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ABSTRACT error based optimization of sensor positioning was progose

A common approach for acoustic source localization is baselfl [11]; in which an error predictor is estimated by the delay
on finding the maximum of a spatial cost function, such ag/arance of each sensors pair, and the array design is done by
the steered response power (SRP) function. The shape of tRdvonte Carlo approach for minimizing the average localiza-
SRP highly depends on the constellation of sensors witkin thfion standard deviation in particular positions. We prapos
array layout, and have a direct impact on the performancé Néw measure for quantifying the error region which called

Thus, an array may be specifically designed to produce higROWer spread. Thi; measure enables an evaluation of Fhe ar-
localization performance and small error regions, esfigcia 12y expected localization performance in terms of the yikel

when a spatially prioritized source location distributionc- ~ €/TOr region size. Based on this measure, a greedy algorithm
tion is taken into account. We introduce a new measure callef@r @ sparse array design is developed, aiming to minimiee th
power spread, which quantifies the localization error negio POWer spread around the true location peak, thus optimizing

Then, we propose a greedy algorithm for a sparse array gdhe expected Iocalizgtion performance, for a set of rquloml
sign, aiming to minimize the power spread for optimal local-chosen source locations drawn from a spatially prioritzrat

ization error region in a given area of interest. Simulagion distribution function.

Qemonstrate th{;\t the proposed design, cpmpareq to standgrd 2 ASL USING SRP

linear array design and random array design, obtains sauperi ional Model

performance in terms of power spread and localization erro?'l' Signal Mode

with a reasonable computational effort. For simplicity, we may focus on the 2-D localization case, al
Index Terms— Source localization, greedy sparse desigrinough the models and algorithms in this paper may easily be

generalized to the 3-D case. We consiglg) to be an acous-

tic signal generated from a point source at locatipre R?.

The signal is received in an array &f synchronized micro-

. ; hp ; .
A common approach in acoustic source localization (ASLPhONes, with locationgr,, },,_, & R®. The mathematical

[1, 2, 3, 4, 5] is based on defining a spatial cost function tha't“Odel for themth microphi)ne signal after propagation ils
is calculated from the signals received at different syachr om(t) = s(t — 7m), @

nized microphones, and searching for a spatial point in whicwherer,, = |[rs — r.m||/cis the propagation delay from the
this function obtains its maximal value. A well-known such spource to thenth microphone is the speed of sound and
function, called steered response power (SRP) [6, 7, 8,]9, 10| - || is the euclidean norm. By arbitrarily setting the first mi-
calculates the output power of a delay-and-sum (DAS) beantrophone to be a reference, the model can be rewritten as [12]
former matched to each point in space. The properties of this
power function, and especially the sharpness of its pediein t Ym(t) = 21t = T ) + 1m (1), 2)
source’s vicinity, highly depends on the positioning of mi-Wherer,,1 = 7, — 71 = [[[rs — I'n|[ — [[rs — r1][] /c is the
crophones within the array, and have a significant effect oflifference between propagation delays from the sourceeto th
the size of localization error regions in noisy environnsent mth microphone and to the first microphone, angd(t) is
Furthermore, these properties varies significantly fofedif @ noise term assumed to be a statistically independent white
ent source locations. Thus, an array design for optimize@aussian noise with uniform variance, i.e,

. . . . . 2
localization performance in a certain area of interest, tmus nt) = [n(t), -, nu(t)] ~N(Q 0% Inr). 3)
take into account the SRP properties produced by the arra
for sources in that area. A previous work dealing with th

. . . 9
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1. INTRODUCTION

.2. Steered Response Power




{Tm(r)}M_,. The SRP of location is defined as the output (e.g. 7 = 0.9M). All grid pointsr = (z,y) in which the
power of a DAS beamformer that matches this location, i.e. power is greater than the threshold are stacked into vectors

2
(—7 ):{( X i)7.:1727"' : P ( (2 i) >T} (8)
Psrp(r / Zym — T LY Lir Yi)y b SRP (T3,

The covariance matrix of the joint sgt, y) is
By transforming to the frequency domain, replacing the orde 1
of summation and integration, and taking a desired freguenc Coy= N_1 1 [ .

range, Eq. (4) can be written as [7],[12]

Fmax MM . where N is the number of elements andy are the arith-
Por(0) = [N S W (e O, ) gl

metic averages af, y respectively. The eigenvalue decom-

dt. (4

(xi —2)* (2 —)(yi —¥)
“B-9)  i-g? ] + ©)

ke position of the covariance matrix &,, = UXU !, where
where (-)* represents complex conjugate aig,(f) = Ul Uia o2 0 7
e~ 927 fTm X1 (f) + N (f). The SRP function is maxi- U = { Ugl  Usgg ] = { 0 o2 ] ando, > oy SO
mized when the hypothesized location coincides with th?hatu = [u11,uz1]7 is defined as the principle axis. The
actual source location (i.et = rg). Thus, the localization d|str|but|on ellipse of the set is defined as
problem can be formulated as zelt) = cos0 — sina 2e(t)
rs—argmraxPSRp(r). (6) { velt) } [ 7 ]4{ sina  cosa } { ve(t) }7 (10)

An efficient and elegant method for calculating the SRP func-

u
tion by means of geometric projection af —dimensional wherea = tan™ ( 11) and

u

complex vectors is introduced in [12]. [wc(t), Y (t)] = [201 cos(t), 202 sin(t)],t € [0,27].  (11)
3. POWER SPREAD AND ERROR REGION The power spread is defined as the area of the distribution
3.1. Array Effect on Error Region ellipse, i.e.
S =4noi0,. (12)

In a noisy environment, the SRP function blurs and the iden-
tification of the maximum position becomes vulnerable to erThe power functiorPsgp (r), and thus the power spread, de-
rors, which is highly effected by the shape of the SRP fumctio pend on both the source and the microphone locations. Thus,
in the source’s vicinity. An example to this effect is enceun the power spread can be written$@ s, {r,,}*._,). Figure 1
tered in distant source localization using a uniform lin@ar illustrates these quantities.

ray (ULA), for which the acoustic wavefrontis assumed to be
planar upon reaching the array, resulting in the steeriatpve

o b . 18 g 15 -49. Spread=4.8nf
dULA(rsuf)%[lue _]27rcsm97.“ e j2m(M l)cbme}, (7) a # p /

,,

20

whered and@ are the array spacing and angle to the source élo
respectively. The distance independent steering vectsr pr
duces a large error region along thaxis. Using numerous

smaller ULAs with different deployment angles, the error re ]
gion can be significantly reduced, as illustrated in Fig. 1. x [m]

3.2. Power Spread and Distribution Ellipse

Fig. 1. SRP function (colormap) produced for a given true source
A quantification of the error region size is needed to analyzgycation (black circle), and a nine microphones array (okguares),
the effect of the array constellation. Inspired by the confi-as a single ULA (left) and as three distributed subarraght{)i The
dence ellipse concept [13, 14, 15], herein we introduce thestimated distribution ellipse (black line) and the estanasource
power spread quantity, which is a measurement for the efecation (black cross) are also presented.
ror region. The idea is to estimate an ellipse of 2 standard
deviations in each orthogonal axis of high power values, de-
scribing the significant probability mass of source locats- 4. SPARSE ARRAY DESIGN ALGORITHM
t|rr_1at|on, and t_hen_ to quantify its size. Unlike a (?onfldence4_1_ Motivation
ellipse of localization error, calculated after multiptecél-
izations of a single source, our proposed ellipses are bas&hen designing a microphone array for localization, themai
on the spatial power function that the array induces. Givemperformance measure is the error region. The array is often
Psgp(r), the maximal power valug is found, and a thresh- constrained to a certain size, number of microphones and re-
old value is set as a predefined percentage of the maximugion of deployment. Moreover, in many cases there is some



kind of area of interest for which the localization performoa  Algorithm 1 Minimal Spread Algorithm (MSA)
is more important. An example of such a case may occur
when the array placement is constrained to a corner of soma’-: W), K. {rg}, Nr.

Yy ple : 4 _ tput: array constellatior{r, } (¥
room, and the main area of interest is the center of this room
(which corresponds to a certain range of angles). This drea 01: Randomly choosé/.. source locationgr s }
interest will be described by a spatial priority functioneW 2: Initialize array:{ra}() =r(j1),j1 € 1,2, .., M
hereby propose an algorithm for a greedy sparse array desigﬁj :Q:t'zl'ie;fom;'g'gg gridSrem = {1,2,..., MI\{j1}
subject to a given spatial priority function, that iteraliy se- Initialize histogramrh(*) as an all-zeros vector of siZg
lects microphones which statistically maximize the |lazali for i = 1to Ny, do

6
tion performance. 7 Retrieverr (i) = (x5, ys) € {rs}
8: Define source area:

4.2. Algorithm A ={r=(z,y): |z — 2| < Do/2,ly — yi| < Dy/2}
We begin with a spatial priority functiof < W(r) < 1, 1%{ for é;rigsg}rd?,)
where lower values indicate low priority for sources lockte : P J(k—l,j) _ (k—1) .
) . X 11: Append:{rq} ={ra} Urg(y)
the corresponding locations, and vice versa. Based/dn),  12: Calculate the SRP within are;
we then randomly choos¥,., source locations, each located 13: Estimate the power spreasl; ; £ S(rs(i), {ra}(*=19)

in r5(i),i € {1,2,..., N, }. We define a grid ofi/ poten- 5 eFri]r?dﬂ;:inimal:j — argmin; {S;;}

tial r_nlcrophon_e location$r (j)};Z;, de_termlned accoro_llng _ Increase histogran() (7) = h(*) () + 1

to given physical deployment constraints. The algorithm’s;7:  end for

goal is to choosdl < M microphone locations that max- 18:  Find highest historgram valug:= arg max; {h(*) (1)}

imize the average localization performance for all the emos 19:  Update current arrayra}(®) = {ra}* =1 urg (i)

N, source locations, simultaneously. This is done iteragivel 20:  Update remaining gridfrem = Jrem \{L}

where in each step € {1, ..., K'} we begin with a fixed ar- 21: end for

ray {r,}*=1 of k — 1 microphones from the predefined grid,

and add a new microphone from the remaining grid, such that

the average power spread over all sources locatfigiig i € 5. SIMULATIONS AND RESULTS

{1,2,..., N,_}, is minimized for the next step. The array is 5.1. Simulations

initialized with the first microphonér,}(*) = r,(j1), where

Jj1 € {1,2,..., M} is chosen deterministically or randomly. The performance analysis of our algorithm was done with
We also initialize an array containing the remaining (umg)se dedicated simulations in MATLAB environment. A clean
grid indices, i.e/iem = {1,2,..., M}\{j1}. In each follow-  speech signal recorded&kHz was taken as the source’s sig-
ing stepk € {2,3,..., K}, we initialize a histogranh*) as  nal, and the received signals were simulated by a suitable
an all-zeros vector of siz&/. We then iterate over all source propagation delay from the source locatiog, to each mi-
locationsr(i),i € {1,..., N, }. For each locatiom(i) we  crophone with addition of a white gaussian noise. The sgynal
define an area; as a square of siz@,, x D,,[m] withrs(i) as ~ were processed in the STFT domain, calculated with non-
its center. We temporarily add each of the remaining microeverlappings4ms (512 samples) hamming windows, as done
phones to the previous array, if.,}*~17) = {r,}(*=1 U in [12]. The simulation parameters were chosen as follows:
re(j),7 € Jrem, and calculate the SRP in the aréaand its ~ microphone array grid ¢f x 3 points, withl.5m x 1m spacing
corresponding power spreafl; ; £ S(ry(i), {r.}(*~%7)).  between adjacent microphones, for a total numberot 27

We then may search for the indgxe J,e, for which the ~ Points in a range of2m x 2m, source area ob, = D, =
power spread; ; is minimized, and increase the histogram 4, power spread threshold 8f = 0.85 max{ P’}, resolution
h(" value in the indexj, thus counting the corresponding ©f SRP calculation 0.24m > 0.2m, 0[dB] SNR, andV,, =
new microphone choosing occurrences over different sourch fandom source locations. The bottom middle microphone
locations. After going through all source locations, werska  Was et as the spatial poifit, 0)m, thus defining the coordi-
for the index of the histogram’s maximal value (or the low- Nat€s system. For spatial priority functions, two caseswer
est indexed maximal value if there is a tie), and we update th§@mined: (1) Uniform priority ovef—12, 12Jm x [5, 20]m,

designed array by adding the microphone of correspondingnd (2) angle priority, with~N (62, 20)[°], R~U5, 20]m.
index, i.e.{r,}(® = {r,}*-1 u rg(i). his geometry is illustrated in Fig. 2. The uniform prior-

ity generalize the problem to a non-prioritized array desig

‘while the angle priority exemplifies a non-trivial, reasblea

grea of interest. The algorithm was compared with two oppo-
ents: (1) Randomly chosen array, (2) uniform linear array,

through two relevant criteria: (1) Average power sprgad,

(2) average estimation errQifs — ry||) [m]. The random ar-

We also remove this index from the remaining grid, i.e
Jrem = rCm\{i}. The new array locally minimizes the av-
erage power spread over all source locations, with respect
all possible new microphones added to the previous array.
the end ofK iterations, we get the arrajr,} (), with K
microphones. The algorithm is described in Alg. 1.



ray was averaged ové¥..,,q = 10 differentarray randomiza- comparison to linear and random designs is shown for the
tions, in which it remained unchanged for all source log®&tio angle and uniform priority distributions in Fig. 5. For any
For the ULA, we began with the center microphone and addedumberk < K = 9 of microphones, the MSA outperforms

an adjacent microphone from left and right alternativelyisT linear and random designs in both power spread and average
entire process was repeated fér., = 10 array design repe- estimation error (when only the power spread is directly op-
titions, and the average performance was examined. timized by the algorithm), for both priority functions. The
MSA advantage in the uniform case shows its effectiveness
when there is no area prioritization as well.
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Fig. 2. Angle spatial priority function (colormap), with the = 27 B "
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Fig. 4. SRP in the source’s are4,, for the first 3 steps (left to
right) of the MSA, random and linear designs (top to bottoifhe
5.2. Results distribution ellipse (black line) is shown along with theer(black
The algorithm running time for the described parameters wa%’m/e) and estimated (black cross) focations.
measured to 35.1 minutes on an Intel i5 dual core PC, with
8GB RAM, and the results are hereby presented. An examp’

. . ’ e Angle Priority Performance Uniform Priority Performance
of the source locations randomization for angle prioritithw §40°\ o—MSA b o—MSA
respect to thél/ microphone locations grid, is illustrated in ) —&—Random | —S&— Random
. . . K . 8200 % Linear & 20 Linear
Fig. 2. Histograms of microphones index choosing for the £ L\‘\u—‘ e
. . . . . . n = 5 4 B
first two steps are illustrated in Fig. 3. It is seen that inheac o ——5=3 @ 0 :
step there is a preferred microphone which reduces the ave z 4 6 08 102 o4 6 8
Number of Microphones Number of Microphones
age power spread the most. 4 4
— ‘ —O—MSA T —6— MSA
05 . E & —+&— Rando = —&— Random
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8 2 [ ‘ ] Fig. 5. Average power spread and estimation error as a function of
§ 3 k=3 . microphones number, for the MSA, random and linear desidas -
3 i r i angle (left) and uniform (right) spatial priority functien
g1t ]
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6. CONCLUSIONS

Fig. 3. Histograms of microphone choosinglbased on the minima|, this paper, we introduced a method for quantifying an er-
power spread, for the f’r‘c’.t two steps. Thq micr ophone thalded region size in acoustic source localization, called @ow
to the array at each step is that with the highest histogrduneva

spread. We then used this quantity in a new greedy algorithm
for sparse array design, which minimizes the average egror r
The distribution ellipses that are calculated in the firstgion in a given area of interest described by a spatial pyiori
three steps are presented in Fig. 4, for the three compared denction. The proposed algorithm was compared to linear and
sign approaches. The steepest reduction in the power spresahdom array designs, and demonstrated a significant advan-
is achieved using the MSA. The algorithm performance withtage in terms of error region and average estimation error.
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