
Three-dimensional Sparse Seismic Deconvolution based on Q Attenuation Model
Deborah Pereg and Israel Cohen, Technion – Israel Institute of Technology, and Anthony A. Vassiliou∗, GeoEnergy

SUMMARY

We introduce a multichannel method to recover 3D reflectiv-

ity from 3D seismic data. The algorithm is formulated so that

it promotes sparsity of the solution and also fits the earth Q-

model of attenuation and dispersion propagation effects of re-

flected waves. In addition, the algorithm also takes into consid-

eration spatial correlation between neighboring traces. These

features, together with low computational cost, make the pro-

posed method a good solution for the emerging need to pro-

cess large volumes of 3D seismic data. The robustness of

the proposed technique compared to single-channel recovery

is demonstrated by synthetic and real data examples.

INTRODUCTION

Reflection Seismology aims at visualizing the internal struc-

ture of the subsurface. It enables detection of geological struc-

tures such as layers, traps and faults. When a short duration

acoustic pulse (the wavelet) is transmitted into the ground, the

reflected pulses are received by a sensor array placed on the

ground, and further processed into 3D seismic data (Sherif and

Geldart, 1983). Each seismic trace is described as a weighted

superposition of one-dimensional (1D) pulses further degraded

by additive noise, because the acoustic pulse is reflected at

discontinuities in the medium impedance. The pulse is band-

limited and changes over time. Our objectives are to recover

the earth structure (the reflectivity) hidden in the observed seis-

mic data, to increase its resolution and to overcome noise and

attenuation of the reflected waves.

The seismic inversion problem is often solved by breaking

the data into independent vertical 1D deconvolution problems.

Each reflectivity channel is recovered from the corresponding

inline trace or a cross line trace of a vertical cross section of

the seismic data. The core assumptions are that a reflectivity

channel is a sparse spike train, and that the wavelet is invariant

in time and space (Berkhout, 1986; Ulrych, 1971; Wiggins,

1978; Taylor et al., 1979; Riel and Berkhout, 1985; Nguyen

and Castagna, 2010; Zhang and Castagna, 2011; Gholami and

Sacchi, 2012; Pham et al., 2014; Repetti et al., 2015).

Multichannel seismic deconvolution methods promote hori-

zontal continuity of the seismic reflectivity by considering

more than one trace in each channel estimation (Idier and

Goussard, 1993; Mendel et al., 1981; Kormylo and Mendel,

1982; Kaaresen and Taxt, 1998; Heimer et al., 2007; Heimer

and Cohen, 2009, 2008; Ram et al., 2010; Gholami and Sacchi,

2013; Mirel and Cohen, 2017; Pereg et al., 2017).

In (?) we presented a 1D algorithm that recovers the seismic

reflectivity based on the earth Q-model. We also presented the-

oretical bounds on the recovery error, and on the localization

error.

In this paper we summarizes some of the results in (Pereg et al.,

2018). We present a new algorithm to recover 3D reflectivity

signal from 3D seismic data. The problem is formulated so

that the relations between spatially close traces are also taken

into account using discontinuity measures (Cohen and Coif-

man, 2002; Cohen et al., 2006). The algorithm is applied to

synthetic and real seismic data, demonstrating that the sug-

gested method reveals reflectors amplitudes and locations with

high precision.

SIGNAL MODEL

Reflectivity model

We assume an unknown 3D reflectivity signal. Each 1D chan-

nel (column) in the reflectivity is formulated as a superposi-

tion of point sources. In the discrete setting, assuming a sam-

pling rate Fs, and that the set of delays T = {tm} lies on a grid

k/Fs, k ∈ Z, i.e., km = tmFs, the reflectivity is given by

x[k] =
∑

m

cmδ [k− km], k ∈ Z, cm ∈ R (1)

where δ [k] denotes the Kronecker delta function,
∑

m |cm| <
∞, and K = {km} is the set of discrete delays corresponding to

the spikes locations. Each inline or crossline seismic discrete

trace in the observed seismic 3D data is of the form

y[k] =
∑

n

x[n]gσ ,n[k−n]+w[k], n ∈ Z (2)

where {gσ ,n} is a known set of kernels corresponding to a pos-

sible set of time delays, σ > 0 is a known scaling parameter,

and w[k] is additive noise. In Pereg and Cohen (2017) we dis-

cuss specific requirements for {gσ ,n}. Our purpose is to reveal

the true support K = {km} and the spikes’ amplitudes {cm}
hidden in each of the seismic traces.

Note that the conventional convolution model assumes a time-

invariant wavelet (Bendory et al., 2016b,a). Unfortunately, this

assumption is often not satisfied. As in ?, we suggest to take

into consideration a set of different kernels {gσ ,n}. Each pulse

in the set is determined according to the time (depth) tn it cor-

responds to, in accordance with the earth Q model (?Wang,

2015, 2002; Kjartansson, 1979).

SEISMIC 3D RECOVERY

It is shown in ? that single-channel recovery of the seismic re-

flectivity could be performed by solving the optimization prob-

lem

min
x̂∈ℓ1(Z)

‖x̂‖1 subject to ‖y[k]−
∑

n

x̂[n]gσ ,n[k−n]‖1 ≤ δ ,

(3)

where ‖x̂‖1 =
∑

k |x̂[k]|.
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To this end, we consider 3D seismic data and develop a 3D

recovery method based on convex optimization. We do not

assume horizontal continuous layers or any other specific geo-

logical structure. Assume an inline or a crossline seismic trace

yi, j and N − 1 spatially neighboring traces {yi+u, j+v}, where

(u,v)∈Γ such that Γ⊆{(u,v)∈Z
2 , (u,v) 6= (0,0)} and |Γ|=

N − 1. Denote some local discontinuity measure as a column

vector ai, j . Each element ai, j[k] is associated with a distin-

guished point in some analysis cube, generically represented

here by (i, j,k). We choose a measure such that 0 ≤ ai, j[k]≤ 1.

For maximum discontinuity ai, j[k] = 0, whereas for minimum

discontinuity ai, j[k] = 1. The value ai, j[k] describes the likeli-

hood that a given point lies on a fault surface.

Assume G is an operator matrix such that (G)k,n = gσ ,n[k−n].
Then, we can write

yi, j = Gxi, j +wi, j, (4)

where xi, j is the corresponding reflectivity column and wi, j is

additive noise. Then, the estimated reflectivity column x̂i, j is

the solution of the optimization problem

min ‖x̂i, j‖1

subject to f (x̂i, j)≤ ∆, (5)

where

f (x̂i, j) =‖yi, j −Gx̂i, j‖2+
∑

(u,v)∈Γ

‖Ai, jAi+u, j+v(yi+u, j+v −Gx̂i, j)‖2, (6)

where Ai, j = diag(ai, j), and Ai+u, j+v = diag(ai+u, j+v). Since

Ai, j and Ai+u, j+v describe the similarity between one spike (or

null) location to close locations in a small volume, multiplying

the residual error of neighboring traces by Ai, jAi+u, j+v enables

the use of the available information about a group of channels,

for the estimation of the true reflectivity value in each location

in the volume. Wherever there is discontinuity in the volume,

the estimation of this specific point does not rely on other close

points.

Recovery-Error Bound for Horizontal Layers

Theorem 1 Assume N seismic traces that correspond to N iden-

tical reflectivity channels. Namely,

yi[k] =
∑

n

x[n]gσ ,n[k−n]+wi[k], E‖wi‖
2
2 ≤ S2

w, i = 1,2...N,

(7)

where {gσ ,n} is a set of admissible kernels sharing two com-

mon parameters ε,β > 0 [see (Pereg and Cohen, 2017,Defi-

nition 2.1)] and E denotes mathematical expectation. In other

words, the set {yi}
i=N
i=1 consists of N smeared versions of N

identical reflectivity columns, corrupted by N different noise

realizations. We assume the support K is sufficiently sepa-

rated, meaning that it obeys the minimal separation condition

[see (Pereg and Cohen, 2017,Definition 2.2)], with a separa-

tion constant ν . Then, for Fs > 0, the solution x̂ of

min ‖x̂‖1

subject to
∑N

i=1 ‖yi −Gx̂‖2,≤ NSw,
(8)

satisfies

‖x̂−x‖2
2 ≤

64Lrρ2

β 2γ2
0

S2
w

N
. (9)

where Lr is the length of the estimated signal,

ρ , max
{ γ0

ε2
,(Fsσ)2α0

}

α0 = max
n

gσ ,n(0), γ0 = min
n

gσ ,n(0).

This bound ensures that given N traces, under the separation

condition, a signal of the form (2), can be recovered by solving

the optimization problem formulated in (8). A detailed proof

is given in Pereg et al. (2018) for the precise recovery of the re-

flectivity spikes temporal locations, and the precise amplitudes

recovery of the reflectivity spikes.

The bound in (9) guarantees that the mean squared error of

the recovery is bounded. The error depends on the noise level

and on the attenuation of the reflected waves. Most impor-

tantly the theoretical bound, affirmed by experimental results,

demonstrates that given N realizations of the same reflectivity

channel (as we have for horizontal reflectors), we can reduce

the noise power by at least a factor of N. In the noise-free

case where Sw = 0, whether the spikes amplitudes are small or

large, the restoration of the reflectivity is exact.

In the time-variant setting most cases comply with γ0/ε2 <
(Fsσ)2α0. Then, the recovery error is bounded by

‖x̂−x‖2
2 ≤ 64

Lr(Fsσ)4

β 2

(α0

γ0

)2 S2
w

N
.

The error is linear with respect to the noise level S2
w and in-

versely proportional to the number of channels, N. Moreover,

the bound verifies that the error increases as Q gets smaller

because small Q values correspond to higher α0/γ0 ratios and

smaller β values. In addition, since β measures the flatness of

the kernel near the origin, we can see that flat kernels result in

more false detections.

EXPERIMENTAL RESULTS

Synthetic Data

We constructed a synthetic data set, simulating 2D reflectivity

with two apparent faults. The reflectivity depicted in Fig. 1(a)

consists of 30 traces, each of 128 samples, with sampling in-

terval of Ts = 4ms. We created the seismic data as described

in (2) using the Q-model, with Q=200. The initial wavelet

was a Ricker wavelet with ω0 = 50π , i.e., 25Hz. To further

degrade the signal and evaluate the recovery in noisy environ-

ment we added white Gaussian noise. The SNR is 5dB. The

seismic data is shown in Fig. 1(b). The estimated reflectiv-

ities, obtained by single-channel and by the proposed multi-

channel recovery method are shown in Fig. 2. In this example,

we set N = 3. The optimization is performed by consider-

ing each reflectivity column and both the preceding and subse-

quent reflectivity columns. As a measure of discontinuity we

use a binary version of Local Structural Entropy (LSE) (Co-

hen and Coifman, 2002). The correlation coefficient, between
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(a) (b)

Figure 1: Synthetic reflectivity and seismic data: (a) Synthetic

2D reflectivity section; (b) 2D seismic data (SNR = 5 dB).

(a) (b)

Figure 2: Synthetic 2D recovery results: (a) Single-channel;

(b) Multichannel.

the original reflectivity and the estimated reflectivity, achieved

by single-channel deconvolution is ρ = 0.86. The correlation

coefficient with the multichannel method, is ρ = 0.95. Visu-

ally comparing the results, it can be seen that the multichannel

solution is more accurate. The single-channel solution fails to

recover parts of the layer boundaries.

Figure 3 presents one example of the recovery error ‖x̂− x‖2
2

as a function of the number of traces 1 ≤ N ≤ 30 for Q =
500 and SNR = 5dB, Ts = 4 ms and Lr = 176. As in Fig. 1,

the reflectivity is modeled as a zero-mean Bernoulli-Gaussian

process. The minimum distance between two spikes satisfies

the minimal separation condition. The initial wavelet was a

Ricker wavelet with ω0 = 100π , i.e., 50Hz. As can be seen

in Fig. 3 the error is inversely proportional to the number of

traces, according to what we derived in Theorem 1.

Real Data

We applied the proposed method, to real seismic data from

a small land 3D survey in the Gulf of Mexico (courtesy of

GeoEnergy Inc., TX). The time interval is 4ms, inline trace

spacing is 25m, and crossline trace spacing is 50m. A small

subvolume with an inline distance of 5.025 km and a crossline

distance of 10.05 km (201× 201 traces) is used for demon-

stration. Each trace is 1.808 sec in duration (452 samples).

The corresponding cross-section through the LSE volume, ob-

tained with analysis cubes of size [2 2 14] is displayed in

Figure 4(b). Figure 4(a) shows a vertical cross-section at

x = 2.5 km through the seismic data. Assuming an initial
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Figure 3: Recovery error log(||x̂− x||22) as a function of the

number of traces N for Q = 500.

Ricker wavelet with ω0 = 50π (25Hz), we estimated Q = 233

as described in Zhang and Ulrych (2002). A cross-section of

the single-channel recovered reflectivity section is shown in

Fig. 5(a). Each reflectivity column is recovered by taking into

consideration two neighboring traces - one in the same vertical

cross section and one in the adjacent cross section.

Visually examining these reflectivity sections, it can be seen

that the layer boundaries in the estimates are distinct. Both

structural and stratigraphic features can be observed in the im-

ages. Also, the reconstructed seismic data fits to the origi-

nal given observation. We measure the accuracy in the loca-

tion and amplitude of the recovered reflectivity spikes by the

correlation coefficient between the reconstructed data to the

given seismic data. In this example we have ρy,ŷ = 0.81 for

the multichannel result. For single-channel recovery we have

ρy,ŷ = 0.78.

Another example is presented in Figs. 6 and 7. Here we used

a subvolume of 401 × 401 traces. Each trace is 1001 sam-

ples long. The time interval is 4 ms; inline and cross line

trace spacing is 25 m. Figure 6(a) shows a vertical cross sec-

tion through the seismic data. As a measure of discontinuity

we used the skeletonized local-fault-extraction (LFE) (Cohen

et al., 2006). The seismic data through the LFE is presented in

Fig. 6(b). Assuming an initial Ricker wavelet with ω0 = 50π
(25Hz), we estimated Q = 200. A cross-section of the recov-

ered reflectivity section by single-channel method is shown in

Fig. 7(a). Figure 7(b) shows the recovered reflectivity cross-

section of a 3-channel implementation (i.e., N = 3), taking into

consideration two neighboring traces - one in the same verti-

cal cross section and one in the adjacent cross section. Here,

we have ρy,ŷ = 0.90 for the multichannel result, and for the

single-channel recovery we have ρy,ŷ = 0.88.

CONCLUSIONS

We presented a 3D adaptive seismic recovery algorithm based

on a time-variant model. The algorithm promotes sparsity of

the solution and also considers attenuation and dispersion ef-

fects. The recovery takes into account the relations between



Sparse 3D Seismic Deconvolution

neighboring traces in the 3D volume. The algorithm is suit-

able for large volumes of data. We demonstrated its perfor-

mance with synthetic and real data in highly attenuating noisy

environment.
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(a) (b)

Figure 4: Vertical cross-section at x = 2.5km through: (a) seismic data; (b) LSE volume of size [2 2 14].

(a) (b)

Figure 5: Real data inversion results: (a) Estimated reflectivity - single-channel; (b) Estimated reflectivity - multichannel.

(a) (b)

Figure 6: Vertical cross-section at y = 1.3km through: (a) seismic data; (b) skeletonized LFE volume.

(a) (b)

Figure 7: Real data inversion results: (a) Estimated reflectivity - single-channel; (b) Estimated reflectivity - multichannel.
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