

Output: array constellation{ra}(K)

1: Randomly chooseNrs source locations{rs}
2: Initialize array:{ra}(1) = rg(j1), j1 ∈ 1, 2, ...,M
3: Initialize remaining grid:Jrem = {1, 2, ...,M}\{j1}
4: for k = 2 to K do
5: Initialize histogramh(k) as an all-zeros vector of sizeM
6: for i = 1 to Nrs do
7: Retrieve:rs(i) = (xi

s, y
i
s) ∈ {rs}

8: Define source area:

Ai =
{

r = (x, y) : |x− xi
s| ≤ Dx/2, |y − yis| ≤ Dy/2

}

9: for j ∈ Jrem do
10: Retrieve:rg(j)
11: Append:{ra}(k−1,j) = {ra}(k−1) ∪ rg(j)
12: Calculate the SRP within areaAi

13: Estimate the power spread:Si,j , S(r s(i), {ra}(k−1,j))
14: end for
15: Find minimal:ĵ = argminj{Si,j}

16: Increase histogram:h(k)(ĵ) = h(k)(ĵ) + 1
17: end for
18: Find highest historgram value:l̂ = argmaxl{h(k)(l)}

19: Update current array:{ra}(k) = {ra}(k−1) ∪ rg(l̂)
20: Update remaining grid:Jrem = Jrem\{l̂}
21: end for

5. SIMULATIONS AND RESULTS

5.1. Simulations

The performance analysis of our algorithm was done with
dedicated simulations in MATLAB environment. A clean
speech signal recorded at8kHz was taken as the source’s sig-
nal, and the received signals were simulated by a suitable
propagation delay from the source location,r s, to each mi-
crophone with addition of a white gaussian noise. The signals
were processed in the STFT domain, calculated with non-
overlapping64ms (512 samples) hamming windows, as done
in [12]. The simulation parameters were chosen as follows:
microphone array grid of9×3 points, with1.5m×1m spacing
between adjacent microphones, for a total number ofM = 27
points in a range of12m × 2m, source area ofDx = Dy =
4m, power spread threshold ofT = 0.85max{P}, resolution
of SRP calculation of0.24m× 0.2m, 0[dB] SNR, andNrs =
10 random source locations. The bottom middle microphone
was set as the spatial point(0, 0)m, thus defining the coordi-
nates system. For spatial priority functions, two cases were
examined: (1) Uniform priority over[−12, 12]m× [5, 20]m,
and (2) angle priority, withθ∼N(62, 20)[◦], R∼U [5, 20]m.
This geometry is illustrated in Fig. 2. The uniform prior-
ity generalize the problem to a non-prioritized array design,
while the angle priority exemplifies a non-trivial, reasonable
area of interest. The algorithm was compared with two oppo-
nents: (1) Randomly chosen array, (2) uniform linear array,
through two relevant criteria: (1) Average power spread[m2],
(2) average estimation error(||r̂ s − r s||) [m]. The random ar-



ray was averaged overNrand = 10 different array randomiza-
tions, in which it remained unchanged for all source locations.
For the ULA, we began with the center microphone and added
an adjacent microphone from left and right alternatively. This
entire process was repeated forNrep = 10 array design repe-
titions, and the average performance was examined.
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Fig. 2. Angle spatial priority function (colormap), with theM = 27

microphone locations grid (black squares) andNrs = 10 randomly
chosen locations (black circles).

5.2. Results

The algorithm running time for the described parameters was
measured to 35.1 minutes on an Intel i5 dual core PC, with
8GB RAM, and the results are hereby presented. An example
of the source locations randomization for angle priority, with
respect to theM microphone locations grid, is illustrated in
Fig. 2. Histograms of microphones index choosing for the
first two steps are illustrated in Fig. 3. It is seen that in each
step there is a preferred microphone which reduces the aver-
age power spread the most.
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Fig. 3. Histograms of microphone choosing based on the minimal
power spread, for the first two steps. The microphone that is added
to the array at each step is that with the highest histogram value.

The distribution ellipses that are calculated in the first
three steps are presented in Fig. 4, for the three compared de-
sign approaches. The steepest reduction in the power spread
is achieved using the MSA. The algorithm performance with

comparison to linear and random designs is shown for the
angle and uniform priority distributions in Fig. 5. For any
numberk ≤ K = 9 of microphones, the MSA outperforms
linear and random designs in both power spread and average
estimation error (when only the power spread is directly op-
timized by the algorithm), for both priority functions. The
MSA advantage in the uniform case shows its effectiveness
when there is no area prioritization as well.
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Fig. 4. SRP in the source’s areaA1, for the first 3 steps (left to
right) of the MSA, random and linear designs (top to bottom).The
distribution ellipse (black line) is shown along with the true (black
circle) and estimated (black cross) locations.
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Fig. 5. Average power spread and estimation error as a function of
microphones number, for the MSA, random and linear designs -for
angle (left) and uniform (right) spatial priority functions.

6. CONCLUSIONS

In this paper, we introduced a method for quantifying an er-
ror region size in acoustic source localization, called power
spread. We then used this quantity in a new greedy algorithm
for sparse array design, which minimizes the average error re-
gion in a given area of interest described by a spatial priority
function. The proposed algorithm was compared to linear and
random array designs, and demonstrated a significant advan-
tage in terms of error region and average estimation error.
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