Multi-Modal Deep Neural Networks With Applications to Voice Activity Detection and Guided Super Resolution

Ido Ariav, Supervised by Prof. Israel Cohen, May 2023

OUTLINE

Introduction

- Voice Activity Detection (in a nutshell)
- Guided Super Resolution
 - O Background
 - Transformer based guidance
 Cross-attention transformer
 - **Discussion & Future Work**

INTRODUCTION

Why Multimodal?

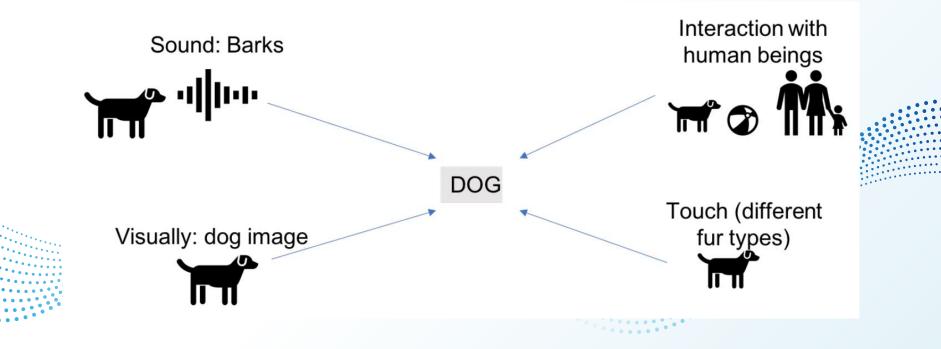
if it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck

But if it only *looks* like a duck...

But if it only *sounds* like a duck...

If you're out for a walk this month, and you hear something that sounds like ducks quacking, don't expect to see ducks. The call of a male wood frog fools a lot of people. The all-male frog chorus is revving up now, and wood frog males are the first to announce their availability to females.

We need multiple modalities



We need multiple modalities

ရြာ OpenAl	Research - Product - Developers - Safety Company -	Search	
			.:
		Ruby Chen	
	We've created GPT-4, the latest milestone in OpenAI's effort in scaling up deep learning. GPT-4 is a		
	large multimodal model (accepting image and text inputs, emitting text outputs) that, while less capable than humans in many real-world scenarios, exhibits human-level performance on various		
	professional and academic benchmarks.		

Luckily, it's a Multimodal world

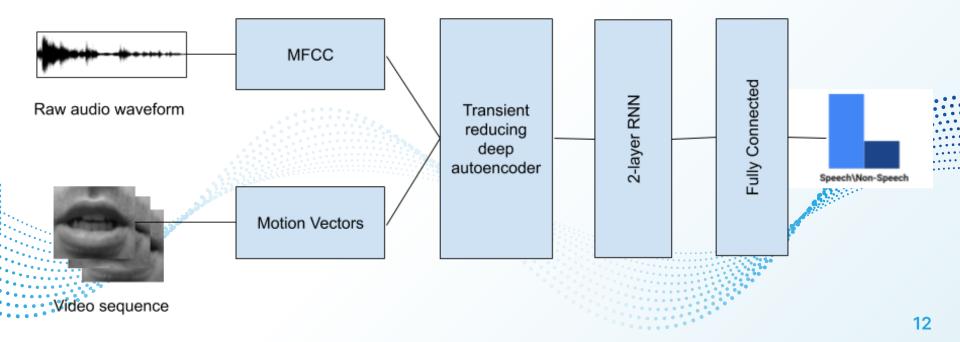
Voice Activity Detection

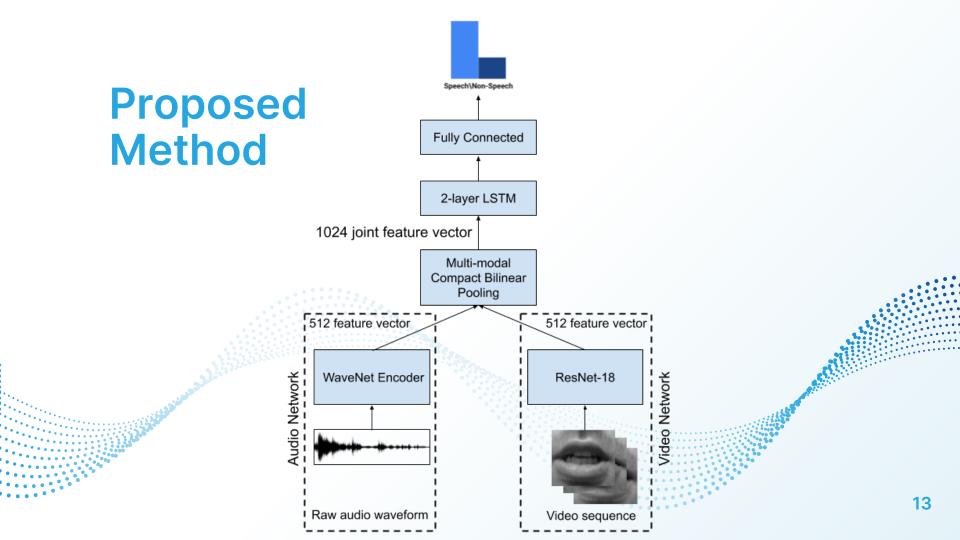
Publications

"A deep architecture for audio-visual voice activity detection in the presence of transients", Elsevier Signal Processing, 2017

"An End-to-End Multimodal Voice Activity Detection Using WaveNet Encoder and Residual Networks", IEEE Journal of Selected Topics in Signal Processing, 2019

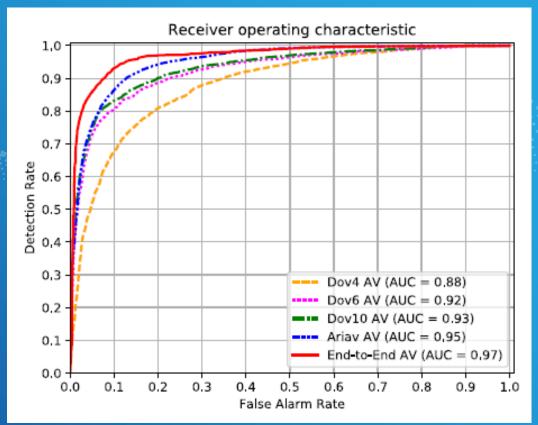
A multimodal deep neural architecture





Experimental Results

Comparison of our method to "Audio-Visual Voice Activity Detection Using Diffusion Maps" by Dov et al. and our previous work



Publications

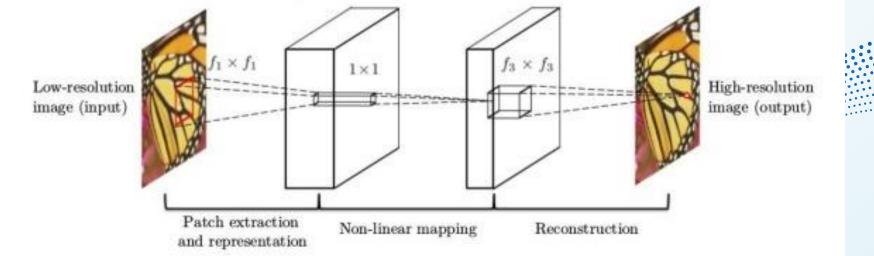
Depth Map Super-Resolution via Cascaded Transformers Guidance", Frontiers in Signal Processing, 2022

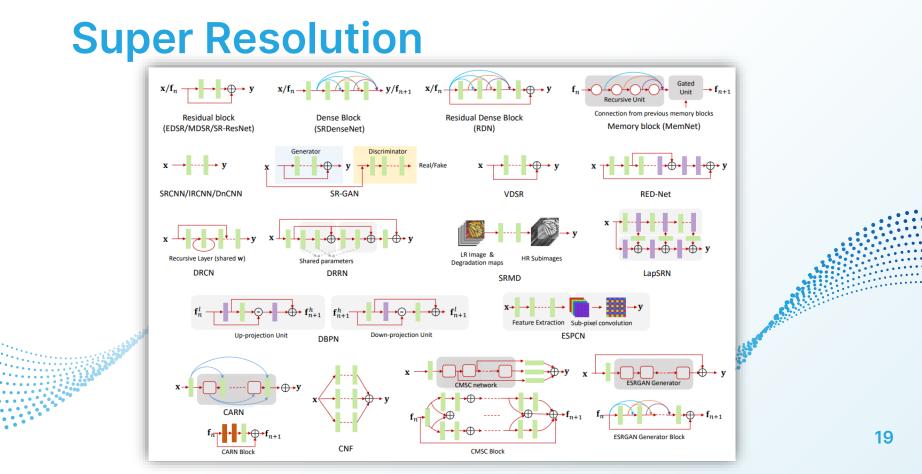
"Fully Cross-Attention Transformer for Guided Depth Super Resolution", MDPI Sensors Special Issue on Deep Learning Technology and Image Sensing, 2023

Super Resolution

Super Resolution

Since 2015 (SRCNN), deep learning took over the field of SR



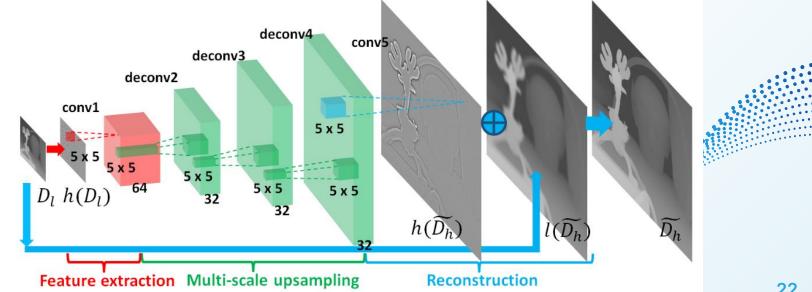


Depth plays a vital role in many real-life scenarios -

However, depth sensors usually have a low spatial resolution



Existing SR methods gave limited results when applied to DSR



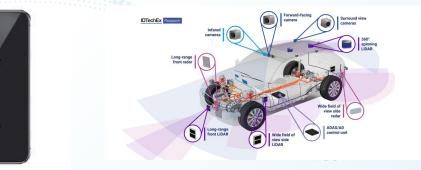
Why? - intrinsic differences between color and depth images. depth maps:

O generally contain less textures and more sharp boundaries

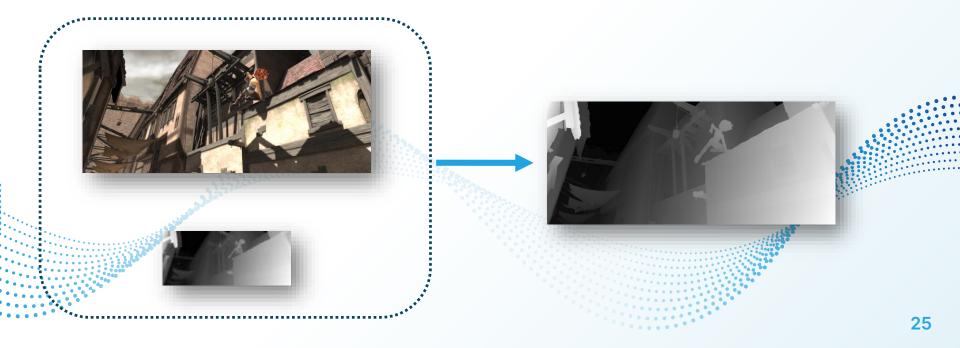
 are usually degraded by noise due to the imprecise acquisition sensors

The difficulty in capturing HR depth maps further increases the challenge

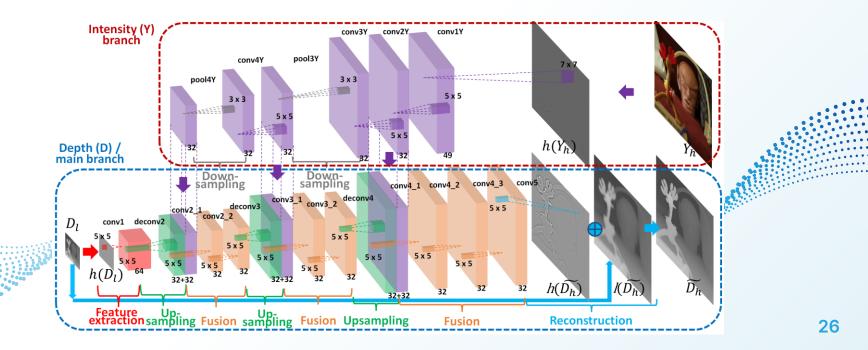
- Solution Adding Another Modality
- incorporate HR image as guidance, since they contain plenty of useful high-frequency components which assist the process of DSR



Solution - Adding Another Modality



Adding Another Modality –



Drawbacks -

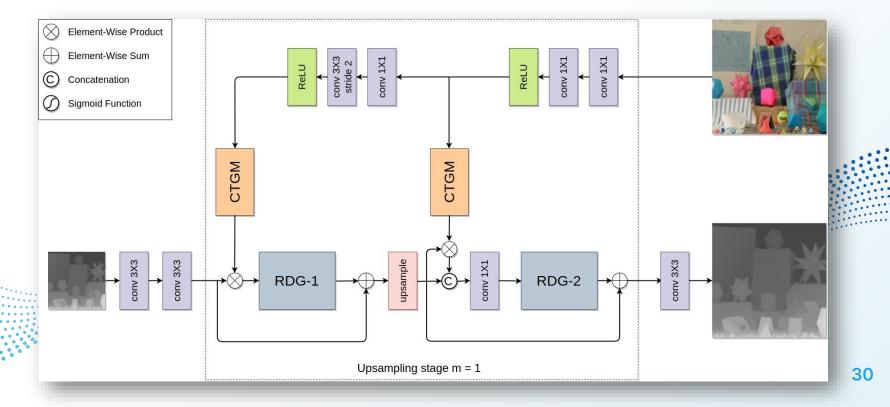
O Texture copying -

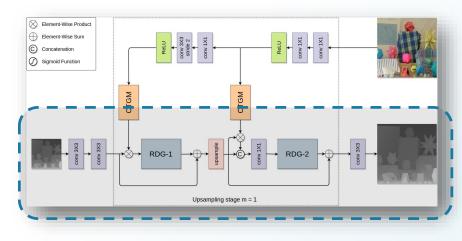
Naïve guidance
 Limited receptive field

Proposed Method *"Depth Map Super-Resolution via Cascaded Transformers Guidance", Frontiers in Signal Processing, 2022*

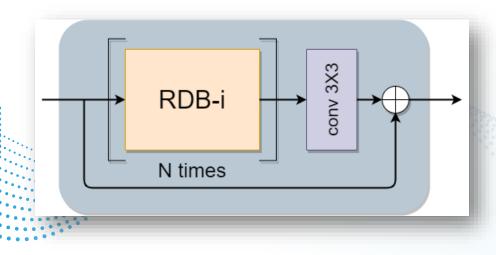
- Depth upsampling via *Residual Dilated Groups*
- a cascaded transformer-based guidance mechanism from the intensity branch
- linear memory constraints applicable even for very large images

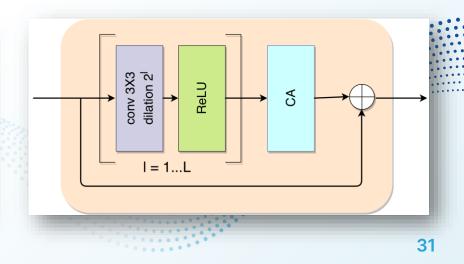
can handle different input resolutions - applicable to realworld tasks



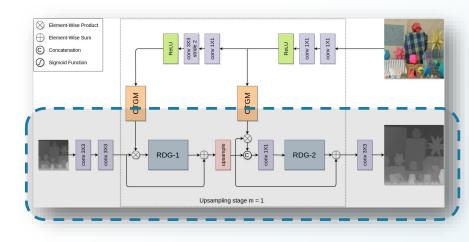


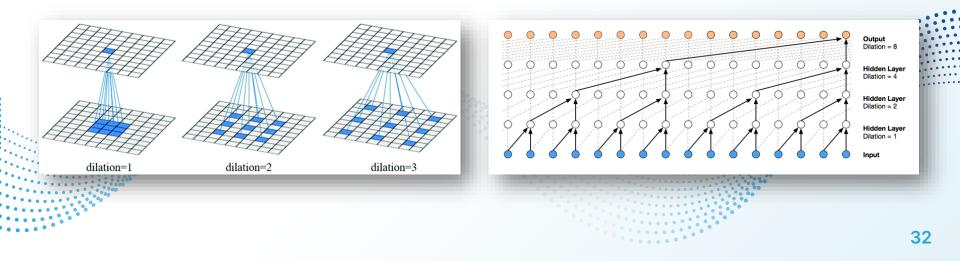
Depth Upsampling Branch -

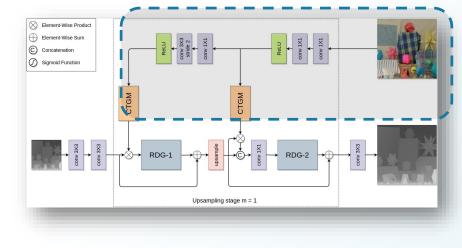




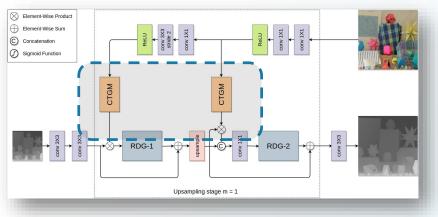
dilated convolutions increase the receptive field







simple convolutions with appropriate strides to do downsampling + ReLU



Cascaded Transformer Guidance Module -

 used to scale the corresponding depth features in the depth branch by element-wise multiplication

A Short intro on Vision transformers

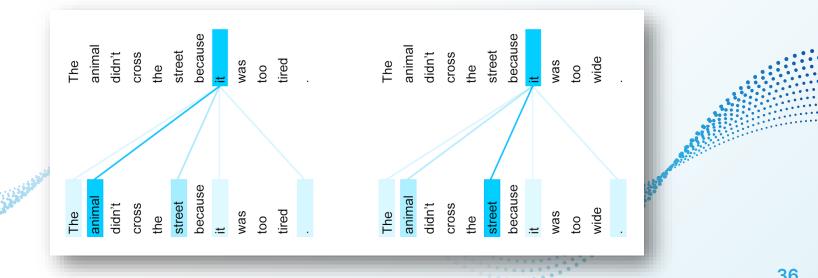
What is Attention?

Transformers originated in text\NLP regimes
 The Attention mechanism enables the transformers to have extremely long-term memory
 A transformer model can "attend" or "focus" on all

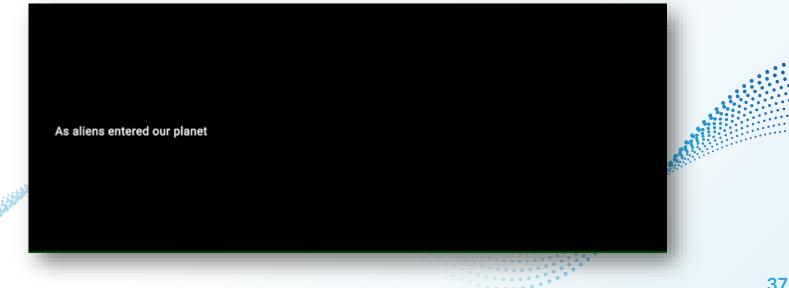
 A transformer model can "attend" or "focus" on all previous tokens

A Short intro on Vision transformers

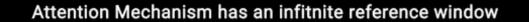
What is Attention?



What is Attention?

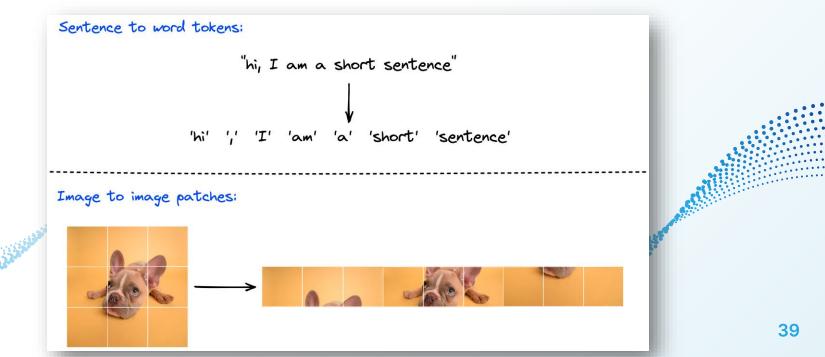


What is Attention?

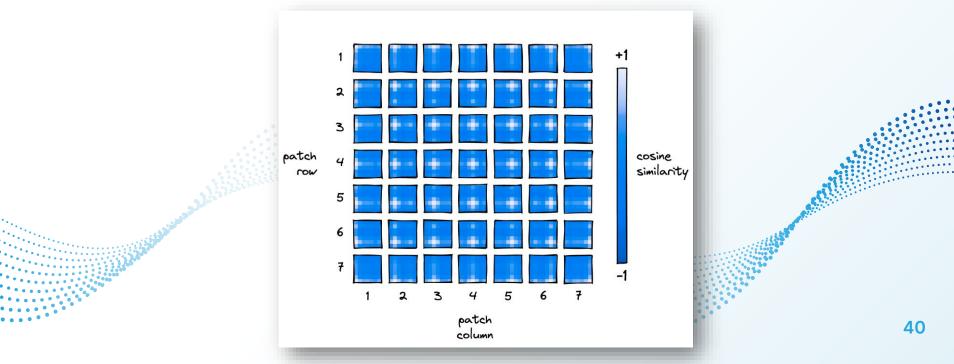


As aliens entered our planet and began to colonize earth a certain group of extraterrestrials ...

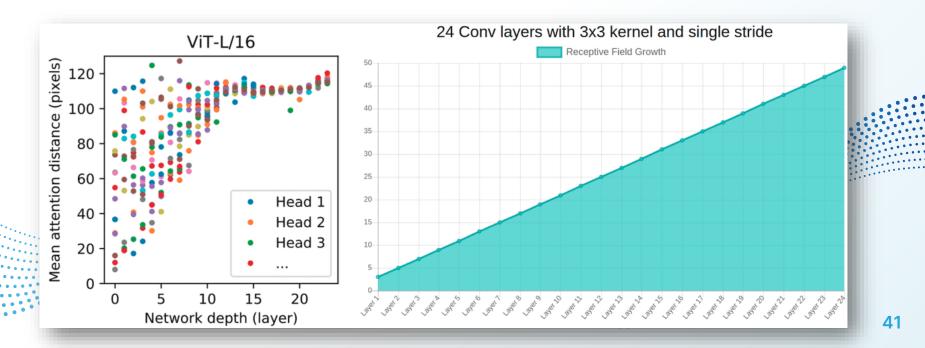
Transformer for images



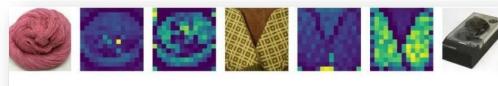
Transformer for images – positional embeddings



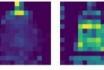
Increased receptive field



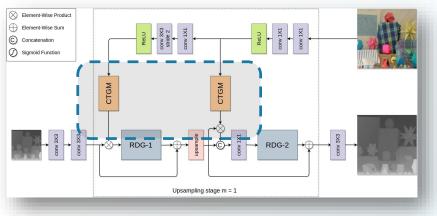
Attention assigns different weights to different parts of the input







42



Cascaded Transformer Guidance Module -

- learns structural and content information from a large receptive field
- encode distant dependencies leveraging both local and global information for guidance

Datasets -

Middlebury & MPI Sintel

Used LR patches of size 96/96/48/24 for scaling factors 2/4/8/16

SOTA in terms of RMSE on almost all datasets & scaling factors

Method		A	Art			Bo	oks			Lau	ndry	
Intettiod	x2	x4	x8	x16	x2	x4	x8	x16	x2	x4	x8	x16
Bicubic	2.64	3.88	5.60	8.58	1.02	1.56	2.24	3.36	1.30	2.11	3.10	4.47
TGV Ferstl et al. (2013)	3.19	4.06	5.08	7.61	1.52	2.21	2.47	3.54	1.84	2.20	3.92	6.75
RDGE Liu et al. (2016)	2.31	3.26	4.31	6.78	1.14	1.53	2.18	2.92	1.47	2.06	2.87	4.22
NLMR Park et al. (2014)	3.01	4.24	6.32	10.04	1.25	1.96	2.92	4.34	1.88	2.64	3.78	6.13
JID Kiechle et al. (2013)	1.18	1.92	2.76	5.74	0.45	0.71	1.01	1.93	0.68	1.10	1.83	3.62
PSR Huang et al. (2019)	0.66	1.59	2.57	4.83	0.54	0.83	1.19	1.70	0.52	0.92	1.52	2.97
MSG Hui et al. (2016)	0.67	1.49	2.79	5.95	0.37	0.66	1.09	1.87	0.67	1.02	1.35	2.03
MFR Zuo et al. (2019b)	0.71	1.54	2.71	4.35	0.42	0.63	1.05	1.78	0.61	1.11	1.75	3.01
PMBA Ye et al. (2020)	0.61	1.19	2.47	4.37	0.41	0.53	1.10	1.51	0.38	0.80	1.54	2.72
RDN Zuo et al. (2019a)	0.56	1.47	2.60	4.16	0.36	0.62	1.00	1.68	0.48	0.96	1.63	2.86
DSR Guo et al. (2018)	0.53	1.21	2.23	3.95	0.42	0.60	0.89	1.51	0.44	0.75	1.21	<u>1.89</u>
RYN Li et al. (2020)	0.26	0.98	2.04	<u>3.37</u>	0.18	<u>0.36</u>	0.73	1.37	0.22	0.64	1.21	2.01
CUN Cui et al. (2021)	0.27	1.05	2.27	3.67	0.16	0.35	0.73	1.45	<u>0.19</u>	<u>0.59</u>	1.15	2.25
GDC Kim et al. (2021)	0.33	1.09	<u>2.04</u>	3.58	0.19	0.38	<u>0.68</u>	1.41	0.24	0.64	<u>1.13</u>	2.13
Ours	0.31	0.73	1.89	2.76	0.21	0.35	0.66	1.22	0.18	0.43	0.87	1.62
Method		Do	olls			Moe	bius		Reindeer			
	x2	x4	x8	x16	x2	x4	x8	x16	x2	x4	x8	x16
Bicubic	0.78	1.21	1.78	2.57	0.93	1.40	2.05	2.95	1.52	2.51	3.92	5.72
TGV Ferstl et al. (2013)	1.17	1.42	2.05	4.44	1.47	2.03	2.58	3.50	2.41	2.67	4.29	8.80
RDGE Liu et al. (2016)	1.14	1.49	1.94	2.45	0.97	1.44	2.21	2.79	1.82	2.58	3.24	4.90
NLMR Park et al. (2014)	1.16	1.64	2.39	3.71	1.12	1.76	2.62	4.07	2.25	3.20	4.63	6.94
JID Kiechle et al. (2013)	0.70	0.92	1.26	1.74	0.64	0.89	1.27	2.13	0.90	1.41	2.12	4.64
PSR Huang et al. (2019)	0.58	0.91	1.31	1.88	0.52	0.86	1.21	1.87	0.59	1.11	1.80	3.11
MSG Hui et al. (2016)	0.46	0.72	0.99	1.59	0.36	0.68	1.14	2.07	0.94	1.33	1.72	2.99
MFR Zuo et al. (2019b)	0.60	0.89	1.22	1.74	0.42	0.72	1.10	1.73	0.65	1.23	2.06	3.74
PMBA Ye et al. (2020)	0.36	0.66	1.08	1.75	0.39	0.55	1.13	1.62	0.40	0.92	1.76	2.86
RDN Zuo et al. (2019a)	0.56	0.88	1.21	1.71	0.38	0.69	1.06	1.65	0.51	1.17	1.60	3.58
DSR Guo et al. (2018)	0.49	0.81	1.10	1.60	0.43	0.67	0.96	1.57	0.51	0.96	1.57	2.54
RYN Li et al. (2020)	0.27	<u>0.59</u>	<u>0.97</u>	1.37	0.24	0.50	0.81	<u>1.37</u>	<u>0.24</u>	<u>0.74</u>	<u>1.41</u>	<u>2.22</u>
CUN Cui et al. (2021)	0.22	0.61	<u>0.97</u>	1.43	0.20	<u>0.48</u>	<u>0.77</u>	1.31	0.24	0.82	1.51	2.38
GDC Kim et al. (2021)	0.28	0.63	<u>0.97</u>	1.44	<u>0.23</u>	0.49	0.79	<u>1.37</u>	0.28	0.84	1.51	2.43
Ours	0.25	0.50	0.90	1.49	0.27	0.46	0.76	1.31	0.21	0.43	1.19	1.84

Robust under various noises in both depth & guidance image

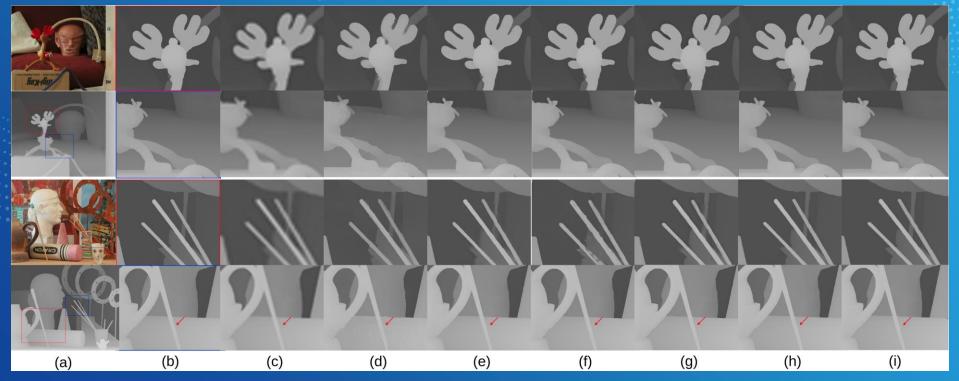
Method	Art Bo		Bo	ooks Lau		ndry	Dolls		Moebius		Rein	deer
Method	x8	x16	x8	x16	x8	x16	x8	x16	x8	x16	x8	x16
Bicubic	6.74	9.04	4.68	5.30	5.35	6.53	4.51	4.90	4.54	5.02	5.71	7.12
TGV Ferstl et al. (2013)	7.26	12.05	2.88	4.73	4.45	8.06	2.82	5.14	3.01	6.11	4.65	9.03
NLMR Park et al. (2014)	8.01	11.01	3.29	4.91	4.51	6.35	3.33	4.45	3.27	4.61	5.33	7.56
MSG Hui et al. (2016)	4.24	7.42	2.48	4.19	3.31	4.88	2.53	3.41	2.47	3.76	3.36	4.95
MFR Zuo et al. (2019b)	3.97	6.14	2.13	3.17	2.82	4.57	2.25	3.30	2.13	3.33	3.01	4.86
RDN Zuo et al. (2019a)	4.09	6.62	2.11	3.36	2.88	5.11	2.33	3.59	2.18	3.69	3.09	4.93
DSR Guo et al. (2018)		6.96		5.66		7.54		4.28		3.39		5.25
RYN Li et al. (2020)	3.47		1.88		2.47		1.97		1.87		2.68	
GDC Kim et al. (2021)	<u>3.31</u>	<u>4.77</u>	<u>1.69</u>	2.46	2.20	3.36	<u>1.89</u>	<u>2.59</u>	<u>1.72</u>	2.68	<u>2.57</u>	3.44
Ours	3.26	4.72	1.61	<u>2.96</u>	1.63	<u>3.47</u>	1.64	2.16	1.63	2.24	1.79	<u>3.59</u>

x2	x4	x 8	x16
0.23	0.48	1.04	1.70
1.05	1.37	1.92	3.19
1.17	1.69	2.08	3.41
	0.23 1.05	0.23 0.48 1.05 1.37	0.23 0.48 1.04 1.05 1.37 1.92

Generalizes to unseen datasets (NYU_Depth_V2)

2.36
1 00
1.28
1.31
1.21
1.34
1.06
1.06
0.95

Reduces "texture copying" effect



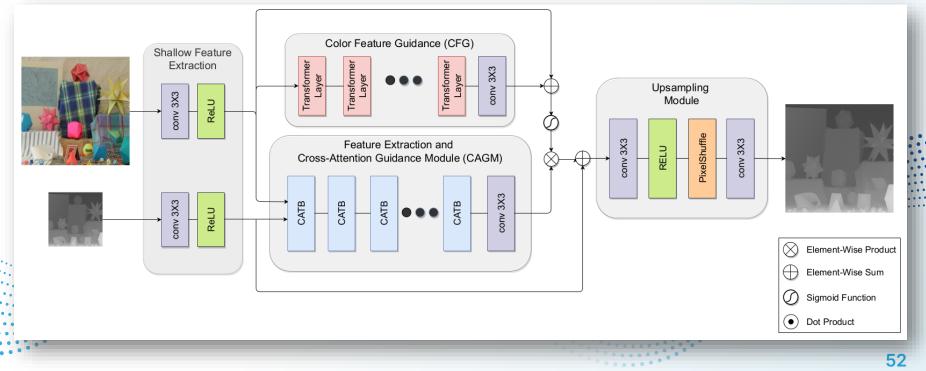
 Guidance based on cascaded transformer with large receptive field

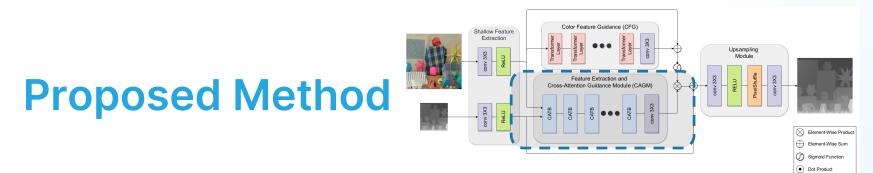
 Linear memory constraints – applicable to large images and real-life scenarios

Good generalization abilities and insensitivity to noise

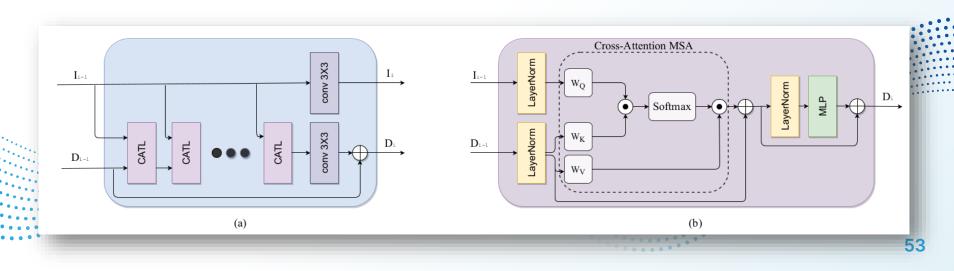
Proposed Method *"Fully Cross-Attention Transformer for Guided Depth Super Resolution", MDPI Sensors Special Issue on Deep Learning Technology and Image Sensing, 2023*

- Fully transformer based architecture
- Guidance via cross-attention in a single branch
- Same linear memory constraints as in previous work applicable for very large images and different resolutions



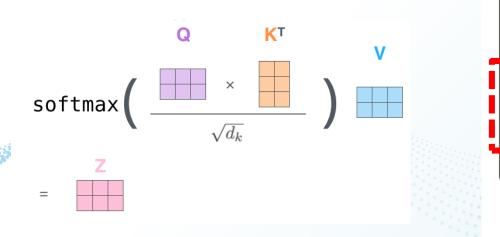


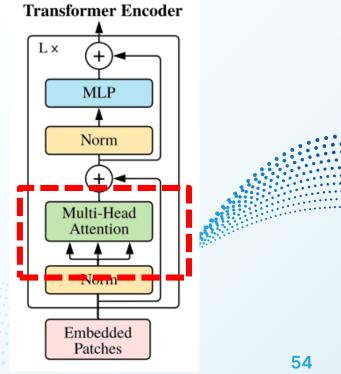
Main branch – combines feature extraction with guidance from the RGB image via a cross-attention design



Another short drill down on transformers

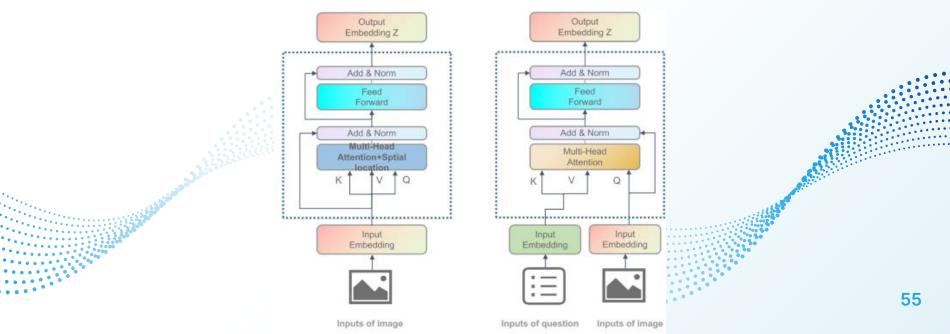
In a transformer encoder, attention is calculated via dot product between 3 matrices – Q, K, V

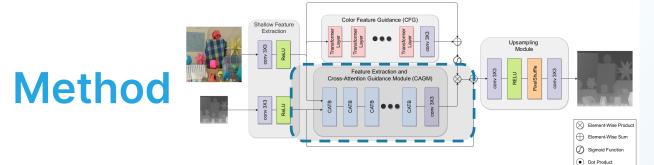




Another short drill down on transformers

In cross attention – K & V come from one modality, while Q comes from the other

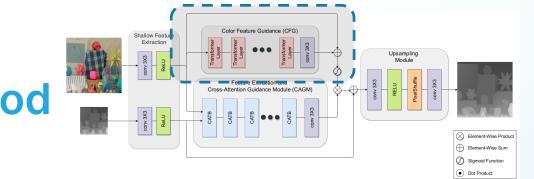




🕨 Main branch –

O the cross attention allows continues guidance from the guidance image

All elements of the guidance features can interact with all elements of the depth upsampling

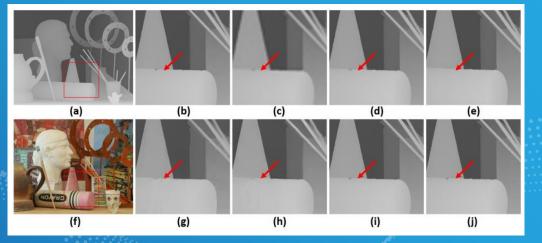


Color Feature Guidance -

Similar design to the previous work (cascaded self-attention transformer)

Scales the features before the final upsampling, incorporating more HR information

improves upon previous work in all parameters – Better reconstruction (RMSE), better generalization, faster (~20%)





Ablation study demonstrates the importance of cross-attention, and CFG

Table 6. Quantitative Comparisons of the Ablation Experiments. Reported Results are Average RMSE on the Noise-free Middlebury Dataset for Scaling Factors 4, 8, and 16.

Design	Dep	Depth-Only		w/o shift		w/o CFG			w/o cross-attention			proposed			
Scale Factor	x4	x8	x16	x4	x8	x16	x4	x8	x16	x4	x8	x16	x4	x8	x16
RMSE	0.65	1.39	3.01	0.52	1.14	1.90	0.51	1.06	1.79	0.59	1.28	2.17	0.48	0.99	1.55

Future work

Apply to a real-world use case –

- aerial imagery SR in which a Raster (color) image and a Dynamic Elevation Model (DEM) are available.
- O DEMs are mostly low-resolution whereas Raster images are HR
 - Our objective would be to improve the DEM resolution using both the LR DEM and raster image as inputs.

Future work

Apply to a real-world use case –

Discussion

- deep multi-modal networks for voice activity detection and depth images SR
- Transformer based architectures for guided SR
- Fusion\guidance attention & cross-attention mechanisms
- SOTA results in both tasks (at time of publication)

Questions?

*multimodal neural networks according to StableDiffusion...