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Abstract
Microphone array beamforming has been widely used in a wide range of acoustic applications. To make it
effective in suppressing noise, yet being able to preserve the fidelity and quality of broadband speech signals of
interest, the beamformer needs to be designed with high spatial gain, consistent responses at different frequen-
cies, and high robustness against array imperfections. A great deal of efforts have been devoted in the literature
to achieving this goal, among which the Kronecker product beamforming method, developed recently for linear
and rectangular microphone arrays, has demonstrated some interesting properties. In this work, we extend this
approach to three-dimensional arrays. Focusing on cuboid shape of microphone arrays, we first decompose
the global beamforming filter into a Kronecker product of two sub-beamforming filters. Algorithms are then
developed to design each sub-beamforming filter so that the global beamformer has a high directivity factor and
can be steered flexibly in the three-dimensional space.
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1 INTRODUCTION
Microphone arrays can be used to solve many important acoustic problems in a wide range of applications. A
critical component of a microphone array system is the so-called beamforming, which is basically a spatial filter
applied to the array observation signals to estimate the signal of interest while suppressing noise and interfer-
ences [1–3]. While beamforming has been studied for many decades in the field of sensor arrays, extending
those methods developed for narrowband applications to microphone arrays is not trivial as microphone array
beamforming needs to suppress noise and meanwhile preserve the fidelity of the speech and acoustic signals of
interest, which are broadband in nature and their frequencies span from 20 Hz to 20 kHz. Among many beam-
forming methods developed in the literature [5–10], the Kronecker product beamforming developed recently
has demonstrated some promising results in terms of performance, robustness, and complexity [2, 11–20]. This
method basically decomposes the global beamforming filter into the Kronecker product of two sub-filters. It has
been demonstrated, based on linear and rectangular microphone arrays, that by optimizing these sub-filters, the
global beamforming filter can be made to achieve high spatial gain and consistent responses over frequencies
with high robustness [2, 21].
In this paper, we extend the Kronecker product beamforming from two-dimensional microphone arrays to a par-
ticular type of three-dimensional microphone arrays, i.e., uniform cuboid arrays. We first show how to decom-
pose the global beamforming filter into the Kronecker product of two sub-beamforming filters: one corresponds
to a linear array and the other corresponds to a rectangular grid array. We then derive algorithms on how to
design those two sub-beamforming filters. It is shown that the developed Kronecker product beamformer can
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Figure 1. Illustration of the Kronecker product decomposition of a uniform cuboid array into a uniform rectan-
gular subarray and a uniform linear subarray.

achieve a high directivity factor (DF) with a reasonable white noise gain (WNG), and its beampattern has good
steering flexibility in the three-dimensional space.

2 SIGNAL MODEL, PROBLEM FORMULATION, AND PERFORMANCE MEA-
SURES

Let us consider a uniform cuboid microphone array as illustrated in Fig. 1. We choose the sensor at the top-left
inner corner as the origin of the Cartesian coordinate system. The array consists of Mz parallel uniform rect-
angular array along z (negative) axis and each rectangular array consists of Mx sensors along the x (negative)
axis and My sensors along the y (negative) axis. The interelement spacing along each axis is denoted as δx,
δy, and δz , respectively.
Assume that, in an anechoic acoustic environment, a far-field source signal (plane-wave) propagates from the
direction {θ, φ} at the speed of sound, i.e., c = 340 m/s, and impinges on the cuboid array, where the elevation
angle θ (0 ≤ θ ≤ π) is measured downward from the z axis and the azimuth angle φ (0 ≤ φ ≤ 2π) is measured
counterclockwise from the x axis. The steering matrix of size Mx × My corresponding to the rectangular array
can be written as [2, 7]

Dxy (ω, θ, φ) = dx (ω, θ, φ) d
T
y (ω, θ, φ) , (1)

where

dx (ω, θ, φ) =
[

1 e−j
ωδx

c
sin θ cos φ · · · e−j

(Mx−1)ωδx
c

sin θ cos φ

]T

, (2)

dy (ω, θ, φ) =
[

1 e−j
ωδy

c
sin θ sin φ · · · e−j

(My −1)ωδy

c
sin θ sin φ

]T

(3)

are the steering vectors associated with the linear subarrays along the x and y axes, respectively, j is the
imaginary unit with j2 = −1, ω = 2πf is the angular frequency, and f > 0 is the temporal frequency.
Applying the vectorization operation to (1), we can deduce that

dxy (ω, θ, φ) = vec [Dxy (ω, θ, φ)] = dy (ω, θ, φ) ⊗ dx (ω, θ, φ) , (4)

where ⊗ denotes the Kronecker product operation. Then, the steering matrix of size (MxMy)×Mz correspond-
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ing to the cuboid array can be written as

D (ω, θ, φ) =
[

dxy (ω, θ, φ) e−j
ωδz

c
cos θ

dxy (ω, θ, φ) · · · e−j
(Mz −1)ωδz

c
cos θ

dxy (ω, θ, φ)
]

= dxy (ω, θ, φ) d
T
z (ω, θ) , (5)

where

dz (ω, θ) =
[

1 e−j
ωδz

c
cos θ · · · e−j

(Mz −1)ωδz
c

cos θ

]T

(6)

is the steering vector of length Mz associated with the linear subarray along the z axis
[
Note that dz (ω, θ) is

independent of the azimuth angle φ
]
. Similarly, applying the vectorization operation to (5) yields

d (ω, θ, φ) = vec [D (ω, θ, φ)] = dz (ω, θ) ⊗ dxy (ω, θ, φ) . (7)

The conventional beamforming is performed by applying a complex-valued filter, h (ω) of length M =
MxMyMz , to all the microphone observations to get an estimate of the desired signal [7]. Assume that the
desired source is incident from the direction {θd, φd}. The distortionless constraint in the desired look direction
is required, i.e.,

h
H (ω) d (ω, θd, φd) = 1, (8)

where the superscript H is the conjugate-transpose operator.
Three important performance measures are commonly used to evaluate the performance of beamformers: the
beampattern, the WNG, and the DF. The beampattern describes the sensitivity of the beamformer to a plane
wave; it is defined as [3]

B [h (ω) , θ, φ] = h
H (ω) d (ω, θ, φ) . (9)

The WNG evaluates the sensitivity of the array to some of its imperfections; it is defined as [4]

W [h (ω)] =

∣∣hH (ω) d (ω, θd, φd)
∣∣2

hH (ω) h (ω)
. (10)

The DF quantifies how the microphone array performs in the presence of spatially diffuse noise; it is defined
as [4]

D [h (ω)] =
|B [h (ω) , θd, φd]|

2

1

4π

∫ π

0

∫ 2π

0
|B [h (ω) , θ, φ]|

2
sin θdφdθ

=

∣∣hH (ω) d (ω, θd, φd)
∣∣2

hH (ω) Γ (ω) h (ω)
, (11)

where

Γ (ω) =
1

4π

∫ π

0

∫ 2π

0

d (ω, θ, φ) d
H (ω, θ, φ) sin θdφdθ. (12)

3 KRONECKER PRODUCT BEAMFORMERS
As seen from (7), the steering vector of the cuboid array can be decomposed into the Kronecker product of the
counterparts of two subarrays. Consequently, we propose to decompose the global beamforming filter as

h (ω) = hz (ω) ⊗ hxy (ω) , (13)
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where hz (ω) is the sub-beamforming filter of length Mz corresponding to the linear subarray along the z axis
and hxy (ω) is the sub-beamforming filter of length MxMy corresponding to the rectangular subarray along the
x − y plane.
Now, the beampattern of the Kronecker product beamformer can be written as

B [h (ω) , θ, φ] = [hz (ω) ⊗ hxy (ω)]
H

[dz (ω, θ) ⊗ dxy (ω, θ, φ)]

=
[
h

H
z (ω) dz (ω, θ)

] [
h

H
xy (ω) dxy (ω, θ, φ)

]
= B [hz (ω) , θ] × B [hxy (ω) , θ, φ] , (14)

where B [hz (ω) , θ] and B [hxy (ω) , θ, φ] are the beampatterns corresponding to the linear and rectangular sub-
arrays, respectively. It can be easily observed that the global beampattern of the cuboid array is the product of
the individual beampatterns of the two sub-beamforming filters.
The distortionless constraint becomes[

h
H
z (ω) dz (ω, θd)

] [
h

H
xy (ω) dxy (ω, θd, φd)

]
= 1. (15)

Let us set the distortionless constraint for each sub-beamforming filter as

h
H
z (ω) dz (ω, θd) = h

H
xy (ω) dxy (ω, θd, φd) = 1, (16)

so that the global distortionless constraint in (15) is satisfied.
The WNG of the Kronecker product beamformer is deduced as

W [h (ω)] =

∣∣[hH
z (ω) dz (ω, θd)

] [
h

H
xy (ω) dxy (ω, θd, φd)

]∣∣2

[hz (ω) ⊗ hxy (ω)]
H

[hz (ω) ⊗ hxy (ω)]

=

∣∣hH
z (ω) dz (ω, θd)

∣∣2

hH
z (ω) hz (ω)

×

∣∣hH
xy (ω) dxy (ω, θd, φd)

∣∣2

hH
xy (ω) hxy (ω)

= W [hz (ω)] × W [hxy (ω)] , (17)

where W [hz (ω)] and W [hxy (ω)] are the WNGs corresponding to the linear and rectangular subarrays, respec-
tively. It is clear that the WNG of the cuboid array is the product of the WNGs of the two subarrays.
Now, we can design the two sub-beamforming filters individually, and thereby obtaining the global beamformer
[22–24].
Apparently, there are different ways to design the sub-beamforming filters. For example, we may design a su-
perdirective beamformer for the rectangular subarray, which is obtained by maximizing the DF while considering
the distortionless constraint [2, 25–27]. The result is as follows:

hxy,SD (ω) =
Γ

−1
xy (ω) dxy (ω, θd, φd)

dH
xy (ω, θd, φd) Γ

−1
xy (ω) dxy (ω, θd, φd)

, (18)

where

Γxy (ω) =

⎡
⎢⎢⎢⎣

Γ1 (ω) Γ2 (ω) · · · ΓMy
(ω)

Γ2 (ω) Γ1 (ω) · · · ΓMy−1 (ω)
...

...
...

...
ΓMy

(ω) ΓMy−1 (ω) · · · Γ1 (ω)

⎤
⎥⎥⎥⎦ (19)

is a symmetric block Toeplitz matrix of size (MxMy) × (MxMy) and Γmy
(ω) , my = 1, 2, . . . , My are sym-

metric Toeplitz matrices of size Mx × Mx whose (i, j)th element is defined as

[
Γmy

(ω)
]

ij
= sinc

⎡
⎣ω

√
(i − j)2δ2

x + (my − 1)2δ2
y

c

⎤
⎦ , (20)
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Figure 2. Beampatterns of the Kronecker product beamformer with a cuboid array for different values of θd: (a)
θd = 0◦, (b) θd = 30◦, (c) θd = 45◦, and (d) θd = 90◦. The upper subplots show the three-dimensional beam-
patterns and the lower subplots show the corresponding two-dimensional beampatterns for φ = 0◦. Conditions
of simulations: Mx = My = 4, Mz = 8, δx = 1 cm, δy = δz = 2 cm, φd = 0◦, and f = 2 kHz.

Figure 3. Beampatterns of the Kronecker product beamformer with a cuboid array for different values of φd: (a)
φd = 180◦, (b) φd = 210◦, (c) φd = 240◦, and (d) φd = 270◦. The upper subplots show the three-dimensional
beampatterns and the lower subplots show the two-dimensional beampatterns for θ = 90◦. Conditions of simu-
lations: Mx = My = 4, Mz = 8, δx = 1 cm, δy = δz = 2 cm, θd = 90◦, and f = 2 kHz.

with sinc(x) = sin x/x, and the subscript SD stands for “superdirective.”
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Figure 4. Performance of the Kronecker product beamformer with a cuboid array for different values of θd: (a)
DF and (b) WNG. Conditions of simulations: Mx = My = 4, Mz = 8, δx = 1 cm, δy = δz = 2 cm, and
φd = 0◦.

Superdirective beamformers generally have low WNG at low frequencies, leading to the so-called white noise
amplification problem. To deal with this problem, let us consider the beamformer that has the largest WNG for
the linear subarray, which corresponds to the delay-and-sum beamformer:

hz,DS (ω) =
1

Mz

dz (ω, θd) . (21)

Thus, the global beamformer is obtained as

h (ω) = hz,DS (ω) ⊗ hxy,SD (ω) . (22)

This beamformer can achieve a high value of DF while maintaining a reasonable level of WNG for robustness.
Meanwhile, it has advantages in computational efficiency since the dimension of the matrix to invert is MxMy

instead of MxMyMz [2]. Moreover, the designed beampattern can be steered to different desired directions in
the three-dimensional space as will be shown in the following section.

4 SIMULATIONS
In this section, we examine the performance of the Kronecker product beamformer through simulations. We
consider a uniform cuboid array with Mx = 4, My = 4, Mz = 8, δx = 1 cm, δy = 2 cm, and δz = 2 cm.
Figure 2 plots the beampatterns of the proposed beamformer for θd ∈ {0◦ , 30◦, 45◦, 90◦}, φd = 0◦, and
f = 2 kHz, where the upper subplots show the three-dimensional beampatterns and the lower subplots show
the two-dimensional beampatterns for φ = 0◦. Figure 3 plots the beampatterns of the proposed beamformer
for φd ∈ {180◦, 210◦, 240◦, 270◦}, θd = 90◦, and f = 2 kHz, where the lower subplots show the two-
dimensional beampatterns for θ = 90◦. Clearly, the Kronecker product beamformer can form a main beam to
different directions, which implies that the proposed beamforming method has good steering flexibility in the
three-dimensional space.
Figure 4 plots the WNG and the DF of the Kronecker product beamformer as a function of frequency, f , for
θd ∈ {0◦, 45◦, 90◦}, and φd = 0◦. It is clearly seen that the proposed beamformer can achieve a high DF while
maintaining a reasonable level of WNG. It is also observed that the DF increases while the WNG decreases as
θd increases.
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5 CONCLUSIONS
We have proposed a Kronecker product beamforming method for cuboid microphone arrays. This method first
decomposes the uniform cuboid array into linear and rectangular subarrays so that the steering vector of the
cuboid array is written as a Kronecker product of the steering vectors of the two subarrays. The global beam-
forming filter is, in a similar manner, also decomposed as a Kronecker product of two sub-beamforming filters.
As such, we can design the two sub-beamforming filters individually. In this way, the design of the global
beamforming filter becomes very flexible since each sub-beamforming filter can be designed using different
methods such as the superdirective beamformer, delay-and-sum beamformer, differential beamformer, and adap-
tive beamformer. Then we demonstrated a design of a global beamforming filter by combining superdirective
and delay-and-sum beamformers. Simulation results verified that the designed beamformer can achieve high DF
and a reasonable level of WNG while facilitating good steering flexibility in the three-dimensional space.
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