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Abstract

This dissertation focuses on deep learning-based systems for acoustic-echo cancellation
in monophonic setups, with emphasis on lean implementations that meet the com-
putational and timing standards of modern hands-free communication platforms. A
complementary part of this thesis concerns stereophonic acoustic-echo cancellation and

voice-activity detection.

In recent years, face-to-face meetings have been often replaced by virtual confer-
encing, especially in office environments. One representative scenario is a standard
conference-call between two ends of a virtual conversation; a near-end conference room
and a far-end home environment. In this setup, the far-end participants often suffer
both of deterioration of the near-end speech intelligibility and of hearing their own
echoing voices. This may cause lost of information, fatigue, and decrease in work

productivity in an era that heavily relies on remote communication.

This thesis introduces deep learning-based solutions that handle non-linear acoustic-
echo cancellation, linear acoustic-echo cancellation, residual-echo suppression, and ob-

jective measurements of acoustic echo.

As miniaturization of electrical components becomes more dominant, the more non-
linear effects occur in acoustic-echo cancellation systems. Specifically, the relation
between the far-end speech and its reverberant echo as perceived in the near-end mi-
crophone is often non-linear. We developed a system that tracks and estimates the
non-linearities that modern hardware applies to the far-end signal, and fed the non-

linear estimate of the far-end to the linear acoustic-echo cancellation filter as reference.

The linear acoustic-echo cancellation system experiences misalignment between the

real and estimated near-end linear echo-path from the loudspeaker to the microphone,



mainly in double-talk scenarios and during echo-path changes. We offer a solution that
mitigates both these gaps and offer on-the-fly adaptation control of the step-size that
governs the behavior of the linear acoustic-echo cancellation filter.

Residual-echo components frequently remain after the non-linear and linear acoustic-
echo cancellation stages due to imperfect algorithms and challenging acoustic scenarios.
We proposed a lean residual-echo suppressor with a novel design parameter that allows
for a desirable and practical trait; a dynamic control between the echo suppression and
the speech distortion levels of the residual-echo suppression system.

Existing objective metrics for acoustic-echo cancellation have inherent ambiguity,
especially in double-talk, and may present a similar value if echo levels were low and
speech distortion was high, and vice versa. We have shown that these metrics experience
very low correlation with subjective human ratings, and introduced two alternative
objective performance metrics to assess the echo suppression level and the desired
speech distortion level.

We also regard stereophonic acoustic-echo cancellation scenarios that include two
loudspeakers and two microphones in both the near-end and far-end. We successfully
projected two concepts we introduced in the monophonic case; an adaptation control
framework that allows to better handle double-talk scenarios and echo-path changes,
and an extended version of our monophonic objective evaluation metrics.

Voice activity detection is an integral part in many speech-based systems, including
ones that feature acoustic-echo cancellation. We achieved state-of-the-art performance
in real acoustic environments of reverberation, noises, and transients by using inherent
geometric structures that distinguish speech from non-speech segments and by utilizing

a deep encoder-decoder for speech classification.
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Chapter 1

Introduction

1.1 Background and Motivation

This thesis focuses on offering deep learning-based acoustic-echo cancellation solutions
for remote conversations between two ends; a near-end and a far-end. In the most basic
scenario, a near-end microphone captures three types of acoustic signals; speech from
the near-end speaker, reverberant version of a non-linearly distorted far-end speech
that is played by a near-end loudspeaker, and environmental and system noises. The
acoustic coupling between the near-end loudspeaker and microphone lead to two un-
desired phenomena in the far-end; deterioration in the intelligibility of the near-end
speech, and remaining presence of the far-end echo [SMH95], [BGM™01]. This prob-
lem has sprouted numerous studies on acoustic-echo cancellation (AEC) that try to
address this challenge by cancelling the far-end echo and preserve the near-end speech
undistorted, both with classic signal processing approaches, deep learning methods, and
hybrid solutions. However, these systems under-perform in practice due to four main
reasons. First is the false assumption of linearity between the far-end signal and the
near-end echo. The second would be the suboptimal assessment of the linear near-end
echo-path from the loudspeaker to the microphone. Third is the characterization and
removal of residual echo after the linear AEC stage has surpassed. The fourth and
final challenge is the ambiguous objective performance assessment of AEC systems,
especially in double-talk periods.

In recent years, miniaturization of electronic components in hands-free devices,



e.g., smart phones, smart speakers, and wearable devices, caused non-negligible non-
linear distortions in the echo path between the far-end signal and the loudspeaker
output [BG95a]. Consequently, AEC systems that assume an echo path that is linear
often fail in practice [MEB10]. To mitigate this mismatch, various non-linear AEC
approaches were proposed to identify the non-linear echo path. The Volterra series
showed success in modeling systems with weak non-linearities and memory using non-
linear basis functions, while often requiring high computational complexity [GFLBJO03].
A simplified version is given by the block-oriented Hammerstein and Wiener models,
which describe non-linear systems without memory and linear systems with memory
[SCPU11]. Also, adaptive functional link filters [CSART13], Bayesian state-space mod-
eling [ME12], and kernel-based methods [VVARC16] are commonly used for non-linear
AEC. Avargel and Cohen considered this problem from a time-frequency point-of-view
and applied multiplicative function approximation [AC08], sub-band adaptive filter-
ing [AC09a], and an efficient Volttera series modeling using cross-band terms [AC09b],
[AC10]. Neural networks provide an alternative framework for a more accurate non-
linear modeling compared to classic approaches [BG95b], [RT98], [Jan04], [ZZ17]. For
instance, Malek and Koldovsky [MK16a] estimated the non-linear echo path with a
fully-connected neural network that assumes the Hammerstein model, followed by an
adaptive linear filter to track the acoustic path. Recently, Halimeh et al. [HHK19]
constructed an fully-connected neural network that assumes the Wiener-Hammerstein
model and captures both the non-linear and linear echo paths. Despite showing promis-
ing results, the performance of these methods is still challenging in real-life scenarios,
which may be associated with two of their attributes. First, these models are not accu-
rately designed according to the physical behavior of distortions that modern hands-free
devices apply to the far-end signal. Second, they are mostly parametric, i.e., they re-
quire that memory lengths and non-linear basis functions are predetermined. E.g., in
[GFLBJO03], [SCPUL11], the presented models assume a given number of memory taps,
and in [MK16a], [HHK19], fixed non-linear activation functions are employed inside the
neural network. These drawbacks may produce sub-optimal solutions in real setups.
The mismatch between the real and estimated near-end linear echo-path is rooted

in several causes. Preliminary, the real echo-path may have a long reverberation time
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and therefore a large number of coefficients are required to accurately express it, which
is often a computational burden on classic adaptive filters that utilize smaller number
of coefficients. Another reason is that the accuracy of the adaptation process may
be subpar due to challenging acoustic conditions, e.g., double-talk, that impede the
ability to characterize the echo-path. The last cause is related to the real-life fre-
quent echo-path changes that are hard to track by conventional algorithms and cause
re-convergence of the adaptation process. The normalized least mean-square (NLMS)
filter is a popular adaptive filter since it is numerically stable and computationally effi-
cient [PCBG15]. The NLMS integrates the normalized step-size parameter that governs
the often conflicting fast convergence requirements and low misadjustment. Therefore,
it is highly desirable to control the step-size during adaptation in practical scenarios
of time-varying echo paths and double-talk. This problem has motivated numerous
variable step-size (VSS) related studies. For example, Haubner et al. employed neural
networks for near-end estimation [HHB™20], noise estimation[HBEK21], and minimiz-
ing the error using adaptation control in the frequency domain [HBK21]. Meier and
Kellermann [MK16b] employed a deep neural network that maps statistical features of
the far-end and a priori error signals to an analytically derived VSS. A batch of classic
approaches includes the NPVSS that adjusts the step-size by reducing the squared error
at each instant [BRVT06], the mean error SVSS that applies decomposition of the error
into sub-blocks [HA16], and HVSS that estimates the system noise power to control the
step-size update [HL11]. However, existing approaches make restricting assumptions
in real-life setups, e.g., assuming a linear relationship between the echo and the far-
end signals [HHB*20]-[HL11], and adopting a time-invariant echo-path [BRVT06]. In
practice, these assumptions result in filter misadjustment and slow convergence rates
during echo-path changes [ICB21b]. Also, such methods require tuning parameters
that are difficult to control in real-life scenarios. For example, the NPVSS [BRVT06]
involves estimating the noise power, which is challenging during double-talk.
Conventional AEC systems do not model non-linearities in the echo path, and gen-
erally introduce a mismatch between true and estimated echo paths during convergence
and re-convergence [BMS98]. This results in residual echo that must be suppressed by

a dedicated residual-echo suppression (RES) system. Deep learning has occupied a
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major role in RES studies and showed enhanced performance compared to traditional
methods [HK20], [FEKL20]. A recent study exploited long short-term memory (LSTM)
networks to jointly obtain echo cancellation and to suppress noises and reverberations
[CSVH19]. Lee et al. [LSK15] cascaded a fully-connected neural network after a lin-
ear AEC system and evaluated the objective gain between the spectra amplitudes of
the near-end and canceler output signals. Lei et al. [LCH™19] exploited past and
future temporal context to map the microphone and reference far-end signals to the
desired speaker via a fully-connected neural network. Lately, deep learning and classic
methods were jointly utilized in [MHZS20] and [ZTW19], where the latter activated
convolutional recurrent networks to evaluate the real and imaginary parts of the near-
end signal spectrogram.

Despite numerous efforts to enhance the various AEC pipeline components, objec-
tive performance metrics have remained ambiguous and biased. Human perception
of speech quality is optimally evaluated using human subjective evaluation [RBP*19].
Lately, the objective Deep noise-suppression mean-opinion score (DNSMOS) metric
has been proposed to estimate human ratings and has shown great accuracy [RGC21].
Regarding the task of RES, speech quality during double-talk is traditionally eval-
uated using the objective signal-to-distortion ratio (SDR) metric [VGF06], e.g., in
[CSVH18, DDBW19, PP20, CXCL20, Fan20b, Fan20a]. Unfortunately, the SDR is
affected by both desired-speech distortion and residual-echo presence, which renders it
unreliable in predicting the DNSMOS and unreliable in predicting human perception
of speech quality [RGC21].

This thesis also concerns the case of stereophonic AEC (SAEC), in which the near-
end microphones may capture three types of acoustic signals; the desired speech, addi-
tional noises, and reverberant echoes. The echoes are non-linearly distorted versions of
the far-end signal played by loudspeakers and reverberate to the microphones via echo
paths [SMH95]. These echoes may impede conversation intelligibility as perceived by
the far-end participant. The SAEC task is two-fold; tracking the near-end echo-paths
and subtracting them from the microphones signals, and communicating the undis-
torted desired-speech signal to the far-end [BMS98]. This thesis considers the specific

case of two loudspeakers and two microphones both in the far-end and the near-end
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parts of the conversation, and addresses two of the four challenges raised in the mono-
phonic AEC case; the suboptimal linear echo-paths estimations, and the ambiguous
and biased performance evaluation of SAEC systems.

In this SAEC case, the echo paths between a pair of loudspeakers and a pair
of microphones are modeled by adaptive filtering. The echo paths are converted
into acoustic-echo approximations that are subtracted from the microphones [SMH95,
BMS98]. Double-talk segments are most challenging, since the echoes overlap with de-
sired speech. Various studies tried to cope with it by preserving the speech and remov-
ing the echoes [SBPT13, PBC14, CRPP12, KS17, MHB01, WQW10, RCP*10, GT98].
In practice, however, echo paths are not estimated accurately, e.g., when the adaptive
filter has not yet converged [BGM™01]. Therefore, a RES system must succeed the
SAEC system to eliminate the echoes. Subjective human evaluation is currently the
most accurate assessment of human perception for speech quality [RBPT19, CNL*21].
Recently, an objective metric called the acoustic-echo cancellation mean-opinion score
(AECMOS) was introduced. In double-talk specifically, the AECMOS has obtained
impressive accuracy in estimating human ratings [PSS™22]. In contrast, RES systems
conventionally use the SDR metric [VGFO06] to assess speech quality in double-talk,
e.g., in [CSVH18, DDBW19, PP20, CXCL20, Fan20b, Fan20a, WJ11, KJS21]. It will
be empirically shown that the stereophonic SDR (SSDR) is by definition influenced by
both distortion of stereo speech and presence of stereo residual-echo. Thus, for the task
of RES in the stereophonic case, the SSDR is not an adequate indicator of neither the
human evaluation for quality of speech nor of the AECMOS.

Voice-activity detection (VAD) in hands-free speech communication setups serves
as a preliminary block that affects the performance of various speech-based systems
that succeed it and depend upon its performance. In our context, detecting voice ac-
tivity allows for an efficient usage of AEC upon these active segments, and propels
their potential classification into single and double-talk. Classifying segments as silent
by the VAD has the huge benefit of saving computational resources by the AEC and
help the end-to-end hands-free speech communication systems to comply with prac-
tical computational budgets. Outside the context of this thesis, our VAD can help

in speech separation, speech recognition and translation, speaker identification, and
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general speaker diarization.

VAD refers to a family of methods that perform segmentation of an audio signal
into parts that contain speech and silent parts. In this thesis, audio signals are cap-
tured by a single microphone and contain clean sequences of speech and silence. These
signals are mixed with stationary and non-stationary noises (transients), e.g., door
knocks and keyboard tapping [DC14, DTCI16]. Our objective is to correctly assign
each captured audio frame into the category of speech presence or absence. In acoustic
environments that contain neither stationary or non-stationary noise, speech is de-
tected by using methods that rely on frequency and energy values in short time frames
[KN91, JMR94, VGX97]. These methods show significant deterioration in performance
when noise is present, even with mild levels of signal-to-noise-ratios (SNRs). To cope
with this problem, several approaches assume statistical models of the noisy signal
in order to estimate its parameters [CK11, CKM06, SKS99, RSB*04, CB01, Coh03].
Nonetheless, these methods are incapable of properly modeling transient interferences,
which constitute an essential part of this study. Ideas that involve dimensionality
reduction through kernel-based methods are introduced in [DTC15], where both super-
vised and unsupervised approaches have been exploited. However, its main limitation
is a significant low-dimensional overlap between speech and non-speech representa-
tions. Machine learning techniques have been employed for voice activity detection
in recent studies [SCK10, WZ11]. In contrast to classic methods, these approaches
learn to implicitly model data without assuming an explicit model of a noisy signal. In
particular, deep learning based methods have gained popularity in recent years due to
a substantial increase in both computational power and data resources. Mendelev et
al. [MPP15] constructed a deep neural network for voice activity detection, and sug-
gested to employ the dropout technique [SHK'14b] for enhanced robustness. The main
drawback of this method is that temporal information between adjacent audio frames
is ignored, due to independent classification of each time frame. Studies presented in
[LHB15, GMH13, HM13, HL13| used a recurrent neural-network (RNN) to integrate
temporal context with the use of past frames. However, the rapid time variations and
prominent energy values of non-stationary noises in comparison to speech are still the

main cause of degraded performance in these methods. A recent study conducted by
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Ariav et al. [ADC18a] proposed to use an auto-encoder to implicitly learn an audio
signal embedded representation. To enhance temporal relations between frames, this
auto-encoder feeds an RNN. Despite its leading performance, the reported results are
still unsatisfactory. Our study found that the main limitation of this algorithm is the
dense low-dimensional representation forced by the auto-encoder and into the RNN.
This density occurs largely due to the joint training of speech and non-speech frames,
which fails to enhance their unique features. Thus, their low-dimensional representa-
tions, which are the sole information that feeds the RNN, are embedded closely in terms
of Euclidean distance. Eventually, this poses a difficulty in separation of speech from
non-speech frames based merely on temporal information, which is the core advantage

of using RNN architecture.

1.2 Main Contributions

This thesis addresses the existing gaps described above and mitigates those gaps via
eight main contributions. Five contributions relate to monophonic AEC, two contri-

butions regard SAEC, and one additional contribution addresses VAD:

e We introduced a non-linear AEC system inspired by the physical behavior of
modern hands-free devices, which features a novel neural network architecture
that is specifically designed to model the non-linear distortions these devices

induce between receiving and playing the far-end signal.

e We presented the DVSS framework for adaptation control that is data-driven and

makes no assumptions on the acoustic setup and is entirely non-parametric.

e We proposed an RES system that embeds a novel design parameter that allows
a dynamic tradeoff between the desired-speech distortion and residual-echo sup-

pression levels in the system output in double-talk scenarios.

e We developed two objective metrics that separately evaluate the desired-speech
maintained level and the residual-echo suppression level of RES systems during
double-talk with high correlation to human subjective evaluation, and offered a

framework to balance between them using our design parameter.
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e We introduced the first user-centric RES framework in double-talk, which pro-
vides an RES output that maximizes subjective human ratings while confining
with a user-specific operating point that consists of their requested desired-speech

maintained level and residual-echo suppression level.

e We presented a general and data-driven adaptation-control framework for SAEC,
with a compact and efficient adaptation rule that is expressed with the widely-

linear model in the complex time domain.

e We proposed a pair of objective metrics that distinctly assess the stereophonic
desired-speech maintained level and stereophonic residual-echo suppression level
in the output of the RES during double-talk, and offered a framework to balance

between them using our design parameter.

e We developed a VAD system that firstly exploits unique spatial patterns of speech
and non-speech audio frames by independently learning their underlying geomet-

ric structures.

1.3 Overview of the Thesis

In Chapter 3, we make two contributions that are inspired by the physical behavior of
modern hands-free devices. We first introduce a novel neural network architecture
that is specifically designed to model the distortions these devices induce between
receiving and playing the far-end signal. Second, we construct this neural network with
trainable memory length and non-linear activation functions that are not parameterized
in advance, but are rather optimized during the training stage based on the training
data. The neural network output is inserted into a standard adaptive linear filter that
constantly tracks the acoustic path from the loudspeaker output to the microphone.
The end-to-end system, from the input of the neural network to the output of the linear
filter, forms the proposed non-linear AEC system. During training, the neural network
and the linear filter are jointly optimized to learn the neural network parameters. In
testing, the neural network is used for inference and is not updated, while the linear

filter is adapted to the time-varying acoustic paths. This system requires 17 thousand
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parameters that consume 500 Million float-point operations per second (FLOPS) and
40 Kilo-bytes (KB) of memory, which renders it applicable for embedding on hands-free
communication devices. It also meets the timing requirements of the AEC challenge
[CSP*21], and more generally the constraints of hands-free communication standards
[ETS16] on a standard neural processor.

In Chapter 4, we present the deep variable step-size (DVSS) framework. First,
we solve a constrained non-linear optimization problem that minimizes the normalized
misalignment between the actual and estimated echo path. Second, we present a deep
neural network that learns the relation between the far-end, microphone, and a priori
error signals and the optimal step-size. Finally, the trained neural network produces the
VSS estimate in real-time, which is fed to the NLMS filter for echo cancellation. This
data-driven method makes no acoustic assumptions and is completely non-parametric.
The end-to-end system, from the neural network input to the NLMS output, comprises
the proposed DVSS-NLMS filter. Notably, the DVSS framework can be generalized
and is not restricted to NLMS-type algorithms. For evaluation, we use 100 hours
of recordings from the AEC challenge database [CSPT21] and compare the DVSS to
five competing methods. Experiments show that the DVSS is advantageous in echo
cancellation and speech distortion in double-talk, is more robust to high levels of speech
and noise, and has a better generalization to various non-linearities. The DVSS also
achieves the best re-convergence times and success rates following abrupt echo-path
changes during single-talk and double-talk across different acoustic conditions.

In Chapter 5, we introduce an RES method with a dual-channel input and single-
channel output UNet neural network that directly maps the outputs of a linear AEC
to the desired near-end signal in the short-time Fourier transform (STFT) domain.
By utilizing the depth-wise separable convolution in every convolution layer of the
UNet [GLAT20], the system comprises 136 thousand parameters that consume 1.6
Giga FLOPS and 10 mega-bytes (MB) of memory, which makes it suitable for on-
device integration, e.g., using existing neural processors. Also, the system meets the
timing standards of the AEC challenge [SCS*21], and more generally the constraints of
hands-free communication systems [ETS16]. Even though competing models [HK20]-
[ZTW19], [ZW18], [CSVH18] have shown promising results, the performance in real
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acoustic environments is still challenging. Furthermore, a tunable tradeoff between
the level of residual-echo suppression and desired-signal distortion may benefit appli-
cations that vary in their specific tradeoff requirements. However, this feature is not
enabled by design in existing approaches. We bridge these gaps as follows. First, we
conduct experiments with over 160 hours of data that was acquired from the AEC chal-
lenge database [SCST21] and from independent recordings in real conditions. Second,
a design parameter that allows dynamic balance between echo reduction and signal
distortion is embedded in the UNet objective function that is minimized during the
training process. The performance of the proposed system is compared to two existing
methods: Zhang and Wang [ZW18], where a bi-LSTM structure was utilized to model
an ideal ratio mask for both AEC and RES, and Carbajal et al. [CSVH18], who in-
troduced a multiple input fully-connected neural network RES system, fed with the
linear AEC outputs and reference far-end signal to estimate a phase-sensitive mask.
Experimental results show state-of-the-art performance in various real-life acoustic se-
tups. Particularly, high generalization is demonstrated in a variety of environments,
devices, speakers, and moving echo paths. High robustness is also achieved in extreme
conditions of very low signal-to-echo-ratios (SERs), and the effect of the tunable design
parameter is demonstrated.

In Chapter 6, we show that RES can also be addressed as a speech separation (SS)
[WC18] or speech enhancement (SE) [XDDL14] problem, where the echo is consid-
ered an interfering speech signal. We first fine-tune three off-the-shelf deep-learning-
based systems: Our recently introduced RES system [ICB21a], a convolutional time-
domain audio separation network called Conv-TasNet [LM19], and a denoiser develop
by Facebook™ for SE [DSA20]. We show that the best-performing system of the three
varies depending on the speech, echo, and noise levels. Second, we propose a real-time
data-driven integration of these systems using a deep neural network that continuously
tracks the best system based on single-talk and double-talk performance measures. Ex-
periments with 100 hours of real and synthetic data show that the integrated system
achieves better performance than each system in terms of echo cancellation and speech
distortion across various acoustic setups in both single-talk and double-talk.

In Chapter 7, we introduce two objective metrics that separately evaluate the
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desired-speech maintained level (DSML) and the residual-echo suppression level (RESL)
during double-talk. Considering the RES system as a time-varying gain, the DSML is
obtained by applying that gain to the desired speech and substituting the outcome in
the definition of the SDR. The RESL is obtained by subtracting the desired speech from
the double-talk segment and calculating the ratio of the noisy residual-echo before and
after the gain is applied to it. To evaluate these metrics, we employ a deep learning-
based RES system that also embeds a design parameter [ICB2la]. Experiments are
done with 280 hours of real and simulated recordings in various scenarios and in high
and low levels of echo and noise. Results show that the DSML and RESL have high
correlation with human perception according to the DNSMOS, and high generaliza-
tion to various setups, which renders them more suitable for speech quality evaluation
than the SDR. We further investigate the empirical relation between tuning the design
parameter and the DSML-RESL tradeoff it creates. Based on this relation, we offer
a practical scheme for tuning the design parameter during training to optimally cope
with dynamic system requirements.

In Chapter 8, we introduced the user-centric RES (URES) framework in double-
talk. The URES is initiated with a user-operating point (UOP) that consists of two
performance metrics values; the RESL and DSML [ICB21¢| that the user wishes to
experience from the RES prediction. The URES system then undergoes three stages.
Firstly, we utilize an existing deep RES model that we introduced in [ICB21a]. This
model embeds a design parameter that controls the trade-off between the RESL and
DSML of the RES prediction. We consider 101 pre-trained instances from this model,
each with a different design parameter value. Feeding the same input to all instances
results in different RESL and DSML values in the prediction of every instance, which
covers a wide range of UOPs. Second, each prediction is fed to a separate pre-trained
deep model, which maps this prediction to its RESL and DSML estimates. This is
essential since these metrics depend on the desired-speech signal that is unavailable
in double-talk in practice. Third, the estimates from all instances are compared with
the UOP. The ones that match it, up to a given tolerance threshold that specifies the
allowed deviation from the UOP, are narrowed down to the single prediction with the

maximal AECMOS, which is transmitted to the far-end. The proposed URES system
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has three unique advantages; the RESL and DSML of its output match or approach
the UOP, real-time changes in the UOP are tracked, and the AECMOS of its output is
maximized. Experiments employ 60 hours of noisy real and synthetic data that include
realistic acoustic scenarios with extremely high levels of echo and frequent echo-path
changes. Average results can achieve an AECMOS of 4.4 out of 5 with RESL and
DSML deviations of 1.95 dB and 2.1 dB from the UOP, where dB stands for decibles.
Any user adjustment can be tracked in 38.4 ms, where ms stands for milliseconds. E.g.,
tightening the tolerance threshold can transition the above output to a lower AECMOS
of 3.6 while the RESL and DSML deviations improve to 1.25 dB and 1.45 dB from the
UOP, on average.

In Chapter 9, inspired by [ICB22a], we focus on the problem of SAEC and introduce
a data-driven framework for DVSS that avoids heuristics and does not require acoustic
setup hypotheses. First, the update rule of the adaptation process, governed by the step
size, integrates the widely-linear model in the complex time domain. The mismatch
between the actual echo paths and their filtered estimate is quantified by the normalized
misalignment, which is then minimized with respect to the step size. A neural network
(NN) relates acoustic signals to the optimal step-size in training, and the predicted
step-size feeds the sign-NLMS (SNLMS) filter in real time for tracking the echo paths.
We compare our approach with the competition by considering a pair of near-end
loudspeakers and microphones, although this framework generalizes to any number of
channels. Experimenting with 100 hours from the AEC-challenge corpus [CSPT21]
reveals the consistent advantage of the DVSS in single and double-talk periods across
various acoustic setups. The DVSS-SNLMS system also re-converges more rapidly and
accurately after abrupt echo-path changes and is more robust to single-to-double-talk
transitions.

In Chapter 10, we continue to address SAEC and introduce a pair of objective
metrics to distinctly assess the stereophonic DSML (SDSML) and the stereophonic
RESL (SRESL) in double-talk. We first consider an RES system that acts as a time-
dependent gain, with a pair of input and output channels. To calculate the SDSML,
this gain is projected into the stereo desired-speech and the result is substituted inside

the SSDR expression. The SRESL requires an estimate of the noisy stereo residual-
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echo, achieved by subtracting the stereo desired-speech from the double-talk frame.
The ratio between this estimate without and with the gain applied to it generates the
SRESL. The SDSML and SRESL metrics are evaluated with an RES system, based
on deep learning, which incorporates a tunable design parameter. This study employs
100 hours of recordings that comprise of real signals and of simulations in various
acoustic setups, with a range of echo and noise levels. Results reveal the AECMOS
is well correlated with the SDSML and SRESL with high generalization to various
scenarios. An additional empirical study investigates how the design parameter affects
the tradeoff between the SDSML and SRESL. We then show how varying the design
parameter during training can benefit interchangeable user demands of the RES system,
which often occur in real-life. This study extends our previous work, which address the
monophonic AEC case [ICB21c]|.

In Chapter 11, we concern the problem of VAD and propose an algorithm that
addresses the limitations found in the methods proposed in [DTC15] and [ADC18a].
We independently learn the low-dimensional spatial patterns of speech and non-speech
audio frames through the diffusion maps (DM) method. DM is a method that per-
forms non-linear dimensionality reduction by mapping high-dimensional data points to
a manifold, embedded in a low-dimensional space [TCGC13]. The mapped coordinates
that lay on this manifold are referred to as DM coordinates. Since this method pre-
serves locality, frames with similar contents in the original high dimension are mapped
closely in the low, embedded dimension, with respect to their Euclidean distance. We
separately apply DM for speech and non-speech frames through a pair of independent
deep encoder-decoder structures. Inspired by the Diffusion nets architecture [MSCC17],
the end of each encoder is forced to coincide with the embedded DM coordinates of
its high-dimensional input. This approach allows us to differ the intrinsic structure
of speech from the ones of transients and background noises based on the Fuclidean
metric. We suggest two variations for the voice activity detection algorithm, one for
real-time applications and one for batch processes. We test both approaches on five
comparative experiments conducted in [DTC15, ADC18a, TIH'10]. Results show en-
hanced voice activity detection performance, that surpasses the known state-of-the-art

speech detection results. Furthermore, our proposed architecture is more robust and
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has better generalization ability than competing methods, as demonstrated through
experiments.

In Chapter 12, we extend our VAD-related effort and consider the aforementioned
five deep-learning-based VAD systems [ADC18b, WSSA18, KH18, AC19, IBC19] and
five room impulse-response (RIR) models [Bor84, Vor89, Rin93, Lam05, VPHO06]. First,
we show that training these detectors with solely anechoic corpus and testing them in
real reverberant rooms and spaces leads to a significantly impeded detection capability.
To include unique acoustic patterns of reverberant data during training, we generated
an augmented training set of nearly five million utterances. This extended corpus com-
prises of anechoic and reverberant signals, where the latter is generated by convolving
the anechoic signals with a variety of RIRs, generated using a fixed RIR model. Then,
all five VAD systems are independently trained with this augmented training set. This
experiment is repeated for each of the five RIR models. All trained detection systems
are tested in three real reverberant spaces of a classroom, a large concert hall, and
an octagon shaped library. Experimental results demonstrate that the performance
of all detectors is enhanced in each of the tested reverberant environments, regardless
of the RIR model employed during training. Evaluation measures such as accuracy,
precision and recall increase by 20% on average, compared to non-reverberant training.
An interesting outcome shows that the leading accuracy of each detector was consis-
tently achieved by the Valeaua RIR model [VPHO6]. In a similar manner, the detector

introduced by us [IBC19] prevailed competing VAD systems across all experiments.

1.4 Organization

This thesis is organized as follows. Chapter 2 aims to baseline required scientific back-
ground for the following chapters. The main contribution of this research thesis is laid
out in detail in Chapters 3 to 12; Chapters 3 to 8 focus on monophonic AEC, Chapters
9 and 10 regard SAEC, and Chapters 11 and 12 discuss VAD. Finally, Chapter 13

concludes this thesis and offers future research directions.
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Chapter 2

Scientific Background

2.1 Monophonic Acoustic-Echo Cancellation

Let s (n) be the near-end speech signal and let = (n) be the far-end speech signal. The

microphone signal m (n) is given by:
m(n)=s(n)+yn)+wn), (2.1)

where w (n) represents additive environmental and system noises and y (n) is a nonlinear
reverberant echo that is generated from x (n).

The far-end signal, z (n), is first nonlinearly distorted by electrical components
such as a power amplifier and a loudspeaker that produce zN%(n). Then, 2Nt (n) is
played by the loudspeaker and propagates via the linear acoustic path which is the

room impulse response h (n). Ultimately, y (n) can be modeled as:

y(n) = (2N" 5 h) (n), (2.2)

where * is the convolution operator. The purpose of the AEC system is to suppress the
echo y (n) without distorting the desired signal s (n), and transmit the system output

to the far-end.

Traditionally, a linear AEC system is applied to reduce the linear component of y (n)

from the microphone signal. The AEC receives m (n) as input and x (n) as reference,

23



and aims to estimate the linear echo components, given by ¢ (n):

§(n) = (z+h) (), (2.3)

where h (n) tracks the estimation of the near-end echo path h (n). We assume that h (n)

and h (n) have the same length, and we represent the misalignment between them with

h(n):
h(n)="h(n)—h(n). (2.4)
The adaptation error of the linear AEC system is given by e (n):

e(n) =m(n)—g(n), (2.5)

which can be reformulated using eqs. (2.1)—(2.4) as:

e(n) =s(n)+(y(n) =g (n)) +w(n) (2.6)

Several observations can be made on the challenges of nullifying the echo components
in the adaptation error expression.

First, the nonlinearity caused by nonideal hardware in hands-free communica-
tion systems impose zNF (n) # x(n). Observing eq. (2.8), this projects that the
( (a:NL — a:) * h) (n) ingredient inside the adaptation error is not nullified. Chapter 3
in this thesis addresses this challenge.

Second, the echo component (af * 71) (n) inside the adaptation error, represents the
mismatch between the real and estimated echo paths that is quantified by & (n). In

Chapter 4 we address this challenge and minimize the influence of h (n).

The third challenge addresses the residual-echo components that remain in the
adaptation error, even after the nonlinear and linear stages above. In Chapter 5, we

employ deep learning to characterize and remove all these remaining echo components.
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2.2 Stereophonic Acoustic-Echo Cancellation

In this thesis, the SAEC setup describes a scenario in which the near-end contains a pair
of loudspeakers and a pair of microphones. The left and right near-end microphones

my, (n) and mg (n) at time index n are, respectively,

my, (n) = sL (n) +yL (n) + wL (n), (2.9)

mg (n) = sr (n) + yr (n) + wr (n), (2.10)

where s1, (n) and sg (n) are the near-end speech signals, wy, (n) and wg (n) represent
environmental and system noises, and yr, (n) and yg (n) are the nonlinear reverberant

echo signals, as correspondingly captured by the left and right microphones:

yr (n) (l’EL * hLL> (n) + (mgL * hRL> (n), (2.11)

yr (n) = (2" % her) () + (R * hrw) (). (2.12)

Here, 2]V (n) and z}" (n) respectively denote the left and right far-end signals, i.e.,

x1, (n) and xR (n), subsequent to nonlinear distortions by nonideal hardware [ICB21b].
All of hry, (n), hrr (n), hLr (n), and hrr (n) represents a linear echo-path from one of

the loudspeakers to one of the microphones.

Traditionally, the echo components in each microphone are estimated using adaptive

linear filtering:

QL (n) = (a;L * iLLL) (n) + (wR * iLRL) (n) , (2.13)

QR (n) = (.%'L * iLLR> (n) + (.TUR * iLRR) (n) s (2.14)

where hrp, (n), hrr, (n), hir (n), and hgg (n) respectively track the estimation of the

near-end echo paths hry, (n), hrr (n), hir (n), and hrg (n).

We consider a pair of left and right loudspeakers in the far-end. Each of these

channels respectively receives the left and right adaptation errors, i.e., ef, (n) and eg (n).
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Using egs. (2.9)—(2.14):

e, (n) = my, (n) — 91 (n) (2.15)
= SL, (n) + (I’EL * hpp, — xp, * BLL) (TL) + (l'gL * hR1, — TR * BRL) (n) + wi, (n) .
er (n) = mg (n) — gr (n) (2.16)

= SR (n) + (xEL * hpr — XL, * ilLR) (n) + (fo{L * hRR — TR * }ALRR> (n) + WR (n) .

For each of the left and right channels, the purpose of the SAEC system is to suppress
the echo components and leave the desired-speech undistorted, and transmit each of

the system outputs to the far-end. In Chapter 9, we address the challenge of SAEC.
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Chapter 3

Nonlinear Acoustic-Echo

Cancellation

3.1 Introduction

Hands-free communication often involves a conversation between two speakers located
at near-end and far-end points. The near-end microphone captures the desired-speech
signal and two interfering signals: echo produced by a loudspeaker playing the far-end
signal, and background noises. The acoustic coupling between the loudspeaker output
and the microphone may lead to degraded speech intelligibility in the far-end due
to echo presence [SMH95]. This problem prompted numerous studies regarding AEC
systems that aim to remove echo and preserve the near-end speech [BGM*01]. In recent
years, however, miniaturization of electronic components in hands-free devices, e.g.,
smart phones, smart speakers, and wearable devices, caused non-negligible nonlinear
distortions in the echo path between the far-end signal and the loudspeaker output
[BG95a]. Consequently, AEC systems that assume an echo path that is linear often

fail in practice [MEB10].

To mitigate this mismatch, various nonlinear AEC approaches were proposed to
identify the nonlinear echo path. The Volterra series showed success in modeling sys-
tems with weak nonlinearities and memory using nonlinear basis functions, while often

requiring high computational complexity [GFLBJO03]. A simplified version is given by
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the block-oriented Hammerstein and Wiener models, which describe nonlinear systems
without memory and linear systems with memory [SCPU11]. Also, adaptive functional
link filters [CSAR™13], Bayesian state-space modeling [ME12], and kernel-based meth-
ods [VVARC16] are commonly used for nonlinear AEC. Avargel and Cohen considered
this problem from a time-frequency point-of-view and applied multiplicative function
approximation [ACO08|, sub-band adaptive filtering [AC09a], and an efficient Volttera
series modeling using cross-band terms [AC09b]|, [AC10]. Neural networks provide
an alternative framework for a more accurate nonlinear modeling compared to clas-
sic approaches [BG95b|, [RT98], [Jan04], [ZZ17]. For instance, Malek and Koldovsky
[MK16a] estimated the nonlinear echo path with a fully-coneural networkected neural
network that assumes the Hammerstein model, followed by an adaptive linear filter
to track the acoustic path. Recently, Halimeh et al. [HHK19] constructed an fully-
coneural networkected neural network that assumes the Wiener-Hammerstein model
and captures both the nonlinear and linear echo paths.

Despite showing promising results, the performance of these methods is still chal-
lenging in real-life scenarios, which may be associated with two of their attributes.
First, these models are not accurately designed according to the physical behavior of
distortions that modern hands-free devices apply to the far-end signal. Second, they
are mostly parametric, i.e., they require that memory lengths and nonlinear basis func-
tions are predetermined. E.g., in [GFLBJ03], [SCPU11], the presented models assume
a given number of memory taps, and in [MK16a], [HHK19], fixed nonlinear activa-
tion functions are employed inside the neural network. These drawbacks may produce
sub-optimal solutions in real setups.

To address these two gaps, we make two contributions that are inspired by the
physical behavior of modern hands-free devices. We first introduce a novel neural
network architecture that is specifically designed to model the distortions these devices
induce between receiving and playing the far-end signal. Second, we construct this
neural network with trainable memory length and nonlinear activation functions that
are not parameterized in advance, but are rather optimized during the training stage
based on the training data. The neural network output is inserted into a standard

adaptive linear filter that constantly tracks the acoustic path from the loudspeaker
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output to the microphone. The end-to-end system, from the input of the neural network
to the output of the linear filter, forms the proposed nonlinear AEC system. During
training, the neural network and the linear filter are jointly optimized to learn the
neural network parameters. In testing, the neural network is used for inference and is

not updated, while the linear filter is adapted to the time-varying acoustic paths.

This system requires 17 thousand parameters that consume 500 Million FLOPS and
40 Kilo-bytes (KB) of memory, which renders it applicable for embedding on hands-free
communication devices. It also meets the timing requirements of the AEC challenge
[CSP*21], and more generally the constraints of hands-free communication standards

[ETS16] on a standard neural processor.

Performance is evaluated against two recent neural network-based nonlinear AEC
methods in [MK16a] and [HHK19], and to a linear AEC method. Experiments are
conducted with 280 hours of both synthetic and real data, which include half-duplex and
full-duplex periods affiliated with various acoustic environments, devices, speakers, and
noise and echo levels. Results show leading performance of the proposed nonlinear AEC
system in terms of echo cancellation and speech distortion levels, generalization and
stability to various setups, robustness to high levels of noise and echo, and convergence

and re-convergence rates.

The remainder of this chapter is organized as follows. In Section 3.2, we formulate
the problem. In Section 3.3, we describe the proposed solution. In Section 3.4, we
lay out the experimental setup. In Section 3.5, we present the experimental results.

Finally, in Section 3.6, we draw conclusions.

3.2 Problem Formulation

Figure 3.1 depicts the scenario and proposed system for nonlinear AEC. Let s (n) be
the near-end speech signal and let x (n) be the far-end speech signal. The microphone

signal m (n) is given by

m(n) =s(n)+yn)+wn), (3.1)
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Figure 3.1: Nonlinear AEC scenario and proposed system (bordered). The nonlinear
components are modeled with a neural network and the acoustic path with a standard
adaptive linear filter.

where w (n) represents additive environmental and system noises and y (n) is a nonlinear
reverberant echo that is generated from x (n). The far-end signal, = (n), is first distorted
by electrical components that produce zN" (n), and then Nb (n) propagates via a
linear acoustic path h (n), namely y (n) = (a:NL * h) (n). The proposed nonlinear AEC
system attempts to estimate y (n) by using a neural network to find 2N (n), which
is an estimate for 2" (n), and filtering the result with an adaptive linear filter that

tracks the acoustic path, denoted by & (n):

g(n) = (#N"xh) (n). (3.2)

The signal transmitted to the far-end is given by

§(n)=m(n)=9n)=sn)+y ) -7n)+w). (3-3)

Our goal is to cancel the echo y(n) by eliminating the term y(n) — ¢ (n), without

distorting the speech signal s (n).
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Figure 3.2: Proposed neural network architecture.

3.3 Nonlinear Acoustic-Echo Cancellation

The proposed nonlinear AEC system is comprised of two parts. First, a neural network
models the physical behavior of distortions applied between the far-end signal and the
loudspeaker output, caused by non-ideal electrical components in practical hands-free
devices. Second, a standard adaptive linear filter tracks the acoustic-echo path from
the loudspeaker output to the microphone.

In order to understand our system, it is helpful to understand how the above-
mentioned electrical components behave. Modern hands-free devices often apply dis-
tortions between receiving the far-end signal and playing it in the near-end. These
distortions are created by three different electrical components; a D/A, a power am-
plifier, and a loudspeaker [Dob11], [Kli05], [RLRL10], [SRGZ104]. This study uses a
16-bit data precision, so the signal-to-quantization-noise ratio is sufficiently high and
the D/A distortions are numerically negligible [Dob11]. Thus, the D/A is not mod-
eled. Ideally, the power amplifier should increase the energy of its input signal without
distortions by using the power supply from the device battery. However, low-powered
hands-free devices drive the amplifier to operate close to saturation, which yields dis-
tortions. The specific nonlinear behavior of each amplifier depends on its saturation
curve, ranging from a soft-clipped sigmoid, to a hard-clipped rectified function, and in
extreme cases, it may exhibit a square waveform behavior [Dob11].

The loudspeaker component is responsible for the majority of distortions. In this
study, the widely-used electro-dynamic loudspeaker model is considered, which ex-

hibits four major types of nonlinearities; electrical, magnetic, mechanical, and acousti-
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cal [SRGZ"04]. The electrical signal, I (n), is received from the amplifier output and
creates a magnetic field signal of strength H (n) around the voice coil, which renders it
an electromagnet. The relation between I (n) and H (n) is nonlinear and depends on
the coil displacement signal, A (n). Both I (n) and H (n) lead to polarity changes in the
electromagnet that moves the coil back and forth with force that also has NL relations
with A (n). This movement creates air pressure that is translated into acoustic sound
waves that depend on A (n) and its temporal derivatives. This relation is nonlinear
as well due to wave propagation and mechanical nonlinearities, caused by stiffness of
the loudspeaker spider. Both the power amplifier and loudspeaker components may
depend on previous observations.

The above nonlinear behavior is modeled using a neural network that is comprised
of two cascaded parts: a power amplifier model, and a loudspeaker model, depicted
in Figure 3.2. First, the amplifier is modeled with 3 identical GRUs that contain 16
cells each [CGCB14] and dropout [SHK ™ 14a] in the recurrent layers, a fully-connected
neural network with a one-neuron output, and a PLU activation function layer with
trainable parameters [Nic18]. This entire NLM is fed with the far-end and microphone
waveform signals, since the latter contains information about the distortions of the
former. Second, the loudspeaker is modeled by a sequence of 3 consecutive NLMs. It
receives the output of the amplifier, i.e., the estimated excitation current I (n) that
drives the loudspeaker. Similarly to the amplifier model, I (n) is concatenated to the
microphone signal, and the first NLM learns the electrical-to-magnetic nonlinear model
from I (n) to H (n). Then, the predicted H (n) is concatenated to I (n) and inserted
to the second NLM, which learns the magnetic-to-mechanical nonlinear model and
predicts A (n). Then, A (n) is inserted to the third NLM, which learns the mechanical-
to-acoustic nonlinear model and estimates the distorted far-end signal at the output
of the loudspeaker, i.e., 2N% (n). Since A (n) also affects H (n), the first NLM is fed
with the output of the second NLM using a skip-connection. The NLM unit is adjusted
to receive between 1 to 3-dimensional input signals across the neural network model.
Following this neural network, a linear adaptive filter models the acoustic path between
the loudspeaker output and the microphone. This filter contains 150 samples and was

developed by Phoenix Audio Technologies™ using a filter bank approach. The neural
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network and the linear filter construct the proposed end-to-end nonlinear AEC system.

To the best of our knowledge, the proposed neural network architecture is used in
this study for the first time. The neural network is based on the GRU, whose internal
gate-based mechanism is optimized for nonlinear sequence-to-sequence mapping in the
waveform domain. Also, the GRU keeps relevant past information without discarding
it through time, while neglecting irrelevant data. Thus, the optimal memory length
is implicitly learned by the neural network during training and should not be set in
advance. The trainable PLU parameters are also adjusted during training to optimally
describe various saturation curves of the power amplifier and other nonlinear behaviors
exhibited by the loudspeaker. Thus, the nonlinear behavior of the neural network is not
restricted to a predetermined set of nonlinear basis functions. In addition, the GRU
consumes low computational resources and requires short inference time.

The nonlinear AEC system contains 17 thousand parameters that consume 500
Million FLOPS and 40 KB of memory. Thus, its integration on hands-free devices
is enabled, e.g., using the NDP120 neural processor by Syntiant™ [Syn21]. Timing

constraints of hands-free communication on that processor are also met [ETS16].

3.4 Experimental Setup

3.4.1 Database Acquisition

Two data corpora are employed in this study; the AEC challenge database [CSPT21],
and a database recorded in our lab, both sampled at 16 kHz. These corpora include
single-talk and double-talk periods both with and without echo-path change. In the
case of no echo-path change, there is no movement in the room during the recording.
In the other case, either the near-end speaker or the device are constantly moving
during the recording. In [CSP*21], two open sources of synthetic and real recordings
are introduced. The synthetic data includes 100 hours, and the real data contains 140
hours of audio clips, generated from 5,000 hands-free devices that are used in various
acoustic environments. In both real and synthetic cases, SER and SNR levels were
distributed on [—10,10] dB and [0, 40] dB, respectively. Additional real recordings were

conducted in our lab to test the generalization of the system to unseen setups and its
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robustness to extremely low levels of SERs. This database is fully described in [ICB21a].
For completion, it contains 40 hours of recordings from the TIMIT [GLF*93b] and
LibriSpeech [PCPK15] corpora with SNR levels of 32+5 dB and SER levels distributed
on [—20,—10] dB.

Formally, the SER and SNR captured by the microphone are calculated with 50%
overlapping time frames of 20 ms and are defined as SER = 10log (Hs (n)113/ly (n) H%)
and SNR=101ogy (||s (n) [3/Ilw (n) [3), in dB.

3.4.2 Data Processing, Training, and Testing

The real and synthetic data from [CSP*21] is randomly split to create 185 hours of
training set and 45 hours of validation set. The test set contains only real data that is
comprised of the remaining 10 hours from [CSP*21] and all 40 hours from [ICB21a].
Each set is divided into 10 s segments that contain recordings in different setups. This
leads to frequent re-convergence during transitions between segments, both without and
with echo-path change. These sets are balanced to prevent bias in results, as detailed
in [ICB21a).

During training, the neural network and the succeeding linear filter are jointly
optimized to learn the neural network parameters. Optimization is done by minimizing
the /9 distance between the output of the nonlinear AEC, § (n), and the desired-near-

end speech s (n).

To train the neural network, back-propagation through time is used with a learning
rate of 0.0005, mini-batch size of 32 ms, and 20 epochs, using Adam optimizer [KB15].
Also, automatic differentiation [PGCT17] is applied, since the loudspeaker modeling
involves temporal derivatives of its input signals. Training duration was typically 15
minutes per 10 hours of data on an Intel Core i7-8700K CPU @ 3.7 GHz with two
GPUs of type Nvidia GeForce RTX 2080 Ti.

During testing, the neural network is used for inference only and is not updated.
The linear filter receives the outputs of the neural network and is continuously adapted
to account for time variations of the acoustic path. An artificial gain may be introduced

by the neural network, which is compensated as shown in [VGF06].
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Measure Definition

ERLE | 101logyq ([lm (n) [3/113 (n) [3)

Far-end single-talk

SDR. | 101ogyq (|ls (n) [3/113 (n) — 5 (n) |3)

Double-talk

Table 3.1: Performance measures for nonlinear AEC estimation.

3.4.3 Performance Measures

To evaluate performance, the ERLE [ITU12] is used. It measures echo reduction be-
tween the degraded and enhanced signals when only a far-end signal and noise are
present. For double-talk periods, we use the SDR [VGF06] that takes echo suppression
and speech distortion into account, and the PESQ measure [ITUO1], [ITU17]. The
PESQ is calculated over an entire 10 s segment. The ERLE and SDR are calculated

with 50% overlapping frames of 20 ms, and are defined in Table 3.4.2.

3.5 Experimental Results

The proposed nonlinear AEC system is compared against two competing neural network-
based methods in [MK16a] and [HHK19], notated “Malek” and “Halimeh”, respectively.
For linear echo path approximation, the proposed system and “Malek” are implemented
with an identical adaptive linear filter presented in Section 3.3, while “Halimeh” ap-
proximates the linear echo via a neural network. As benchmark, the linear filter is
also applied alone, and this method is denoted by “Linear”. Measures are reported by
their mean and std values, with respect to the test set specified in each experiment.
Unless stated otherwise, the format of the results is presented as meanzstd. In this
study, convergence was reached if the normalized misalignment between consecutive
linear echo approximations was lower than —30 dB [PCBG15].

Results for segments with no echo-path change are given in Table 3.2 and for seg-
ments with echo-path change are given in Table 3.3, both after convergence. Compared
to competition, the proposed method achieves enhanced echo cancellation in single-talk
periods according to the ERLE measure. In double-talk periods, less speech distortion

and better speech quality are obtained, as suggested by the SDR and PESQ scores,
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respectively. Also, a lower std measure is achieved, which projects better stability of
our method across various setups. Scenarios of echo-path change lead to overall decline
in performance relative to no echo-path change, as expected. However, our method
still prevails competition across all measures in terms of both higher mean and lower
std. Based on the above, our method allows enhanced modeling of the nonlinear echo
path, which improves both the estimation of acoustic paths with no echo-path change,

and the tracking of acoustic paths with echo-path change.

In addition, we investigate the performance before convergence and during re-
convergence for segments with no echo-path change. Due to the test set segmentation
described in Section 3.4.2, re-convergence frequently occurs during transitions between
segments. As shown in Table 3.4, performance is collectively impeded relative to the
converged case in Table 3.2. However, our method still prevails across all measures in
terms of both mean and std values. This indicates the high sensitivity of competing
methods to converged echo approximation, while our model captures the behavior of
the echo even from degraded measurements. We also examine the convergence time of
each method. According to Table 3.5, our method achieves the shortest convergence
time compared to competition. Again, it can be suggested that enhanced modeling of
the nonlinear echo path is obtained by the proposed neural network, which allows the

succeeding linear filter to be adjusted more accurately and rapidly.

Next, performance with no echo-path change is examined in various SNR and SER
levels, after convergence. As shown in Figures 3.3-3.6, all methods suffer from decline in
performance when acoustic conditions deteriorate. However, our method outperforms
competition in both PESQ and SDR measures across all SNR and SER levels, which
projects high generalization ability to various levels of noise and echo. The relatively
stable behavior of the proposed method, especially in low levels of SNRs and SERs,
indicates high robustness to high levels of noise and echo that often occur in practice.
Interestingly, in severely degraded conditions of 0 dB SNR and of —20 dB SER, the
proposed method achieves roughly 1 dB higher SDR and 0.5 higher PESQ score on

average than the competition in second place.
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Figure 3.3: Average SDR in various SER levels for no echo-path change scenarios.

2 —Proposed
©Halimeh
Malek
I Linear
0 20 40

SNR [dB]

Figure 3.4: Average SDR in various SNR levels for no echo-path change scenarios.
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Figure 3.5: Average PESQ in various SER levels for no echo-path change scenarios.
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Figure 3.6: Average PESQ in various SNR levels for no echo-path change scenarios.
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Proposed Halimeh Malek Linear

ERLE | 26.44+5.1 23.1£5.9 22.6+£6.7 21.3+7.2
PESQ | 3.17+0.4 2.88+£0.5 2.64+0.5 2.024+0.7

SDR | 5.37+0.4 4.83+0.6 4.37+0.8 3.01£0.9

Table 3.2: Performance with no echo-path change.

Proposed Halimeh Malek Linear

ERLE | 23.24+6.0 19.2+£7.7 18.0£8.3 16.9+8.9
PESQ | 2.92+0.5 2.54+0.7 2.31+0.6 1.914+0.6

SDR | 5.08+£0.6 4.25+0.9 3.824+0.9 2.52£1.0

Table 3.3: Performance with echo-path change.

Proposed Halimeh Malek Linear

ERLE | 19.7+£7.5 14.94£8.1 13.8£8.8 11.0+9.6
PESQ | 2.56+£0.6 1.98+0.7 1.91+0.7 1.7540.6

SDR | 4.71+0.9 3.58£1.2 3.04x1.3 1.54+1.3

Table 3.4: Performance before convergence.

Proposed Halimeh  Malek  Linear

4.6+0.7 6.6+1.1 7.3+14 7.9%+1.8

Table 3.5: Convergence times [sec].

3.6 Conclusions

We have presented a nonlinear AEC system that comprises a novel neural network ar-
chitecture and a succeeding standard adaptive linear filter. To describe the distortions
modern hands-free devices induce between receiving and playing the far-end signal, we
constructed the neural network of a power amplifier model followed by a loudspeaker
model. The adaptive filter is fed by the neural network and tracks the acoustic path

from the loudspeaker output to the microphone. The neural network parameters are
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updated during training using joint optimization of the neural network and the filter.
The nonlinear AEC implementation is adequate for integration on hands-free devices,
and can meet timing requirements of hands-free communication standards on a stan-
dard neural processor. Experiments with 280 hours of real and synthetic recordings
demonstrate the improved performance of our method compared to competition in
terms of echo suppression and desired-signal distortion, generalization and stability
in various setups, robustness to high levels of noise and echo, and convergence and

re-convergence times.
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Chapter 4

Deep Adaptation Control for

Acoustic-Echo Cancellation

4.1 Introduction

Hands-free speech communication often involves a conversation between two speakers
located at near-end and far-end points. During double-talk, the near-end microphone
captures the desired-speech signal in addition to an echo produced by a loudspeaker
that nonlinearly distorts and plays the far-end signal. The acoustic coupling between
the loudspeaker and the microphone may lead to degraded speech intelligibility in the
far-end due to echo presence [SMH95]. AEC aims to identify the echo path with an
adaptive filter and create a replica of the echo that is subtracted from the microphone
signal BGM™01].

The NLMS filter is a popular adaptive filter since it is numerically stable and
computationally efficient [PCBG15]. The NLMS integrates the normalized step-size
parameter that governs the often conflicting fast convergence requirements and low
misadjustment. Therefore, it is highly desirable to control the step-size during adapta-
tion in practical scenarios of time-varying echo paths and double-talk. This problem has
motivated numerous VSS related studies. For example, Haubner et al. employed neural
networks for near-end estimation[HHB'20], noise estimation[ HBEK21], and minimiz-

ing the error using adaptation control in the frequency domain[HBK21]. Meier and
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Kellermann[MK16b| employed a deep neural network that maps statistical features of
the far-end and a priori error signals to an analytically derived VSS. A batch of clas-
sic approaches includes the NPVSS that adjusts the step-size by reducing the squared
error at each instant [BRVTO06], the mean error SVSS that applies decompoisition of
the error into sub-blocks [HA16], and HVSS that estimates the system noise power to
control the step-size update [HL11].

However, existing approaches make restricting assumptions in real-life setups, e.g.,
assuming a linear relationship between the echo and the far-end signals[HHB*20]-
[HL11], and adopting a time-invariant echo-path[BRVTO06]. In practice, these assump-
tions result in filter misadjustment and slow convergence rates during echo-path changes
[ICB21b]. Also, such methods require tuning parameters that are difficult to control
in real-life scenarios. For example, the NPVSS [BRVTO06] involves estimating the noise
power, which is challenging during double-talk.

We address these gaps by presenting a DVSS framework. First, we solve a con-
strained nonlinear optimization problem that minimizes the normalized misalignment
between the actual and estimated echo path. Second, we present a deep neural network
that learns the relation between the far-end, microphone, and a priori error signals and
the optimal step-size. Finally, the trained neural network produces the VSS estimate
in real-time, which is fed to the NLMS filter for echo cancellation. This data-driven
method makes no acoustic assumptions and is completely non-parametric. The end-
to-end system, from the neural network input to the NLMS output, comprises the
proposed DVSS-NLMS filter. Notably, the DVSS framework can be generalized and is
not restricted to NLMS-type algorithms.

For evaluation, we use 100 hours of recordings from the AEC challenge database
[CSP*21] and compare the DVSS to five competing methods. Experiments show that
the DVSS is advantageous in echo cancellation and speech distortion in double-talk, is
more robust to high levels of speech and noise, and has a better generalization to various
nonlinearities. The DVSS also achieves the best re-convergence times and success rates
following abrupt echo-path changes during single-talk and double-talk across different
acoustic conditions.

The remainder of this chapter is organized as follows. In Section 4.2, we formulate
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Figure 4.1: AEC scenario and proposed system (bordered). The neural network pro-
duces the DVSS estimate i* (n), which is fed to an NLMS filter that generates the
acoustic path estimation h (n).

the problem. In Section 4.3, we describe the proposed solution. In Section 4.4, we
lay out the experimental setup. In Section 4.5, we present the experimental results.

Finally, in Section 4.6, we draw conclusions.

4.2 Problem Formulation

Figure 4.1 illustrates the DVSS-NLMS configuration. The microphone signal m (n) at

time index n is given by:
m(n)=s(n)+y((n)+wn), (4.1)

where s (n) is the near-end speech signal, w (n) represents environmental and system
noises, and y (n) = xNLT (n)h(n) is a nonlinear and reverberant echo. For sake of
readability, in this chapter we define notations by using explicit vector representations.
Namely, x¥“ (n) denotes the L most recent samples of the far-end signal, x (n), after

undergoing nonlinear distortions by nonideal components, and the echo path h (n) is
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modeled as a finite impulse response filter with L coefficients:

N () = [N (). - L 1)] (4.2)

h(n) = [ho (n),hi(n),...,hr_1 (n)]". (4.3)

An NLMS adaptive filter with L coefficients tracks the echo path estimate h (n) and

echo estimate § (n) = x7 (n) h (n):

e(n)=m(n) =9 n)=(yn)—7n)+sm)+wh). (4.6)

Our goal is to estimate h (n) and to cancel the echo by eliminating y (n) —4 (n), without

distorting the speech s (n).
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4.3 Deep Variable Step-Size Algorithm

4.3.1 General NLMS Filter Model in Double-talk

The a priori and a posteriori error signals of the NLMS adaptation process are, respec-

tively, given by [PCBG15]:

Also, NLMS-type adaptive filters follow the update rule:
B(n)=h(n—1)+pm)xm)em), h©)=0", (4.9)

where the step-size p (n) is a positive scalar that controls the trade-off between conver-
gence rate and adaptation misalignment and h (0) has L zeros. From (4.7)—(4.9), we

have

e(n)=c¢€(n) (1 —u(n)xt (n)x (n)) . (4.10)

To derive the general expression for u(n), we impose echo cancellation from the a

posteriori error, namely:
e(n)=s(n)+w(n). (4.11)
Substituting (4.11) into (4.10) yields:

s(n)+w(n)=e(n) (1 —u(n)xT (n)x (n)) . (4.12)
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4.3.2 Data-driven Generation of the Optimal Step-Size

The normalized misalignment D (n) quantifies the mismatch between the actual and

estimated echo paths in dB:

D (n) = 20log,, <” (Hl)l( })IH( )H2> w1
=2010g10<H () —h(n—1) = p(m)x(n)e(n) Hz)_

b (n) 2

The optimal step-size u* (n) is the solution of the constrained nonlinear optimization

problem that minimizes D (n):

u* (n) = argmin D (n), (4.14)
0<p(n)<1

where the constraint complies with the stability condition of NLMS-type algorithms
[PCBG15]. This optimization process is carried out using the active-set optimization
algorithm [HZ06]. According to (4.13), merely the far-end and a priori error signals are

required for p* (n). This allows a non-parametric and data-driven approach to estimate

w* (n).

4.3.3 Optimal Step-Size Learning Using Neural Networks

Deriving p* (n) in practice is time-consuming and requires knowledge of the echo path.
Thus, a deep neural network is built to learn the relation between available data mea-
surements and p* (n) during training, and to produce an estimate ji* (n) in real-time.
According to (4.12), the step-size involves information of the far-end, a priori error,
and near-end speech and noise signals. Even though the near-end signals are not avail-
able in practice, they comprise the available microphone signal. Thus, we propose a
deep neural network that receives the far-end, a priori error, and microphone signals
as inputs and maps them to the corresponding optimal step-size.

We employ a convolutional neural network [AMAZ17] with three input channels,
one for each input signal, and a single-neuron output for the step-size. Each input

channel is fed with its corresponding waveform signal’s STFT [GL84] amplitude. The

46



first convolution layer employs a 3 x 3 kernel size, stride of 3, dilation of 5, and padding
of 1, followed by 2-D batch normalization and a ReLLU activation layer, and has 3 input
and 16 output channels. A second convolution layer follows the same filtering specifi-
cations, but has 16 input and 16 output channels. A fully-connected neural network
unit receives the 16 filters and propagates their flatten version through a 1920 x 512
layer, followed by 1-D batch normalization, a ReLU activation function, and a dropout
layer with a probability of 0.5. Finally, this outcome is concatenated to a second fully-
connected layer with dimensions 512 x 1 that ends with a sigmoid activation function.
The objective function is the ¢y distance between the neural network prediction and
the optimal step-size u* (n).

In real-time, the neural network produces fi* (n), which is fed to the succeeding
NLMS. This end-to-end system contains 1 Million parameters that consume 4 Million
FLOPS and 4.6 MB of memory. Thus, its integration on hands-free devices is enabled
with hands-free communication timing constraints met [ETS16], e.g., using the NDP120

neural processor by Syntiant™ [Syn21].

4.4 Experimental Setup

4.4.1 Database Acquisition

The AEC challenge database [CSP*21] is employed in this study. This corpus is sam-
pled at 16 kHz and includes single-talk and double-talk periods both with and with-
out echo-path change. No echo-path change means no movement in the room during
the recording, and echo-path change means either the near-end speaker or the de-
vice are moving during the recording. The corpus includes 25 hours of synthetic data
and 75 hours of real clean and noisy data. To account for realistic acoustic envi-
ronments, every far-end signal randomly undergoes one of 4500 simulated nonlinear
modifications, generated according to the physical behavior of power amplifiers and
loudspeakers in modern hands-free devices [ICB21b]. Also, every nonlinearly-distorted
signal is randomly propagated via one of 4500 real room impulse responses that are
taken from the corpus in [SSMT19] with their first L coefficients. The echo-to-speech

ratio (ESR) and echo-to-noise ratio (ENR) levels were distributed on [—10,10] dB
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Measure Definition

ERLE | 10logyo (flm (n) 13/ ]le (n) [3)

Far-end single-talk

SDR | 1010y (s (n) [3/lle (n) — s (n) [3)

Double-talk

Table 4.1: Performance measures for the DVSS approach estimation.

and [0,40] dB, respectively, and are defined as ESR=101log;, (Hy (n)113/]ls (n) H%) and
ENR=101log;, (Hy (n) [13/]|w (n) ||%) in dB, both calculated with 50% overlapping time

frames of 20 ms.

4.4.2 Data Processing, Training, and Testing

Initially, the 100 hours of real and synthetic data are randomly split to create 80 hours
of training, 10 hours of validation, and 10 hours of test sets. All sets are balanced to
prevent biased results, as detailed in [ICB2la]. The training and validation sets are
used for step-size generation via (4.14) with x(0) = 3 x 107, L = 2400, and h (0) = 07
being a vector of L zeros. The step-size is generated every 8 ms to avoid unnecessary
heavy computations. An abrupt change in echo path reoccurs every t seconds, where
t ~ UJ[4.5,5.5], resembling real-life scenarios. The signals are transformed by the
STFEFT using 16 ms frames and 8 ms shifts. Past information of 96 ms is concatenated
before entering the neural network. Training the neural network is done using back-
propagation through time with a learning rate of 10™* that decays by 1076 every 5
epochs, mini-batch size of 32 ms, and 40 epochs, using Adam optimizer [KB15]. In real-
time, the neural network infers the test set and is not updated. The NLMS receives
the optimal step-size estimate from the neural network and continuously tracks the
echo path. The neural network may introduce an artificial gain, which is compensated
as in [ICB21¢|. Training duration was 30 minutes per 1 hours of data, and the batch
inference time of the end-to-end system, i.e., the neural network and adaptive filter, is
24 ms on an Intel Core i7-8700K CPU @ 3.7 GHz with two GPUs of Nvidia GeForce
RTX 2080 Ti.
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4.4.3 Performance Measures

To evaluate the performance, the ERLE [ITU12] is used. It measures echo reduction
between the degraded and enhanced signals when only a far-end signal and noise are
present. In double-talk, we use the SDR [VGF06] that takes echo suppression and
speech distortion into account, and the PESQ [ITU17]. All measures are calculated
with 50% overlapping frames of 20 ms, and the ERLE and SDR are defined in Table
4.4.2. Convergence times and success rates are also given. Convergence occurs when
D (n) falls under —10 dB and is successful if that holds for the remaining echo path.

We also report the value of D (n) as given in (4.13).

4.5 Experimental Results

Using the entire test set, the DVSS method is compared against four competing VSS-
based methods in [MK16b]-[HL11], respectively notated “NNVSS”, “NPVSS”, “SVSS”,
and “HVSS”. All methods are implemented with the NLMS filter, which is also imple-
mented with a constant step-size of ;1 = 3 x 107> as the benchmark, notated “NLMS”.
In Tables 4.2 and 4.3, measures are reported by their mean and std values in the format
mean+tstd. In Table 4.4, the average convergence times and success rates are reported.

Results with no echo-path change are given in Table 4.2 and with echo-path change
are shown in Table 4.3, both after convergence. According to the ERLE measure,
the proposed method achieves leading echo cancellation in single-talk. The DVSS
yields less speech distortion and better speech quality during double-talk, respectively
deduced by the SDR and PESQ scores. A lower std value is also achieved, which
implies better stability of the DVSS across various setups. Although scenarios of echo-
path change lead to expected performance decline relative to no echo-path change, our
method outperforms competing methods across all measures in terms of mean and std.
Furthermore, by Table 4.4, our method achieves the fastest average re-convergence time
and highest convergence success rate compared to the competition. Thus, the data-
driven DVSS that requires no acoustic assumptions and is entirely non-parametric, can
track the VSS in practical acoustic conditions with double-talk with high generalization

and robustness, and adjust the VSS most accurately and rapidly.
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SDR [dB] PESQ ERLE [dB] Norm. Mis. [dB]

DVSS | 3.51+0.4 2.524+0.3 21.3+4.6 -22.8+4.2
NNVSS | 2.48+0.9 1.7840.4 15.5£5.7 -16.8+4.9
NPVSS | 2.81+£0.8  2.06%0.5 16.8+£6.7 -18.14£5.7
SVSS 2.21+£0.9  2.03£0.6 15.0+£5.5 -16.3+5.0
HVSS | 2.86+0.6 2.12+0.4 18.1+£6.5 -19.946.2
NLMS | 2.09+£1.1  1.624+0.3 14.2+5.8 -15.5+4.9

Table 4.2: Performance with no echo-path change.

SDR [dB] PESQ ERLE [dB] Norm. Mis. [dB]

DVSS | 3.16+0.6 2.31+0.5 16.945.7 -18.3+5.2
NNVSS | 2.11+1.1  1.75£0.5 11.9+5.5 -11.944.9
NPVSS | 2.57£1.0 1.99+0.6 15.9+7.7 -17.4+7.1
SVSS 2.03£1.2  1.80£0.7 15.0+6.1 -13.445.9
HVSS 2.62+0.9  2.03£0.5 12.74£5.7 -15.1+4.2
NLMS | 1.95£14  1.5640.3 10.24+4.1 -11.0£3.0

Table 4.3: Performance with echo-path change.

DVSS NNVSS  NPVSS SVSS HVSS NLMS

3.4s, 95% 5.9s, T7% 6.6s, T5% 5.6s, 83% 7.0s, T1% 7.9s, 58%

Table 4.4: Convergence times [sec| and success rates [%].

Convergence comparison is illustrated in Fig. 4.2, where the ESR and ENR con-
tinuously vary, and after 5 s, an abrupt echo-path change occurs. The DVSS-NLMS
filter continues to converge during double-talk and is only disturbed by the abrupt
echo-path change. Also, the DVSS rapid convergence and re-convergence are demon-
strated. All VSS-based competing methods experience divergence due to double-talk,
which degrades their adaptation process. This supports previous conclusions regarding

the DVSS superiority in real conditions such as double-talk and echo-path changes.
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Figure 4.2: Convergence comparison to abrupt echo-path change that occurs after 5 s,
while ESR and ENR values regularly change.

4.6 Conclusions

We have introduced a general framework for real-time adaptation control using deep

learning. We first performed optimal VSS generation that is entirely non-parametric
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and makes no acoustic assumptions via minimization of the filter misalignment. Second,
the relation of the data and the optimal VSS was learned via a deep neural network.
Finally, in real-time, the neural network yields a VSS estimate that is fed into the
adaptive filter that continuously tracks the echo path. Experiments using 100 hours of
real and synthetic data showed superior performance of the DVSS over the competition
in AEC using the NLMS filter. In particular, the DVSS is preferable during double-
talk in terms of echo cancellation and speech distortion, and characterized by faster

convergence following abrupt echo-path changes.

52



Chapter 5

Deep Residual-Echo Suppression
with A Tunable Tradeoff
Between Signal Distortion and

Echo Suppression

5.1 Introduction

Real-life telecommunication scenarios involve a conversation between two speakers that
are located at near-end and far-end points. The near-end includes a microphone that
captures the near-end signal, the far-end signal played by a loudspeaker, and back-
ground noises [SMH95]. The presence of acoustic echo can lead to degradation in
intelligibility and quality of conversation, since the far-end speaker can hear his own
voice while speaking. Conventional AECs do not model non-linearities in the echo
path, and generally introduce a mismatch between true and estimated echo paths dur-
ing convergence and re-convergence [BMS98|. This results in residual echo that must

be suppressed by a dedicated system.

Deep learning has occupied a major role in AEC studies and showed enhanced
performance compared to traditional methods [HK20], [FEKL20]. A recent study ex-

ploited LSTM networks to jointly obtain echo cancellation and to suppress noises and
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reverberations [CSVH19]. Lee et al. [LSK15] cascaded a fully-connected neural net-
work after a linear AEC system and evaluated the objective gain between the spectra
amplitudes of the near-end and canceler output signals. Lei et al. [LCHT19] exploited
past and future temporal context to map the microphone and reference far-end signals
to the desired speaker via a fully-connected neural network. Lately, deep learning and
classic methods were jointly utilized in [MHZS20] and [ZTW19], where the latter acti-
vated convolutional recurrent networks to evaluate the real and imaginary parts of the
near-end signal spectrogram.

In this study, we introduce an RES method with a dual-channel input and single-
channel output UNet neural network that directly maps the outputs of a linear AEC to
the desired near-end signal in the STFT domain. By utilizing the depth-wise separable
convolution in every convolution layer of the UNet [GLAT20], the system comprises
136 thousand parameters that consume 1.6 Giga FLOPS and 10 MB of memory, which
makes it suitable for on-device integration. Also, the system meets the timing stan-
dards of the AEC challenge [SCS™21], and more generally the constraints of hands-free
communication systems [ETS16].

Even though competing models [HK20]-[ZTW19], [ZW18], [CSVH18] have shown
promising results, the performance in real acoustic environments is still challenging.
Furthermore, a tunable tradeoff between the level of residual-echo suppression and
desired-signal distortion may benefit applications that vary in their specific tradeoff
requirements. However, this feature is not enabled by design in existing approaches. We
bridge these gaps as follows. First, we conduct experiments with over 160 hours of data
that was acquired from the AEC challenge database [SCS*21] and from independent
recordings in real conditions. Second, a design parameter that allows dynamic balance
between echo reduction and signal distortion is embedded in the UNet objective function
that is minimized during the training process.

The performance of the proposed system is compared to two existing methods:
Zhang and Wang [ZW18], where a bi-LSTM structure was utilized to model an ideal
ratio mask for both AEC and RES, and Carbajal et al. [CSVH18], who introduced a
multiple input fully-connected neural network RES system, fed with the linear AEC

outputs and reference far-end signal to estimate a phase-sensitive mask. Experimental
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Figure 5.1: RES scenario and proposed system.

results show state-of-the-art performance in various real-life acoustic setups. Particu-
larly, high generalization is demonstrated in a variety of environments, devices, speak-
ers, and moving echo paths. High robustness is also achieved in extreme conditions of
very low SERs, and the effect of the tunable design parameter is demonstrated.

The remainder of this chapter is organized as follows. In Section 5.2, we formulate
the problem. In Section 5.3, we describe the proposed solution. In Section 5.4, we
lay out the experimental setup. In Section 5.5, we present the experimental results.

Finally, in Section 5.6, we draw conclusions.

5.2 Problem Formulation

Fig. 5.1 depicts the residual-echo suppression system. Let z (n) denote the reference
far-end signal and let s (n) denote the desired near-end signal in time index n. The

microphone signal, m (n), is given by:

m(n) =s(n)+yn)+w(n), (5.1)

where the echo y (n) is a reverberant non-linear modification of x (n) and w (n) repre-
sents the environmental and inherent system noises.

Before applying RES, a linear AEC system is applied to reduce the linear echo. The
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AEC receives m (n) as input and x (n) as reference, and generates two output signals:
7 (n), the outcome of an adaptive filtering process that aims to estimate y (n), and the

adaptation error signal e (n) that is given by:

e (n) = m(n) - (n). (5.2)

From (5.1) and (5.2) we have:

e(n) =sm)+(yn)—g0)+w(n). (5.3)

The subsequent RES system aims to produce § (n) by suppressing the residual echo

y (n) — g (n) without distorting the desired signal s (n).

5.3 Deep Residual-echo Suppression with Tunable Trade-

off

The proposed RES system comprises of a UNet neural network with two input channels
and one output channel. The network is fed with the STFT amplitude of the linear AEC
outputs and aims to recover the STF'T amplitude of the desired near-end signal. The
contracting and expansive paths of the UNet are each constructed of 5 convolution units.
Every unit contains 2 concatenated and identical layers, where every layer consists of
2-D convolution, 2-D batch normalization, and a ReLLU activation. Here, convolution
is implemented in two parts; depth-wise convolution layer with a 3 x 3 kernel and
padding of 1, followed by a separable convolution layer, to reduce computational load.
During contraction, convolution units are followed by a max pooling layer, and during
expansion, convolution units are preceded by an up-sampling layer, both of scaling
factor 2. Skip connections are applied between matching pairs of contraction and

expansion convolution units.

To exploit the powerful image segmentation abilities of the UNet [GLAT20], its
channels are fed with a long temporal context of 300 ms that generates spectrogram

images. During encoding, short filters jointly capture time-frequency local connec-
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tions and produce numerous features that discriminate residual echo. During decod-
ing, a similar convolution mechanism removes these echo signatures while preserving
the desired signal. Long skip connections allow recovery of fine-grained details in the
prediction, as features of the same dimension are reemployed from earlier layers, gra-
dient flows directly via skip connections, which enhances optimization, and features
are directly passed from encoder to decoder to recover spatial information lost during

down-sampling.

A tunable design parameter o > 0 is embedded in a custom loss function J(«) that

is minimized during training:

~ 2 ~ 2
J@) =S =S| +a-|SD| + 0% Laso (5.4)

where S (f) and S (f), respectively, represent the mini-batch predicted and desired
spectra amplitudes in frequency bin f after normalization, as described in Section

2
, which
2

5.4.2. During the training stage, J(«) is minimized while @ penalizes H§ (f) ‘
allows a dynamic tradeoff between the levels of residual-echo suppression and desired-
signal distortion of the system. When a = 0, the error between the prediction and
the near-end signal is minimized. However, when o > 0, smaller prediction values
are generated. This reduces the level of residual echo but compromises the level of

desired-signal distortion. ¢% _ mitigates sub-band nullification that may occur when

S(f)
o # 0.

The linear AEC system that precedes the UNet was made by Phoenix Audio Tech-
nologies. It employs a 150 ms filter length, converges after 5 s, and consumes 200
Kflops. Overall, the proposed end-to-end system, from the waveform input of the lin-
ear AEC to the waveform output of the RES, contains 136 thousand parameters that
consume 1.6 Giga FLOPS and memory of 10 MB. The system meets timing constrains
of hands-free communication [SCS*21], [ETS16] on the standard Intel Core i7-8700K
CPU @ 3.7 GHz. Thus, on-device system integration is enabled, e.g., on the AM5749

processor by TI™ [TT19).
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5.4 Experimental Setup

5.4.1 Database Acquisition

The SER and SNR captured by the microphone are SER=101og; (||5 (n) 13/1ly (n) H%)
and SNR=101og;, (Hs (n) 13/ |lw (n) H%) in dB. Both measures are obtained using 50%
overlapping time frames of 20 ms. Two data corpora were employed in this study; the
AEC challenge database [SCST21] used for training, and an independently recorded
database used for both training and testing.

The AEC challenge database contains two new open sources of synthetic and real
recordings. The synthetic data captures 100 hours of clean and noisy single talk and
double talk periods. The real data was derived by a crowd sourcing effort that yielded 50
hours of audio clips, generated from 2,500 real acoustic environments, audio devices,
and human speaking in single and double talk scenarios that included changed and
unchanged echo paths. SER levels were uniformly distributed between [—10,10] dB
and SNR was randomly sampled between [0,40] dB in both data sources.

Also, independent recordings in real setups were acquired with sample frequency
of 16 kHz to test the generalization of the system to unseen setups and its robustness
to low levels of SER. The near-end signal was generated via a mouth simulator type
4227-A™ of Briiel&Kjaer, i.e., the near-end signal contained inherent system noise.
The microphone and loudspeaker were either enclosed within a distance of 5 cm by
speakerphones of type Spider™ MT503 or Quattro MT301™ or the echo was played
externally by Logitech type Z120™ loudspeaker. The mouth simulator was placed
in three positions located either 1, 1.5, or 2 m from the microphone, but was shifted
only between recordings. Transitions in the echo path were generated by moving the
external loudspeaker either 1, 1.5, or 2 m away from the microphone during recordings,
producing 3 source-receiver positions. The data used for experiments was equally mixed
between the TIMIT [GLF"93b] and the LibriSpeech [PCPK15] corpora. Recordings
were performed in four different room sizes varied between a 3 x 3 x 2.5 m? volume to
a larger 5 x 5 x 4 m® volume, and the reverberation time, i.e. RTgo, varied between
[0.3,0.6] seconds. To create double talk utterances, near-end and far-end speakers

were chosen randomly, then zero-padded to the same length and added in various SER
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levels ranging in [—20, —10] dB. The number of far-end single-talk, near-end single-
talk, and double-talk utterances was identical. Technically, male and female speakers
participated in a balanced manner, double-talk periods contained two different speakers,
the training and test sets did not share the same speakers, and every speaker was
both the far-end and near-end speaker. Overall, 11 hours of data were generated and
equally split between the training and test databases. Both sets contained disjoint and
balanced setups in terms of acoustic environments, devices, and speakers. SNR levels

were distributed with mean values of 32 dB and std of 5 dB.

5.4.2 Data Processing, Training, and Testing

First, the linear AEC is applied to the microphone and reference signals. Then, 20
ms time frames are processed with 50% overlap. Each frame is represented by 161
frequency bins by taking the amplitude of a 320-point STFT. During training, the
spectral data is normalized between 0 and 1, i.e., for every frequency bin between 1
and 161, the corresponding vector of time samples is subtracted by its minimum value
and scaled by its dynamic range. These training statistics are reapplied to the test
data. In training, disjoint batches of 30 frames, corresponding to 300 ms, are inserted
to the dual input channel and single output channel of the UNet. Optimization is done
by minimizing the loss function in eq. (5.4) with a learning rate of 0.0005, mini-batch
size of 4, and 20 epochs using Adam optimizer [KB15]. Training duration was typically
1.5 hours per 10 hours of training data on an Intel Core i7-8700K CPU @ 3.7 GHz with
two GPUs of type Nvidia GeForce RTX 2080 Ti. During testing, batches of 30 frames
are inserted to the UNet with a step size of one. After the amplitude spectral prediction
is generated, every frequency bin undergoes the inverse normalization described before
using the training statistics. This result undergoes an inverse STF'T using the error
signal phase by employing the overlap-add method [GS97]. It should be noted that
an artificial gain may be introduced by the RES, which is compensated as shown in

[CSVH18].
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Measure Definition

ERLE 1010g39 ([le (m) [3/115 () 113)

Far-end single-talk

SAR | 1010g, (I3 (n) [3/Ils () — 5 () [13)

Near-end single-talk

SDR | 10logyo (lls (m) B/l (m) =8 (m)B)|

Table 5.1: Performance measures for RES estimation.

5.4.3 Performance Measures

To evaluate performance we use the ERLE [ITU12] that measures the echo reduction
between the noisy and enhanced signals when only far-end signal is present, and SAR
that measures the distortion for near-end single-talk periods [VGF06]. For double-talk
periods, we use the SDR [VGFO06] that takes echo suppression and speech artifacts
into account, and the PESQ [ITUO1]. The performance measures are defined in Ta-
ble 5.4.2. Besides the PESQ that is calculated over an entire utterance, these measures

are calculated with 50% overlapping frames of 20 ms.

5.5 Experimental Results

We compare the performance of the proposed system with two competing RES methods
in [ZW18], referring to its reported “AES+BLSTM” system, and [CSVH18]. All RES
models are fed with the outputs of the same linear AEC discussed in this study. In all
experiments, the linear AEC has converged and a = 0 unless stated otherwise. Models
are trained using both the entire AEC challenge data and independently recorded
training data, which accumulates to over 155 hours. Performance measures are reported
by their mean and std values across the entire 5.5 hours of the independently recorded
test set, described in Section 5.4.1.

Results without change in echo path are given in Table 5.2 and with change in
echo path are given in Table 5.3. It can be observed that our method outperforms
competing methods in all the measures, while also attaining the lowest std. It is

important to note that our method is least impeded by the changes in echo path,
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UNet Zhang Carbajal

PESQ | 3.61+0.24 2.514+0.41 2.474+0.55
SDR 7.14+0.8 4.3+14 4.14+1.6
ERLE | 40.1+2.1  35.74£3.3 21.5+3.6
SAR 8.84+0.8 4.841.1 4.5+1.1

Table 5.2: Performance with no echo-path change.

UNet Zhang Carbajal

PESQ | 3.3+£0.25 2.35+0.45 2.05%+0.7

SDR 7+0.8 2.71+1.9 2.841.65
ERLE | 39.7£1.9 28.3+3.9 18+4

SAR | 8.8£0.95 4.3+1.35 4.44+1.3

Table 5.3: Performance with echo-path change.

UNet Zhang Carbajal

PESQ | 2.88+0.5 2.02+0.8 1.914+0.95
SDR | 4.9+1.4 2.6£2.1 1.1+1.7
ERLE | 31.84£2.9 23.3£4.1 15.24+4.9
SAR 8.5+1 3.7£1.45  3.7£2.7

Table 5.4: Performance before convergence.

a=0 a=0.5 a=1
PESQ | 3.61£0.24 3.444+0.29 3.35%0.35
SDR 7.1+0.8 6.94£0.95 6.8+1.1
ERLE | 40.1£2.1  41.9£2.2  43.5£2.2
SAR 8.8+0.8 8.44+0.8 8.24+0.9

Table 5.5: Performance for different values of «.
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while the models in [ZW18] and [CSVH18| both deteriorate in this scenario. Thus,
compared to the competing methods, the proposed system is characterized by better
generalization ability to unseen real environments, devices, and speakers in extremely
low SER levels between [—20, —10] dB.

In the following, we investigate the performance before the linear AEC converges
and during re-convergence, while addressing only unchanged echo paths. As shown in
Table 5.4, performance is collectively impeded when the linear AEC has not converged.
However, our method still shows leading performance that points out the high sensi-
tivity of competing methods to converged echo approximation, while the UNet models
the residual echo even from degraded measurements.

Next, we demonstrate the effect of @ on the tradeoff between residual-echo sup-
pression and desired-signal distortion levels. Again, only unchanged echo paths are
considered. Results are presented in Table 5.5. It can be observed that increasing o
leads to enhanced residual-echo suppression but at the expense of desired-signal distor-
tion. However, an interesting conclusion is that for the given « values, the UNet does
not severely degrade the quality of the desired signal, as suggested by the ERLE and

SAR measures.

5.6 Conclusions

We have introduced an RES method based on a UNet neural network that receives the
outputs of a linear AEC in the STFT domain. By using depth-wise separable convolu-
tion in the UNet layers, our system consists of 136 thousand parameters that require
1.6 Giga FLOPS and 10 MB of memory, which renders it adequate for on-device ap-
plications. This system satisfies hands-free communication timing standards on a stan-
dard CPU. In addition, we intergrate into the system a tunable tradeoff between echo
suppression and signal distortion using a built-in design parameter. Experiments were
conducted using 150 hours of synthetic and real recordings from the AEC challenge and
11 hours of real independent recordings. Results show state-of-the-art performance in
terms of echo suppression and desired-signal distortion compared to competing meth-

ods, high generalization to various setups, and robustness to extremely low levels of
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Chapter 6

Off-the-Shelf Deep Integration

For Residual-Echo Suppression

6.1 Introduction

Hands-free speech communication often involves a conversation between two speakers
located at near-end and far-end points. The near-end microphone captures the desired-
speech signal, echo produced by a loudspeaker playing the far-end signal, and back-
ground noise. The acoustic coupling between the loudspeaker and the microphone may
lead to degraded speech intelligibility in the far-end due to echo presence [SMH95]. Nu-
merous AEC systems were proposed to reduce the echo of the far-end speaker’s speech
and preserve the near-end speaker[BGM™01]. However, echos are often not eliminated

by AEC systems and must be further reduced using RES systems.

RES can also be addressed as a speech separation (SS) [WC18] or speech enhance-
ment (SE) [XDDL14] problem, where the echo is considered an interfering speech signal.
We first fine-tune three off-the-shelf deep-learning-based systems: Our recently intro-
duced RES system [ICB2la], a convolutional time-domain audio separation network
called Conv-TasNet [LM19], and a denoiser develop by Facebook™ for SE [DSA20].
We show that the best-performing system of the three varies depending on the speech,
echo, and noise levels. Second, we propose a real-time data-driven integration of these

systems using a deep neural network that continuously tracks the best system based on
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Figure 6.1: AEC scenario and proposed system integration.

single-talk and double-talk performance measures. Experiments with 100 hours of real
and synthetic data show that the integrated system achieves better performance than
each system in terms of echo cancellation and speech distortion across various acoustic
setups in both single-talk and double-talk.

The remainder of this chapter is organized as follows. In Section 6.2, we formulate
the problem. In Section 6.3, we describe the proposed solution. In Section 6.4, we
lay out the experimental setup. In Section 6.5, we present the experimental results.

Finally, in Section 6.6, we draw conclusions.

6.2 Problem Formulation

Figure 6.1 depicts the AEC scenario and proposed system. Let s(n) be the near-end
speech signal and let x (n) be the far-end speech signal, where 7 is the time index. The
microphone signal m (n) is given by m (n) = s (n) + y (n) + w (n), where w (n) repre-
sents additive environmental and system noises and y (n) is a nonlinear and reverberant
echo that is generated from z (n). First, an AEC system receives m (n) as input and
x (n) as reference, and generates two signals: the echo estimate ¢ (n), and the near-end

signal estimate e (n) given by:

e(n) =m(n)=9(n)=sn)+(y ) -79(n)+w). (6.1)
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A succeeding system aims to cancel the residual echo by eliminating y (n) — 9 (n), with-
out distorting the speech s(n). The neural network continuously selects and enables

the best out of the RES, SS, and SE systems that interchangeably perform this task.

6.3 Off-the-Shelf Deep Integration For Residual-Echo Sup-

pression

We consider three systems that were originally constructed and pre-trained for RES,
SS, and SE. For RES, we employ an extension of the system in [ICB21la]. It com-
prises a U-net [RFB15] neural network that is fed with the STFT [GL84] amplitude of
e(n), §(n), and x (n), and aims to recover the STFT amplitude of s(n). The objec-
tive function that is minimized during training is the mean squared error between the
neural network prediction and s (n). The employed SS system is the waveform-based
Conv-TasNet [LM19]. It comprises an encoder that maps the error mixture e (n) to
a high-dimensional representation, and a separation module that calculates a mask
for each speech source in the mixture, i.e., the near-end speech and echo. Then, a
decoder reconstructs the desired source from the masked features. A 1-dimensional
convolutional autoencoder[GHD'17] models the waveforms, and a temporal convolu-
tional network separation module [LVRH16] estimates the masks based on the encoder
output. The scale-invariant source-to-noise ratio [CDX20] is maximized during opti-
mization, which is a modified version of the standard SDR [VGF06]. The SE system
that is applied is the waveform-based neural network in [DSA20] that receives e (n) and
aims to cancel the residual echo and noise from it. The proposed model is based on
an encoder-decoder architecture with skip-connections [MEG™16]. It is optimized on
both time and frequency domains using multiple loss functions. Namely, the /1 norm
over the waveform together with a multi-resolution STFT loss over the spectrogram
magnitudes are jointly minimized.

The proposed integrated system includes a deep neural network that receives the
waveform representations of e (n), § (n), and m (n), and finds the best out of the RES,
SS, and SE systems. The training stage of the neural network is done as follows.

First, all three pre-trained systems are fine-tuned separately and independently with

67



an identical training database. Then, a validation set is propagated via each fine-
tuned system, and two performance measures are extracted from each system. During
single-talk periods, the ERLE [ITU12] is used. It measures echo reduction between the
degraded and enhanced signals when only a far-end signal and noise are present. During
double-talk, the objective DNSMOS metric is used [RGC21], which estimates objective
human ratings. In [ICB21c|, the DNSMOS has shown a strong correlation with echo
suppression and speech preservation measures for the task of RES during double-talk.
These measures are used to form a second training set as follows. Every time frame in
the validation set is attached to a new categorical label, N (n), from the set {1, 2,3},
corresponding to the RES, SS, and SE systems. N (n) is assigned to the index of the
system with the highest ERLE during single-talk or highest DNSMOS during double-
talk. This new dataset is used for training the neural network. The neural network
architecture is waveform-based and follows the one in [ICB21b]. Still, its input layer
is extended to three channels instead of two, and its final layer is concatenated to
an additional softmax layer with three output neurons. In real-time, unseen data are
propagated via the neural network that yields the index estimate of the best system,
denoted by N (n), and the respective fine-tuned system is enabled to execute RES.
The proposed neural network contains 19 thousand parameters that consume 520
Million FLOPS and 42 KB of memory. Thus, its integration on hands-free devices
is enabled, e.g., using the NDP120 neural processor by Syntiant™ [Syn21]. Timing
constraints of hands-free communication on that processor are also met [ETS16]. The
preceding AEC reduces linear echo with a standard NLMS [PCBG15] adaptive filter

with a filter length of 150 ms and step size of 3 x 107°.

6.4 Experimental Setup

6.4.1 Database Acquisition

The AEC challenge database [CSPT21] is employed in this study. This corpus is sam-
pled at 16 kHz and includes single-talk and double-talk periods, both with and without
echo-path change. No echo-path change means no movement in the room during the

recording, and echo-path change means either the near-end speaker or the device is
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moving during the recording. The corpus includes 25 hours of synthetic data and 75
hours of real clean and noisy data. The SER, SNR, and ENR levels were distributed
on [—20,10] dB, [0,40] dB, and [0,40] dB, respectively. These ratios are defined as:

SER = 101ogyo (s (m) 3/l (n) [3), (6.2)
SNR = 10logyg (|5 (n) [3/lw (n) [3), (6:3)
ENR = 101ogyo ([ly () [3/]1w (n) [3), (6.4)

and calculated with 50% overlapping time frames of 20 ms.

6.4.2 Data Processing, Traning, and Testing

The 100 hours of data is randomly split to create 80 hours of training, 10 hours of
validation, and 10 hours of test sets. Each set is divided into 10 seconds segments that
contain recordings in different setups. This leads to frequent re-convergence during
transitions between segments, both without and with echo-path change. All sets are
balanced to prevent a bias in the results, as described in [ICB21a]. During fine-tuning,
each system maintains its original training configurations, but with an initial learning
rate of 10 times smaller. For the NN, the data pre-processing follows [ICB21b], and
the NN is trained with back-propagation through time with a learning rate of 5 x 1074,
mini-batch of 40 ms, and 20 epochs, using Adam optimizer [KB15]. The minimized
objective function is the categorical cross-entropy [ZM18] between the prediction and
one-hot-vector encoding [KTC17] of the optimal-system index N (n). Training duration
was typically 15 minutes per 10 hours of data, and inference time was 12 ms per batch
on an Intel Core i7-8700K CPU @ 3.7 GHz with two GPUs of type Nvidia GeForce
RTX 2080 Ti.
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6.4.3 Performance Measures

To separately measure echo suppression and speech distortion in double-talk, we re-

spectively employ the recently introduced RESL and DSML [ICB21c]:

RESL = 10logq ([Ir (n) 13/l (n) 7 (n) [13), (6.5)

DSML = 101logy (/15 () [3/[15 () — g (n) s (n) [13), (6.6)

where g (n) = §(n) /e(n) is the time varying gain of the NN, r(n) = e(n) — s(n) is

the aligned noisy echo estimate, and §(n) = g (n) s (n), where

g(n) = (g (n)s(n),sn)/ls )3, (6.7)

and (-,-) is the internal product between two vectors. The DNSMOS [RGC21] is used
again during double-talk to assess speech quality for human perception. During single-
talk, the echo suppression level is quantified using the ERLE [ITU12]. The DSML,
RESL, and ERLE are calculated with 50% overlapping time frames of 20 ms, and the

DNSMOS is applied with the API provided by Microsoft™,

6.5 Experimental Results

The integrated system, denoted as “INT”, is compared against the particular RES, SS,
and SE systems. In Tables 6.1-6.3, performance measures are given with their mean
and standard deviation (std) values in the format meantstd. In Figures 6.2-6.13,
only the average values of the performance measures are shown. For all the measures,
higher mean and lower std indicate better performance. Convergence of the linear AEC
is assumed if the normalized misalignment was lower than —10 dB for a given echo path
[PCBG15]. The results are derived with respect to the entire test set.

Results for no echo-path change are given in Table 6.1, and for echo-path change are
shown in Table 6.2, both after convergence. In Table 6.3, results for no echo-path change
before convergence are reported. Comparing the RES, SS, and SE systems, we may

conclude that the SE system obtains better average performance during double-talk
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Figure 6.2: DNSMOS versus SER [dB] for no echo-path change scenarios.
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Figure 6.3: DSML [dB] versus SER [dB] for no echo-path change scenarios.
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Figure 6.4: RESL [dB] versus SER [dB] for no echo-path change scenarios.
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Figure 6.5: ERLE [dB] versus ENR [dB] for no echo-path change scenarios.
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Figure 6.6: DNSMOS versus SER [dB] for echo-path change scenarios.
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Figure 6.7: DSML [dB] versus SER [dB] for echo-path change scenarios.

73



32
30+
l—|28 [
m
326/
N
m

22
¢

| | ©SE |
-20 -10 0 10
SER [dB]

20

Figure 6.8: RESL [dB] versus SER [dB] for echo-path change scenarios.
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Figure 6.9: ERLE [dB] versus ENR [dB] for echo-path change scenarios.
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Figure 6.10: DNSMOS versus SER [dB] before linear AEC convergence.
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Figure 6.11: DSML [dB] versus SER [dB] before linear AEC convergence.
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Figure 6.12: RESL [dB] versus SER [dB] before linear AEC convergence.
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Figure 6.13: ERLE [dB] versus ENR [dB] before linear AEC convergence.
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INT RES SS SE
DNSMOS | 3.1£0.8 2.440.5 2.5£0.8 2.6%1.0
DSML 9.6+1.0 8.7+0.8 9.1+£1.1 9.241.2
RESL 29.6+4.5 27.5+3.5 28.3%£4.3 28.5+4.6
ERLE 33.1+£1.6 32.5+2.0 32.24+1.7 32.1£1.4

Table 6.1: Performance with no echo-path change.

INT RES SS SE
DNSMOS | 2.4£0.5 1.840.3 2.0£0.6 2.1+0.6
DSML 9.2+0.7 84+0.6 8.8+0.7 8.9£0.8
RESL 27.0+£3.0 25.3£2.5 25.7£3.0 25.8+3.2
ERLE 30.5+2.2 28.5+2.8 28.242.3 28.3%1.8

Table 6.2: Performance with echo-path change.

INT RES SS SE
DNSMOS | 2.1£0.2 1.7+0.2 1.8+0.3 1.9%+0.3
DSML 7.6£1.1 7.1+£0.7 7.24+09 T7.4=£1.1
RESL 24.2+4.4 225+3.0 22.843.5 23.0+4.4
ERLE 27.7+2.2 26.043.2 25.84£2.8 25.4+£2.0

Table 6.3: Performance before convergence.

periods in terms of echo cancellation as shown by the RESL, desired-speech distortion
as shown by the DSML, and speech quality as demonstrated by the DNSMOS. However,
the SE system also obtains the highest std values in double-talk, making it less stable
than competition. The RES system is favorable in single-talk echo cancellation with
a higher average ERLE, but is also the least stable with the highest std value. These
observations also hold for echo-path change and pre-convergence scenarios, but with
Thus, neither

an expected degradation in the values of all performance measures.

the RES, SS, nor SE system is optimal across all measures and acoustic scenarios in
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terms of higher average performance and in terms of lower std values. The proposed
integrated system outperforms each individual system on average across all measures

and scenarios during both single-talk and double-talk periods.

Average performance is also analyzed for various levels of SER during double-talk
and multiple levels of ENR during single-talk. Results for segments without and with
echo-path change are given in Figures 6.2-6.5 and 6.6-6.9, respectively, both after
convergence. Results for segments with no echo-path change before convergence are
shown in Figures 6.10-6.13. During double-talk, the SE system outperforms the RES
and SS systems when SER levels are high, and the RES system is preferable when
SER levels are low. During single-talk, the RES system obtains higher performance
when ENR levels are high, and the SE system is preferable for low levels of ENR.
These observations remain across all measures and also for echo-path change and pre-
convergence scenarios, but again with an expected overall decrease on the average
performance. These results reaffirm that the best performing system varies with speech,
echo, and noise levels, and supports previous claims that no individual system can be

considered best under all acoustic conditions.

A possible explanation for the behavior of the three systems with respect to acoustic
conditions is suggested. The SE system is better suited to handle high SER levels since
the noisy echo is significantly attenuated with respect to speech and appears as a noisy
interference. Similarly, as ENR decreases, the SE system is successful since the echo
is mainly screened by noise. The RES system is preferable when the SER level is
low, since it was trained to detect residual-echo signatures that are mixed with speech.
Likewise, when ENR levels are high, the residual-echo dominates the signal and can be
successfully recognized and suppressed by the RES system. The proposed integrated
system outperforms the RES, SS, and SE systems across all speech, echo, and noise
levels, in both no echo-path change, echo-path change, and pre-convergence scenarios.
Based on the presented results, it can be concluded that the proposed NN can estimate
which system is best in real-time for various acoustic conditions during both single-talk
and double-talk periods, and that the integrated system is better on average than each

of its three components.
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6.6 Conclusions

We have introduced a real-time data-driven system integration framework and applied
it to the task of RES. This integration comprises three deep learning-based systems
originally constructed and pre-trained for RES, SS, and SE. After fine-tuning all three
systems and showing that none of these systems can be considered best for RES, we
developed a deep NN that continuously selects the best of the RES, SS, and SE systems
and enables it to perform RES. Using 100 hours of real and synthetic recordings, we
showed that the NN can estimate the best system in real time and that the proposed
integrated system outperforms, on average, each of the three individual systems in
terms of echo cancellation and speech distortion during both single-talk and double-

talk periods.
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Chapter 7

Objective Metrics to Evaluate

Residual-Echo Suppression
During Double-Talk

7.1 Introduction

Hands-free communication often involves a conversation between two speakers located
at near-end and far-end points. The near-end microphone can capture the desired-
speech signal and two interfering signals: nonlinear echo produced by a loudspeaker
playing the far-end signal, and background noises [BMS98, BGM101]. The acoustic
coupling between the loudspeaker output and the microphone may lead to degraded
speech intelligibility in the far-end due to echo presence [SMH95]. The most chal-
lenging scenarios are double-talk periods, when the desired speech and echo are cap-
tured by the microphone at the same time. To combat that, numerous NLAEC sys-
tems were proposed to remove the nonlinear echo and to preserve the near-end speech
[GFLBJO03, ME12, CSAR™13, HHK19, ICB21b]. However, often there is still a mis-
match between true and estimated echo paths, especially during the NLAEC conver-
gence and re-convergence [BG95a, MEB10]. As a result, the echo is not eliminated and

the NLAEC should be followed by an RES system.

Human perception of speech quality is optimally evaluated using human subjective
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evaluation [RBPT19]. Lately, the objective DNSMOS metric has been proposed to
estimate human ratings and has shown great accuracy [RGC21]. Regarding the task
of RES, speech quality during double-talk is traditionally evaluated using the objective
SDR metric [VGF06], e.g., in [CSVH18, DDBW19, PP20, CXCL20, Fan20b, Fan20a].
Unfortunately, the SDR is affected by both desired-speech distortion and residual-echo
presence, which renders it unreliable in predicting the DNSMOS and unreliable in

predicting human perception of speech quality [RGC21].

This paper introduces two objective metrics that separately evaluate the DSML and
the RESL during double-talk. Considering the RES system as a time-varying gain, the
DSML is obtained by applying that gain to the desired speech and substituting the
outcome in the definition of the SDR. The RESL is obtained by subtracting the desired
speech from the double-talk segment and calculating the ratio of the noisy residual-echo
before and after the gain is applied to it. To evaluate these metrics, we employ a deep
learning-based RES system that also embeds a design parameter [ICB2la]. Experi-
ments are done with 280 hours of real and simulated recordings in various scenarios
and in high and low levels of echo and noise. Results show that the DSML and RESL
have high correlation with human perception according to the DNSMOS, and high
generalization to various setups, which renders them more suitable for speech quality
evaluation than the SDR. We further investigate the empirical relation between tuning
the design parameter and the DSML-RESL tradeoff it creates. Based on this relation,
we offer a practical scheme for tuning the design parameter during training to optimally

cope with dynamic system requirements.

The remainder of this chapter is organized as follows. In Section 7.2, we formulate
the problem. In Section 7.3, we describe the proposed objective metrics. In Section 7.4,
we revisit the tunable design parameter. In Section 7.5, we lay out the experimental
setup. In Section 7.6, we present the experimental results. Finally, in Section 7.7, we

draw conclusions.
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Figure 7.1: Residual-echo suppression scenario.

7.2 Problem Formulation

Figure 7.1 depicts the RES scenario. Let s(n) be the desired near-end speech signal
and let = (n) be the far-end speech signal. The near-end microphone signal m (n) is

given by:
m(n) =s(n)+y(n)+w(n), (7.1)

where w (n) represents additive environmental and system noises and y (n) is a rever-
berant echo that is nonlinearly generated from z (n). Before applying RES, the NLAEC
system introduced in [ICB21b] is applied to reduce nonlinear echo. The NLAEC re-
ceives m (n) as input and x (n) as reference, and generates two signals: the echo estimate

7 (n), and the desired-speech estimate e (n), given by

e(n) =m(n)=yn)=sn)+yn)-yn)+w). (7.2)

The goal of the RES system is to suppress the residual echo y(n) —y(n) without

distorting the desired-speech signal s (n).
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7.3 DSML and RESL

To derive the DSML and RESL, a deep learning-based RES system is considered as a

time-varying gain. During double-talk, e (n) # 0 and the gain is given by

g (n) N (TL) Double-talk ' (73)

('b

Before introducing the DSML and RESL metrics, the SDR and its drawbacks are
examined. According to [VGF06], the SDR is defined as

SDR = 101og,, 12 ()11
||3 (TL) - (TL) ”% Double-talk (7 4)
" 01ogy, 3B | |
Is (n) = g () € (n) 13 Ipouble-taik

The SDR is affected by both the desired-speech distortion and residual-echo presence,
and makes no distinction between cases in which g (n)e(n) comprises distortion-free
speech and echo, or distorted speech without echo. Thus, the SDR does not correlate
well with human ratings [RGC21], since these scenarios clearly exhibit different human
perception ratings and different DNSMOS values. A distinction between desired-speech
distortion and residual-echo suppression is extremely valuable for evaluating RES dur-
ing double-talk. Hence, we propose two objective metrics by applying ¢ (n) separately

to the desired speech and noisy residual-echo estimate.

Formally, the DSML is calculated similarly to the SDR, but ¢ (n) is applied only to

the desired speech s (n):

15 () 113

(TL) -9 (n) s (TL) H% Double—talk.

The RESL is derived by estimating the noisy residual-echo as r (n) = e (n) — s (n), and

evaluating the following ratio:

[l (n) |
lg (n) 7 (n

RESL = 10 ].Oglo 3 .
||2 Double-talk

(7.6)

~— [N

Note that the RES system may introduce a constant attenuation that leads to an
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artificial desired-speech distortion in the DSML. To ensure the DSML is invariant to
that attenuation, it is compensated as in [CSVH18]. Explicitly, §(n) = g(n)s(n),

where:

oI 1)

7.4 RES System with a Design Parameter

To evaluate the performances of the DSML and RESL, we employ a deep learning-based
RES system that embeds a tunable design parameter [ICB21a]. This system comprises
a UNet neural network [RFB15] with two input channels and one output channel. The
network is fed with the STFT [GL84] amplitude of the NLAEC outputs and aims to
recover the STFT amplitude of the desired speech. The design parameter a > 0 is

embedded in a custom loss function J(«) that is minimized during training:

Te) =[S -5, +a- S|+ &, Taso (7.8)

where S (f) and S (f), respectively, represent the desired-speech prediction and ground
truth spectra amplitudes, a§ T denotes the variance of S (f), and I,~¢ equals 1 when
a > 0 and 0 otherwise. During the training stage, J(«) is minimized while o penalizes
IS (f) I3, which allows a dynamic tradeoff between the desired-speech distortion and
residual-echo suppression of the system, namely between the DSML and RESL. When
a = 0, the error between the desired-speech prediction and ground truth is minimized.
However, when « > 0, smaller prediction values are generated. This reduces the level

of residual echo but compromises the level of desired-speech distortion. ¢% _ mitigates

S(H
sub-band nullification that may occur when o > 0. Note that « and the DSML-RESL

tradeoff it creates can be tuned during the training process.
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7.5 Experimental Setup

7.5.1 Database Acquisition

Two data corpora were employed in this study; the AEC-challenge database [CSPT21],
and a database recorded in our lab, both sampled at 16 kHz. These corpora consider
single-talk and double-talk periods both without and with echo-path change. In the
former there is no movement during the recording, and in the latter either the near-end
speaker or device are moving during the recording. In [CSP*21], two open sources of
synthetic and real recordings are introduced. The synthetic data includes 100 hours,
and the real data contains 140 hours of audio clips, generated from 5000 hands-free
devices that are used in various acoustic environments. In both real and synthetic
cases, SER and SNR levels were distributed on [—10, 10] dB and [0, 40] dB, respectively.
Additional real recordings were conducted in our lab to test the generalization of the
DSML and RESL to unseen setups and their robustness to extremely low levels of
SERs. This database is fully described in [ICB2la]. For completion, it contains 40
hours of recordings from the TIMIT [GLF*93b] and LibriSpeech [PCPK15] corpora
with SNR levels of 32 £5 dB and SER levels distributed on [—20, —10] dB.

The SER is defined as SER=101log;, (Hs (n)113/lly (n) H%) and the SNR is defined
as SNR=101log <||s (n) [13/]jw (n) ||%) in dB, each is calculated with 50% overlapping

time frames of 20 ms.

7.5.2 Data Processing, Training, and Testing

The real and synthetic data from [CSP*21] was randomly split to create 185 hours of
training set and 45 hours of validation set. The test set contains only real data that
includes the remaining 10 hours from [CSP*21] and all 40 hours from [ICB21a]. Each
set was divided into 10 seconds segments that contain recordings in different setups.
This leads to frequent re-convergence during transitions between segments, both with
and without echo-path change. These sets are balanced to prevent bias in the results, as
detailed in [ICB21a]. The NLAEC system, which is also deep learning-based [ICB21b],
and the succeeding RES system [ICB21a], were trained separately. During testing, in

accordance with Section 7.3, the artificial gain that may be introduced by the RES
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system is compensated as in [VGF06, CSVH18] before deriving the DSML and RESL.

7.5.3 Performance Measures

We employ additional metrics to evaluate RES. The ERLE [ITU12] measures echo
reduction between the degraded and enhanced signals when only echo and noise are

present:

3

2
ERLE = 10log,, lle () Il (7.9)

||§(n) ||% Far-end single-talk .

The SAR [VGF06] measures the desired-speech distortion during near-end single-talk

periods:

I o) r.10)

S
HS (n) - $ ( ) ||% Near-end single-talk

The PESQ [ITUO1] metric, which correlates well with the DNSMOS [RGC21], is used
in double-talk. The SAR and SDR are compensated as the DSML in eq. (7.5).

7.6 Experimental Results

The performance metrics are evaluated using the RES system and are calculated with
50% overlapping frames of 20 ms. The metrics are reported by their mean and standard
deviation (std) values in Table 7.1, and by their mean in Figures 7.2-7.13, with respect
to the test set specified in each experiment. For all metrics, higher mean and lower std
indicate a better performance. In our study, the convergence of the NLAEC follows
the definitions in [ICB21b, PCBG15], and the DNSMOS is calculated using the API
provided by Microsoft [RGC21].

First, we explore the correlation of the DSML and RESL with the DNSMOS using
PCC [BCHC09] and SRCC [Gau01], as done in [RGC21, SCS*21|. This experiment in-
cludes segments without echo-path change after convergence for a € {0,0.25,0.5,0.75, 1},
and the results are shown in Figures 7.2-7.3. The conclusion drawn in [RGC21] is reaf-
firmed in this study, i.e., the SDR does not correlate well with the DNSMOS, as the

PCC and SRCC mean values are below 0.26 for all . On the contrary, the DSML and
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Figure 7.2: PCC of DNSMOS with the DSML, RESL, and SDR metrics.
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Figure 7.3: SRCC of DNSMOS with the DSML, RESL, and SDR metrics.
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Figure 7.4: Scatter plots of DNSMOS versus the proposed DSML metric.
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Figure 7.5: Scatter plots of DNSMOS versus the proposed RESL metric.
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DNSMOS

Figure 7.6: Scatter plots of DNSMOS versus the SDR metric.

RESL are highly correlated with the DNSMOS, with mean correlation scores between
0.78 and 0.85 for all c. Also, compared to the SDR, the DSML and RESL correlations
are relatively more consistent across a values, as inferred from their lower std values. To
visualize these correlations, Figures 7.4-7.6 depict scatter plots of the DNSMOS versus
the DSML, RESL, and SDR metrics for random sample values with o = 0. These plots
validate the poor correlation between the DNSMOS and SDR, and the high correlation
between the DNSMOS and the DSML and RESL. Conclusively, the DSML and RESL

are better correlated with human perception and speech quality evaluation.

All performance metrics are evaluated in Table 7.1 with @ = 0. Separate results
are shown for segments without and with echo-path change after NLAEC convergence,
and for segments before convergence. The DSML and RESL are consistent with all
other metrics, which degrade when shifting from no echo-path change to echo-path
change scenarios, and further degrade when considering segments before convergence.
This also implies high generalization of the DSML and RESL to various setups. The
DSML is consistently higher than the SDR, as expected, since the definition in eq. (7.4)

also considers echo and noise in the denominator. Also, the DSML is lower than the
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No echo-path change

Echo-path change

Before convergence

DNSMOS
DSML
RESL

SDR
PESQ
SAR

ERLE

3.12 £ 0.2

8.73 £ 04

29.1 £ 3.7

6.13 £ 0.4

3.58 £0.2

9.88 £ 04

33.2 £ 3.1

291 £0.3

8.34 £ 0.5

259+ 44

5.94 £ 0.6

3.35 £ 0.5

9.69 £ 0.5

29.1 £4.2

2.56 £ 0.6

6.97 £ 0.7

22.1 £ 5.6

5.57 £ 0.8

3.18 £0.6

9.51 £0.6

264 £ 5.1

Table 7.1: Performance measures in various scenarios with o« = 0.
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Figure 7.7: DSML-RESL tradeoff for various values of @ in no echo-path change sce-
narios.
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Figure 7.8: DSML-RESL tradeoff for various values of « in echo-path change scenarios.
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Figure 7.9: DSML-RESL tradeoff for various values of a before linear AEC convergence.
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Figure 7.10: RESL for various values of « in different SER levels.
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Figure 7.11: RESL for various values of « in different SNR, levels.
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Figure 7.12: DSML for various values of « in different SER levels.
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Figure 7.13: DSML for various values of « in different SNR levels.
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SAR, which is applicable to single-talk segments where speech is less distorted by the
RES system. The RESL is always lower than the ERLE, which is relevant to segments
without desired speech where echo is more suppressed. These observations highlight
the reliability of the DSML and RESL metrics.

Next, the relation between tuning « and the DSML-RESL tradeoff it creates is
investigated. Figures 7.7-7.9 considers segments without and with echo-path change
after convergence, and segments before convergence, for a € {0,0.25,0.5,0.75,1}. As
« increases, speech is more distorted and the DSML decreases, while residual echo is
more suppressed and the RESL increases. This tradeoff occurs across all scenarios and
is empirically consistent for all a values. This tradeoff is also analyzed in various SER
and SNR levels that occur in real-life setups. In this experiment, segments without
echo-path change are considered and results are given in Figures 7.10-7.13. It can
be observed that both the DSML and RESL are impaired when acoustic conditions
deteriorate, as expected. Also, the relation between o and the metrics is retained, i.e.,
for all levels of echo and noise, increasing o degrades the DSML and enhances the
RESL.

Finally, we offer a practical design scheme for possible dynamic user requirements.
Assume an environment without echo-path change after convergence, which can be
inferred by the user using the definitions in [ICB21b, PCBG15]. At first, the user
requires an average RESL higher than 30 dB and DSML higher than 8.4 dB. According
to Figure 7.10, a = 0.5 is selected. Next, the user evaluates that SER = 0 dB and
SNR = 20 dB, e.g., by respectively analyzing double-talk and near-end single-talk
periods, and accordingly decides to suppress the maximal amount of echo that maintains
DSML no lower than 8.3 dB. Then, according to Figure 7.12, the user shifts a = 0.5 to
o = 0.75 during training, which decreases the average DSML to 8.3 dB and increases

the average RESL to above 31 dB.

7.7 Conclusions

We introduced two objective metrics to separately assess the DSML and the RESL

during double-talk. The performances of these metrics are evaluated using a deep
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learning-based RES system with a tunable design parameter a, with 280 hours of real
and synthetic recordings. We showed that the DSML and RESL correlate well with
human perception compared to the popular SDR metric, which may suggest they are
more suitable for speech quality evaluation. Also, we empirically learned the relation
between tuning « and the resulting DSML-RESL tradeoff and offered a practical design
scheme that benefits dynamic user preferences. Future work will analyze the DNSMOS
as an appropriate evaluation for RES subjective quality in double-talk, and explore the

DSML-RESL tradeoff to yield a practical design scheme for optimal speech quality.
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Chapter 8

A User-centric Approach for
Deep Residual-Echo Suppression
in Double-talk

8.1 Introduction

Hands-free speech communication has become increasingly popular in recent years due
to the growing trend of transitioning from face-to-face meetings to online meetings
[SDT21], which are characterized by two conversation ends; far-end and near-end. In
business calls, for instance, the far-end speaker is commonly a single participant that
wears a set of headphones in a close-talk environment, while the near-end is an of-
fice conference room. In that setup, speech from the far-end is transmitted to the
near-end, where it echoes via a nonlinear loudspeaker. In modern conferencing, loud-
speakers are frequently not enclosed with, but are detached from the near-end micro-
phone, which creates an acoustic coupling between the two [SCS*21]. Thus, in double-
talk periods, the near-end microphone may capture reverberant echo, desired speech
from participants in the near-end, and additional noises. This may cause echo to be
transmitted back to the far-end and to severely impede the conversation intelligibility

[BGM*01, SMH95].

Various linear AEC systems combat this issue [PSK*20, ICB22a, SDA22, ZGZ23,
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YYC*21, IBMH22]. However, these methods often cannot eliminate echo presence
in realistic setups due to nonideal hardware that induces nonlinearity between the
echo and the far-end signal [ICB21b], the rapidly-varying nature of the echo path,
and the complicated modeling of echo in double-talk. RES systems have achieved
impressive results using deep learning to eliminate linear and nonlinear echo patterns
that are still present after the linear AEC stage [ZWST22, FF22, DDBW22, XY (22,
LSK15, CSVH18, ZTW19, PP20, ZL20, ICB22c|. In double-talk, RES systems trade-off
between residual-echo suppression and desired-speech distortion levels in their output
[ICB2la]. To evaluate this trade-off, we have introduced two objective performance
metrics for RES in double-talk [ICB21c|; the RESL and the DSML. In [ICB22b], we
showed a strong correlation between these metrics and the recent AECMOS objective
metric, which predicts subjective human ratings of speech quality of AEC systems with
high accuracy in double-talk [SCS*21, PSS*22].

Existing studies on RES primarily focus on improving benchmark performance,
rather than on supporting users inputs. For instance, the vast majority of RES sys-
tems neither offer a framework to trade-off between residual echo and speech-distortion
levels at their output, nor do they report performance across various operating points
that represent this trade-off. Rather, users employ existing RES systems based on an
average benchmark-performance, which is frequently reported with metrics that do not
distinguish residual-echo presence from desired-speech distortion [ICB21c], e.g., signal-
to-distortion-ratio [VGF06] or perceptual evaluation of speech quality [RBHHO1]. Even
if an off-the-shelf model is rendered suitable by a user for a specific scenario, adjustments
based on user preferences are not supported. Although the AECMOS is currently the
most accurate objective assessment for speech quality by humans, no RES system pro-
vides a mechanism to maximize the AECMOS. These gaps limit the user experience and
user flexibility in dynamic environments that often require personalized adjustments.
In practice, a business presentation given in a near-end conference room may lead the
far-end listener to incline towards low speech distortion. In contrast, residual-echo sup-
pression may be more important during frequent abrupt echo-path changes that occur
when transitioning from the presentation to a near-end multi-participant discussion.

We introduce the URES framework in double-talk. The URES is initiated with a
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UOP that consists of two performance metrics values; the RESL and DSML [ICB21c]
that the user wishes to experience from the RES prediction. The URES system then
undergoes three stages. Firstly, we utilize an existing deep RES model that we intro-
duced in [ICB21a]. This model embeds a design parameter that controls the trade-off
between the RESL and DSML of the RES prediction. We consider 101 pre-trained
instances from this model, each with a different design parameter value. Feeding the
same input to all instances results in different RESL and DSML values in the predic-
tion of every instance, which covers a wide range of UOPs. Second, each prediction is
fed to a separate pre-trained deep model, which maps this prediction to its RESL and
DSML estimates. This is essential since these metrics depend on the desired-speech
signal that is unavailable in double-talk in practice. Third, the estimates from all in-
stances are compared with the UOP. The ones that match it, up to a given tolerance
threshold that specifies the allowed deviation from the UOP, are narrowed down to
the single prediction with the maximal AECMOS, which is transmitted to the far-end.
The proposed URES system has three unique advantages; the RESL and DSML of its
output match or approach the UOP, real-time changes in the UOP are tracked, and

the AECMOS of its output is maximized.

Experiments employ 60 hours of noisy real and synthetic data that include realistic
acoustic scenarios with extremely high levels of echo and frequent echo-path changes.
Average results can achieve an AECMOS of 4.4 out of 5 with RESL and DSML devi-
ations of 1.95 dB and 2.1 dB from the UOP. Any user adjustment can be tracked in
38.4 ms. E.g., tightening the tolerance threshold can transition the above output to a
lower AECMOS of 3.6 while the RESL and DSML deviations improve to 1.25 dB and
1.45 dB from the UOP, on average.

The remainder of this chapter is organized as follows. In Section 8.2, we formulate
the problem. In Section 8.3, we describe the proposed solution. In Section 8.4, we
lay out the experimental setup. In Section 8.5, we present the experimental results.

Finally, in Section 8.6, we draw conclusions.
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8.2 Problem Formulation

The proposed URES system is depicted in Fig. 8.1. The near-end microphone signal

in time index n is expressed as:
m(n)=s(n)+w(n)+yn), (8.1)

where s (n) holds the desired speech and w (n) holds environmental and system noises.

The reverberant echo y (n) satisfies:

y(n) = (h * xNL) (n), (8.2)

i.e., a convolution between h (n) and 2NV (n), which respectively denote the near-end
RIR from the loudspeaker to the microphone and a nonlinearly distorted far-end signal.
We apply adaptive filtering for the linear AEC system that receives m (n) as input and
the far-end signal x (n) as reference, and produces the echo-path estimate h (n). The

echo estimate 7 (n) and the adaptation error e (n) are:

J(n) = (ﬁ « a:) (n), (8.3)

The signals = (n), y(n), e(n), and m (n) are inserted into the URES system that
produces the desired-speech estimate §(n) and then communicates it to the far-end.

The goal is that §(n) confines to a UOP and achieves the maximal AECMOS value.

8.3 A User-centric Approach for Deep RES

This process is comprised of three main stages. The first stage is described in subsection
8.3.1, where the user chooses a UOP that includes two values; the RESL and the DSML
of the RES prediction. In the second stage, detailed in subsections 8.3.2 and 8.3.3, deep
models we developed generate several RES predictions with RESL and DSML values

that match the UOP, up to a given tolerance threshold. The third stage in subsection
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Figure 8.1: The three stages of the proposed URES framework. (1) For 0 < ¢ < 100,
the " model instance RES; produces a prediction 3;(n). (2) 8;(n) is inserted to
the corresponding i model instance RDE;, which estimates the RESL and DSML of
3i (n), respectively notated R; (n) and D; (n). (3) These estimates are aggregated from
all instances and undergo threshold filtering by their proximity to the UOP, followed
by an AECMOS maximization. The prediction with the chosen index 7, namely %(n),
is communicated to the far-end. Notice the RES and RDE models multi-thread for
inference for all 4.

8.3.4 depicts how the prediction with the highest AECMOS is chosen, before being

communicated to the far-end.

8.3.1 Providing a user operating-point for the URES framework

The UOP consists of a pair of RESL and DSML values. In [ICB21c|, we introduced
the RESL and DSML metrics to separately assess residual echo and speech-distortion

levels of RES systems in double-talk. We also provided empirical results of average
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RESL and DSML values in which the RES system operates, which may guide a UOP
selection. Let the UOP be (R,D), where R is the RESL and D is the DSML. This

study supports 15 < R <30 and 7.5 <D < 15, in dB.

8.3.2 RES with a tunable design parameter

Inspired by our work [ICB21a], we utilize a deep RES system that receives the outcomes
of the linear AEC stage as two input channels, i.e., the echo estimate and the adaptation
error. This system aims to remove residual-echo components and preserve the desired
speech in the STFT domain [Zhil9]. The architecture is based on the UNet [RFB15]
neural network. During training, the design parameter o > 0 governs the trade-off
between residual echo and speech distortion levels at the output of the RES system by

regulating the following objective function:

~ 2 ~ 2
J@) = ||S() =S| +a- SN + 0% Laso (8:5)

where S (f) and S (f) are the STFT amplitudes of § (n) and s (n), respectively, ||S (f) |2

is the fo-norm of g(f), o2 is the variance of g(f), and I,~¢ equals 1 when o > 0

5(H
and 0 otherwise. According to (8.5), when « increases then the training process in-
clines towards minimizing the norm of the prediction. This creates more residual-echo
suppression, but constrains the speech component in the output to a higher distortion
rate. In contrast, as a lowers and reaches a = 0, more focus is put on minimizing
the distortion between the system prediction and the desired speech for the price of
high residual-echo presence. In [ICB21c|, we have shown how the average RESL values
rise and how the average DSML values lower when « increases, and vice versa. Since
for both the RESL the DSML, higher values mean better performance, shifting o can
change the operating point of the RES system and match it with the UOP. We exploit
this property and separately pre-train 101 identical instances of the RES system, each
with a different o value ranging from o« = 0 to @ = 1 with increments of 0.01. This
large number of a values separated by a thin resolution was empirically shown to cover

a wide range of RESL and DSML pairs in the support of the UOP. It was also shown

that o > 1 causes undesired nullification of sub-bands in the RES prediction. The
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index 0 <14 < 100 is used to notate each pre-trained RES model instance and each of
its corresponding predictions, i.e., RES; and §; (n), respectively. For all i values, the

design parameter value used to train RES; is calculated by «; = ¢/100.

8.3.3 Estimation of the RESL and DSML metrics

Each prediction from the 101 RES system instances from subsection 8.3.2 separately
undergoes RESL and DSML estimation. These estimates are then compared with the
UOP. Formally, the RESL and DSML metrics [ICB21c| depend on the time-varying

gain of the RES system in double-talk, given by:

/ (n) N € (n) Double-talk ’ (8‘6)

where e (n) # 0. By applying the gain to the desired-speech only and calculating the

following ratio, the DSML is derived:

5

15 (n) |
) S (n) H% Double-talk

(
18(n) —g(n

The RESL is manufactured by considering r (n) = e (n) — s (n) as the noisy residual-

echo estimate and calculating the ratio:

[ (n) ||
ESL =101 _— . .
RES 0 0g10 g(n 5 (8 8)

lg (n)r(n) ||2 Double-talk

The inherent bias that deep models may apply is being compensated by defining

(n) s (n), where:

Q)

5(n) =

gy s(n),s ()
I =R e (89)

According to (8.7)-(8.8), the RESL and DSML metrics cannot be calculated in practice
since they require knowledge of the desired speech s(n). Namely, during inference the
prediction of the RES system cannot be translated into its RESL and DSML values.
Thus, we developed a deep model notated an RDE that estimates the RESL and DSML

by implicitly evaluating s (n). To construct the inputs of the RDE, we first recognize
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the following relation using egs. (8.1), (8.2):
s(n)=m(n)— (h * xNL) (n) —w(n). (8.10)

By considering m (n) as an input to the RDE and by ignoring the noise w (n), it is left
to estimate A (n) and 2N (n). Based on the linear relation in (8.3), inserting both 7 (n)
and z (n) to the RDE should yield % (n), which estimates h (n). Notice that h (n) is
practically available from the linear AEC stage, but its non-speech structure makes it
more effective to feed the RDE with speech signals and derive implicit relations between
them, which is empirically supported in our internal experiments. By (8.1) and (8.2),
we estimate #NV (n) by using « (n) and m (n). The former constitutes a linear part of
NP (n), and the latter is a mix of signals that includes 2NV (n). The RDE is also fed
with e (n), which is employed in the RESL and DSML calculations. As a final input,
we insert §(n) to the model since it is both an integral component of the RESL and
DSML calculations and because it is constructed to approximate s(n). Similarly to
subsection 8.3.2, we utilize 101 identical RDE model instances. RDE;, which denotes
the ith RDE instance, receives 5 channels in the time domain, i.e., z (n), 7 (n), e (n),
m(n), and §; (n). Let the predicted RESL and DSML values of RES; be respectively
denoted as R; (n) and D; (n). During training, the £y distance is minimized between
the pair of estimates R; (n) and D; (n), and the pair of ground truth calculations of the

RESL and DSML using (8.6)—(8.9).

8.3.4 Maximizing the AECMOS

In this stage, we describe how the final prediction of the URES framework is determined
before being communicated to the far-end. First, for all i values, R; (n) and D; (n) are
aggregated into one batch that contains 101 pairs of values. Second, the UOP from
subsection 8.3.1 is being compared against each pair in this batch. Let us respectively
define the tolerance threshold values THr and THp as the maximal allowed deviation

of R; (n) and D; (n) from the UOP coordinates R and D. Consider a subset of the
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batch that contains the indices that follow these two conditions, evaluated for all i:

‘ ~

R; (n) — R] < THg, (8.11)

D (n) — D| < THp, (8.12)

where THr > 0 and THp > 0 and are measured in dB. We notate the number of
indices in this subset as P (n), where 0 < P (n) < 101. Third, let 7 denote the single
index from the subset the corresponds to the prediction with the highest AECMOS.
We denote Ag (n) and Ap (n) as the deviations of the chosen output prediction from

the UOP, as follows:

Ar (n) = [Rz(n) — R|, (8.13)
Ap (n) = [D;(n) = D, (8.14)

where by definition Ag (n) < THg and Ap (n) < THp. Finally, all original predictions

8; (n) for all i are aggregated into one batch, and s> (n) is communicated to the far-end.

8.4 Experimental Setup

8.4.1 Database Acquisition

We utilize 50 hours from the AEC-challenge database and 10 hours of independent
recordings performed in our lab. Both corpora contain only double-talk periods, i.e.,
where the far-end speech and near-end speech overlap. The AEC-challenge corpus
was sampled at 16 KHz and is detailed in [CSP722]. It includes acoustic scenarios
when no echo-path change occurs and when echo-path change occurs regularly. No
echo-path change describes scenarios when neither the near-end speakers nor near-end
devices move, while echo-path change describes scenarios when at least one of the above
does move regularly during the recording. We extract from this database 10 hours of
synthetic data and 40 hours of real recordings, where the latter were captured using
roughly 1,000 hands-free devices in various acoustic environments. This data considers

a wide range of noise and echo levels, having SER distributed in [—10, 10] dB and SNR
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distributed in [0,40] dB. The independent recordings were sampled at 16 KHz and
employ clips from the TIMIT [GLF193a] and Librispeech [PCPK15] databases. This
data only includes acoustic segments with no echo-path changes. A mouth simulator
played the near-end speech and a loudspeaker modeled the effect of the nonlinear echo
inside the near-end, where both devices were located in various positions in the room
during the experiment. Both the speech and echo were captured by a microphone
in the near-end. This database was collected to model especially challenging real-
life acoustic scenarios that exhibit high echo levels. The SER levels were distributed
in [—20,—10] dB and SNR levels were roughly distributed in [27,37] dB. Formally,
SER=10log;q (|5 () [3/]ly (n) |3) in dB and SNR=10logyo (||s (n) [3/[w (n) |3) in
dB.

8.4.2 Preprocessing, Training, and Testing

The training set is comprised of 45 hours from the AEC-challenge database; 35 hours
were randomly split from the 40 hours batch of real recordings, and 10 hours of synthetic
data were included. The training set also contains 5 hours from the real independent
recordings. The test set is comprised of only real recordings; the remaining 5 hours
from the AEC-challenge and the remaining 5 hours from the independent recordings.
The training and test sets are balanced to avoid bias by following guidelines from
the preprocessing stage in [ICB2la]. Specifically, they contain equal representation
for male and female participants, the far-end and near-end speakers are different, no
speaker participates in both the training and test sets, and every speaker has been
assigned as the far-end and near-end speaker. The linear AEC stage that precedes the
URES system is a SNLMS adaptive filter [ICB22a, FD93| that operates in the time
domain with a filter length of 150 ms. The training and test sets are each divided
into 10 s segments and internally shuffled. This leads to abrupt echo-path changes
that create frequent re-convergence of the linear AEC filter, as commonly occurs in
real-life [DPBC20, FBD*22]. During training, each time domain signal is converted to
its STFT amplitude that is normalized before inserted to the RES model. The output
of this RES model then undergoes de-normalization and inverse STFT [Zhil9] using

the overlap-add method [Cro80] by employing the phase from the adaptation error of
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the linear AEC system. Normalization is carried by subtracting from the training set
its minimal value and dividing it by its dynamic range. De-normalization is the inverse
process. During inference, normalization and de-normalization are applied using the
statistics from the training set [HQZ"23]. The RES and RDE models share the training
samples of the echo estimate and adaptation error. The predictions of the RES models
from the training stage are utilized to train the RDE models. The algorithmic and
buffering latency of the URES framework is 38.4 ms using multi-threading [BNH18] of
the RES and RDE models, confining with hands-free speech communication standards

of maximal latency of 40 ms [ETS16].

8.4.3 Performance Measures

We use the AECMOS version number 4 from the API of Microsoft and calculate it
using the output of the RES system and the adaptation error of the linear AEC stage.
The AECMOS is unit-less and ranges in a scale of 1-5, where 5 is the best score
[PSST22]. In addition, Ag (n) and Ap (n) are used for evaluation and are calculated
using eqgs. (8.13) and (8.14), respectively. The RESL and DSML metrics are derived
by considering the average value of a sliding analysis window in the time domain with
20 ms duration and with a step size of 10 ms. Lastly, results include the value of P (n)

as defined in subsection 8.3.4.

8.5 Experimental Results

During the inference stage, every utterance from the test set is inferred with a random
UOP pair where R is uniformly drawn from [15,30] dB and D is uniformly drawn from
[7.5,15] dB. Unless stated otherwise, results are reported using mean and standard
deviation (std) values of performance metrics across the entire test set. In the tables,
the format is meantstd, and in the figures the format includes mean values either
with or without std error bars. This section addresses global results and neglects time

indices from notation.
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Figure 8.2: The ¢; error of the RESL (left) and DSML (right) estimates for each of the
101 RDE model instances versus their o values.
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Figure 8.3: The ¢; error of the RESL (left) and DSML (right) estimates of a single RDE
model instance versus the « values associated with the preceding RES model instances.

8.5.1 Validating the performance of the RDE models

This experiment examines the estimation reliability of the RESL and DSML values
by the 101 RDE model instances. Using 10-fold cross-validation [RPL09], 80% of the

training set is utilized for training, and the remaining 20% is used for validation, where
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the same bias-free principles between the training and test sets detailed in subsection
8.4.2 are applied between the crossed training and validation sets in every fold. For
every fold and for every i, where 0 < ¢ < 100, the crossed training set is used to train
the model instances RES; and RDE; by following the process in subsection 8.4.2. Then,
RDE; infers the crossed validation set and produces the corresponding RESL and DSML
estimates. These estimates are being compared against the ground-truth RESL and
DSML of the validation set. Figs. 8.2-8.3 show the RESL and the DSML estimation
performance of all 101 RDE model instances. For both the RESL and the DSML,
the reported values are the mean and std of the ¢; distance between the estimates
and their ground truth across all folds. Reminding that «; = i/100, it is shown that
the RESL estimate experiences maximal mean error of 0.36 dB for as4 = 0.54, and
one std can bring the error up to 0.57 dB for agg = 0.39. The DSML estimate has
a maximal mean error of 0.34 dB for ags = 0.64, and one std can bring the error up
to 0.5 dB for ass = 0.54. Considering this study supports RESL in [15,30] dB and
DSML in [7.5,15] dB, the maximal mean error values can also be viewed in a relative
scale by normalizing them by their corresponding ranges; namely 100 - 0.36/15 = 2.4%
and 100-0.34/7.5 = 4.5%. Based on these results, a subjective view suggests that
using 101 RDE model instances produces a consistently reliable average estimation of
the RESL and DSML in various acoustic setups. A following experiment examines
the less computationally-heavy possibility of employing a single RDE model for all «
values. Similarly to the previous experiment, a 10-fold cross validation is used to train
every RES model instance with its corresponding « value. This time, however, all the
outputs of the RES model instances are aggregated and a single RDE model is used
for training and validation for every fold. To ensure bias-free results, the distribution
of segments associated with every « value is uniform in both the crossed training and
validation sets of every fold. According to Figs. 8.2-8.3, it is shown that the RESL
estimate experiences maximal mean error of 1.27 dB for ayy = 0.44, and one std can
bring the error up to 1.57 dB for a; = 0.07. The DSML estimate has a maximal mean
error of 1.29 dB for agg = 0.68, and one std can bring the error up to 1.59 dB for
a5 = 0.75. Again, the maximal mean error values can also be viewed in a relative

scale; namely 100 - 1.27/15 = 8.4% and 100 - 1.29/7.5 = 17.2%. Based on these results,
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THg = 1 [dB]
Agr [dB] | Ap [dB] | AECMOS
THp =1[dB] | 04+03 |055+025| 31+03
THp =2 [dB] | 055+0.25 | 1.3+£02 | 3.45+04
THp =3 [dB] | 0.65+£025 | 1.9+02 | 3.7+05

Table 8.1: The effect of tolerance threshold values on the URES framework performance
for segments with no echo-path change for THy = 1 [dB].

THg = 2 [dB]
AR [dB] | Ap [dB] | AECMOS
THp = 1 [dB] | 1.15+0.45 | 0.6 £0.15 | 3.35 £ 0.3
THp = 2 [dB] | 1.25+045 | 1.45+£0.3 | 3.6 0.4
THp =3 [dB] | 1.3+04 |205+0.3]| 42+0.5

Table 8.2: The effect of tolerance threshold values on the URES framework performance
for segments with no echo-path change for THg = 2 [dB].

THp = 3 [dB]
Ar [dB] | Ap [dB] | AECMOS
THp = 1 [dB] | 1.75+0.65 | 0.7£0.15 | 3.5+05
THp =2 [dB] | 1.85+0.6 | 1.55 £0.25 | 4.0+0.3
THp =3 [dB] | 1.95+0.65 2.14+0.3 44402

Table 8.3: The effect of tolerance threshold values on the URES framework performance
for segments with no echo-path change for THg = 3 [dB].

a subjective view suggests that a single RDE model is not reliable in estimating the
RESL and DSML values, on average. To recap, utilizing a single RDE model may
cause an accumulated uncertainty and bias of results, while 101 RDE model instances

provide confident results. This renders the computational load of the latter worthy.

8.5.2 The effect of the tolerance threshold values on performance

The performance of the URES framework is examined with respect to the tolerance
threshold parameters THr and THp. We consider (THg, THp) pairs that confine to
THg € {1,2,3} in dB and THp € {1,2,3} in dB, which yields 9 possible pairs com-
binations. These sets values are representative of the URES system behavior but do
not significantly deviate from the UOP. For each (THg, THp) pair, the mean and std
of Agr, Ap, and the AECMOS are reported. Tables 8.1-8.3 consider test set utter-

ances only with no echo-path changes. A clear trade-off is shown between the tolerance
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THg = 1 [dB]
Agr [dB] | Ap [dB] | AECMOS
THp =1 [dB] | 05025 | 0.65+02 | 2.95+0.3
THp =2 [dB] | 0.65+0.35 | 1.45+0.3 | 3.2+ 0.45
THp =3 [dB] | 0.7£0.1 |205+045| 35+0.6

Table 8.4: The effect of tolerance threshold values on the URES framework performance

for segments with echo-path change for THg = 1 [dB].

THg = 2 [dB]
Ag [dB] | Ap [dB] | AECMOS
THp =1 [dB] | 1.25+04 | 0.65+0.2 | 3.05+0.4
THp =2 [dB] | 1.3+£045 | 1.55+£0.3 | 33+05
THp =3 [dB] | 1.45+£045 | 22+0.3 | 3.8+05

Table 8.5: The effect of tolerance threshold values on the URES framework performance

for segments with echo-path change for THg = 2 [dB].

THyp = 3 [dB]

Ag [dB] | Ap [dB] | AECMOS

THp =1 [dB] | 1.85+0.65 | 0.75 £ 0.2 | 3.35 + 0.5
THp =2 [dB] | 19406 | 1.65+02| 3.7+0.3
THp =3 [dB] | 2.05+06 | 22+0.35 | 3.9+0.3

Table 8.6: The effect of tolerance threshold values on the URES framework performance
for segments with echo-path change for THgr = 3 [dB].

threshold values and the yielded AECMOS. Limiting the permitted deviation of both
the RESL and DSML estimates from the UOP to 1 dB leads to a mean AECMOS
value of 3.1 dB out of 5, which is considered a subjectively mediocre human evalua-
tion. Allowing a larger deviation of (THgr, THp) = (3,3) in dB, leads to an AECMOS
average of 4.4, which is subjectively considered excellent [PSS*22]. The trade-off most
probably occurs since increasing the THgr and THp creates a larger set of possible pre-
dictions after the threshold stage, which increases the average maximal AECMOS value
of these predictions. Tables 8.4-8.6 addresses segment only with echo-path changes.
The trade-off described above remains, but with a consistent reduction in the average
AECMOS values across all (THg, THp) pairs. This is associated with the linear AEC
stage struggle with tracking and modeling linear echo in changing echo-path scenarios,
which affects the average performance of the successive RES system [ICB21a]. Thus,

the output of the URES pipeline that relies on the predictions of the RES system in-
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stances, degrades in its overall subjective evaluation of speech quality that is quantified
by the AECMOS. Interestingly, results are consistently not symmetric in both tables.
E.g., (THgr,THp) = (2,3) in dB and (THg, THp) = (3,2) in dB have respective aver-
age AECMOS values of 4.2 and 4 in Tables Tables 8.1-8.3. One explanation relies on
the human auditory system, which is more sensitive to speech distortion than to resid-
ual echo [Vir99]. Having a larger range for the DSML to deviate from the UOP, i.e.,
controlling more of the speech distortion rate, enhances the average AECMOS more
than symmetrically applying this logic to the RESL. These tables also give an intuition
of how the objective Ar and Ap empirically relate to the subjective human rating
prediction in the AECMOS. Therefore, relaying on Tables 8.1-8.3 and Tables 8.4-8.6
may allow an educated choice by the user regarding THr and THp. It is highlighted
that while an estimation error as discussed in subsection 8.5.1 of 1 dB, for instance,
may cause uncertainty and bias in the results, the human perception of 1 dB deviation
from the UOP tend to be imperceptible [Yos01]. Overall, the URES framework can
enable a deviation from the UOP that is subjectively low-perceived [Yos01] along with

a subjectively excellent AECMOS, on average, in various acoustic scenarios.

8.5.3 The effect of the tolerance threshold values on P

This experiment includes scenarios with and without echo-path changes and reports
the average P value for every (THg, THp) pair that confines to THy € {1,2,3,4,5} in
dB and THp € {1,2,3,4,5} in dB, which totals to 25 pairs combinations. By observing
Figs. 8.4-8.5, P increases as the tolerance threshold values increase, and vice versa. This
is expected since the construction of the URES framework ensures that, on average,
the higher THgr and THp become, the larger amount of RES predictions are available
to undergo AECMOS maximization after the threshold stage, namely P increases, and
vice versa. An important case is where (THg, THp) = (1,1) in dB, which averages
approximately P = 2. This indicates that these tolerance threshold values are the
lowest that are valid for the URES framework. A deeper dive reveals that P = 0 did
not occur for this scenario and P = 1 was reported 17% of the time. On the other
hand, (THg, THp) = (5,5), in dB, achieve an average of P > 60. Another observation

is the proximity between the results with and without echo-path changes. Namely, even
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THR, [dB]

Figure 8.4: Average P values for various (THg, THp) pairs for scenarios with no echo-
path change. The units of THp values in the legend are dB.

though in Tables 8.1-8.3 and Tables 8.4-8.6 the presence of echo-path changes clearly
degraded the average AECMOS, it does not narrow the number of possible predictions
that arrive at the AECMOS maximization stage. Conclusively, the URES framework
supports even very narrow margins of 1 dB from the UOP. However, lightly relaxing
this constraint enlarges P significantly, which increases the AECMOS, on average, as

supported in Tables 8.1-8.3 and Tables 8.4-8.6 and in subsection 8.5.2.

8.5.4 The effect of echo and noise levels on performance

We recognize that the dynamic environment of hands-free speech communication ex-
hibits various levels of echo and noise. Considering only segments with no echo-path
changes and focusing on a tolerance threshold pair of (THg, THp) = (2,2) in dB, we
report the average performance of the URES framework for SER levels from the set
{-20,-10,0,10} dB and for SNR levels from the set {0, 10,20,30,40} dB. It can be
shown in Figs. 8.6-8.7 that in severe acoustic setups of —20 dB SER or of 0 dB SNR,

the URES framework achieves average AECMOS values close to 3. In contrast, very
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Figure 8.5: Average P values for various (THg, THp) pairs for scenarios with echo-path
change. The units of THp values in the legend are dB.
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Figure 8.6: Average values of the AECMOS (diamonds), Ag in dB (circles) and Ap in
dB (squares) for various levels of SER values with no echo-path change scenarios and

(THg, THp) = (2,2) in dB.
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Figure 8.7: Average values of the AECMOS (diamonds), Ag in dB (circles) and Ap in
dB (squares) for various levels of SNR values with no echo-path change scenarios and
(THR, THD) = (2, 2) in dB.
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Figure 8.8: Average values of the AECMOS (diamonds), Ag in dB (circles) and Ap
in dB (squares) versus number of trained RES model instances in scenarios without
echo-path changes, considering (THgr, THp) = (5,5) in dB.
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Figure 8.9: Average values of the AECMOS (diamonds), Ag in dB (circles) and Ap in
dB (squares) versus number of trained RES model instances in scenarios with echo-path
changes, considering (THg, THp) = (5,5) in dB.

friendly acoustics of 20 dB SER or 40 dB SNR allow an average AECMOS that ap-
proaches 4 or even exceeds it. It can be inferred that in degraded acoustic conditions,
both the lowest average AECMOS and the largest average deviations from the UOP
occur. One assumption is that in conditions of high echo and noise levels, subjective
quality rating is maximized when the RESL and DSML are taken to their allowed ex-
treme to suppress most echo and distort least speech possible. Another observation is
that the Ap is almost consistently higher on average than Ag across all SER and SNR
levels, which supports the claim made earlier of how the human auditory system favours
less speech distortion over less echo suppression. In summary, challenging but practical
conditions, e.g., SER = 0 dB and SNR = 20 dB, are handled well by the URES system,

which allows a broad support of this framework in various acoustic environments.

8.5.5 The effect of the number of RES instances on performance

The URES system originally employs 101 pre-trained RES model instances, where ev-

ery instance corresponds to an « value between 0 and 1 with 0.01 increments. In this
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experiment, we examine how lowering the computational load by considering a fewer
number of RES model instances affects the URES performance. This is done by apply-
ing identical training and testing processes as for the original URES framework, but
with a increments now taken from the set {0.02,0.05,0.1,0.25,0.5}. In correspondence,
the number of RES model instances examined are the set {51,21,11,5,3}, where for
example taking an increment of 0.25 includes « € {0,0.25,0.5,0.75,1} and an incre-
ment of 0.5 includes a € {0,0.5,1}. The number of RES and RDE model instances is
identical, preserving the functionality of the framework. Across all increments, we fix
the tolerance threshold pairs to (THgr, THp) = (5,5) in dB. The motivation for this
choice relates to how using less RES model instances, i.e., larger v increments, intrinsi-
cally decreases the average value of P per (THg, THp) pair. We wish to mitigate this
bias and isolate the effect of how the « increment changes the AECMOS in the URES
output. Based on Figs. 8.8-8.9, the average AECMOS degrades by more than 0.5
points when transitioning from 101 to 51 model instances. Narrowing down the num-
ber of instances even further lowers the average AECMOS to subjectively mediocre
and below, reaching as low as 2.7 for scenarios with echo-path changes. The increase
in the average Ar and average Ap values is also significant, almost doubling its size
as the number of RES instances lowers from 101 to only 3. To summarize, employing
the entire 101 RES model instances has a significant impact on the URES framework
performance, mainly in terms of the average AECMOS. It should also be noted that
modern hardware services can handle the requirements of the URES framework with
the entire 101 model instances while confining with hands-free speech communication
timing standards [ETS16]. Also, since the RES models and the following RDE mod-
els run inference in multi-thread processing, the buffering latency is not affected by

changing the number of instances in the framework [CSP*23].

8.6 Conclusions

RES in double-talk periods is an integral requirement of many hands-free speech com-
munication systems, and recent RES methods have shown impressive advancements

on average benchmark-performance. However, existing studies do not support specific
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user inputs, which has crucial commercial implications. In this work, we developed
a user-centric framework for RES in double-talk, which introduces for the first time
three attributes that aim to enhance user experience. First, the RESL and DSML of
the RES output confine to a UOP, up to a given tolerance threshold. Second, our
framework supports real-time tracking of changes in the UOP, which is essential in
dynamic acoustic environment of rapidly-varying user preferences. Third, AECMOS
maximization is applied to enhance the subjective speech quality of the output signal.
Future work may involve a learning framework that maps acoustic information to UOP

recommendations in real time.
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Chapter 9

Deep Adaptation Control for
Stereophonic Acoustic-Echo

Cancellation

9.1 Introduction

In stereophonic hands-free speech communication, the near-end microphones may cap-
ture three types of acoustic signals; the desired speech, additional noises, and reverber-
ant echoes. The echoes are nonlinearly distorted versions of the far-end signal played by
loudspeakers and reverberate to the microphones via echo paths [SMH95]. These echoes
may impede conversation intelligibility as perceived by the far-end participant. The
SAEC task is two-fold; tracking the near-end echo-paths and subtracting them from
the microphones signals, and communicating the undistorted desired-speech signal to

the far-end [BMS98].

The popular NLMS adaptive filter is numerically stable and efficient [SB99, PCBG15].
Its SNLMS variation employs the polarity of the adaptation error [FZ11] and is favor-
able over the NLMS due to its protection against abrupt noises[FD93, NCC16, LWS16].
The adaptation of the SNLMS filter is governed by the step-size parameter, which bal-
ances the convergence pace and the adaptation accuracy of the filter. Controlling the

step-size is desirable in scenarios of frequent acoustic changes, e.g., echo-path variations
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and single-to-double-talk transitions. The VSS problem has motivated Haubner et al.
to employ deep learning for near-end speech [HHBK21] and noise [HBEK21] evaluation,
and to reduce the error of the adaptive processfHBK22|. Meta-learning-based solutions
have also recently emerged in [CBS22]. The a priori adaptation error and the far-end
signal undergo feature extraction for VSS estimate in [MK16b] and a NPVSS minimized
the adaptation error in [BRVT06]. The mean-error SVSS combines adaptation-error
history with current adaptation-error estimate [HA16].

The methods in [HHBK21, HBEK21, HBK22] model the far-end signal as linear
with its respective echo-signal, and the studies in [MK16b, BRVT06, HA16] consider
the echo path as time-invariant. Unfortunately, both assumptions restrict performance
in realistic setups and may cause low adaptation accuracy with slow convergence-pace
[ICB21b]. On top of that, parameter-tuning, as in the NPVSS [BRVTO06], involves
heuristics that are inaccurate in practice. Thus, SAEC in real-life scenarios remains a
relevant challenge and an active research area.

Inspired by [ICB22a], we mitigate these disparities by introducing a data-driven
framework for DVSS that avoids heuristics and does not require acoustic setup hy-
potheses. First, the update rule of the adaptation process, governed by the step size,
integrates the widely-linear model in the complex time domain. The mismatch be-
tween the actual echo paths and their filtered estimate is quantified by the normalized
misalignment, which is then minimized with respect to the step size. A NN relates
acoustic signals to the optimal step-size in training, and the predicted step-size feeds
the SNLMS filter in real time for tracking the echo paths. The described framework is
novel for SAEC.

We compare our approach with the competition by considering a pair of near-end
loudspeakers and microphones, although this framework generalizes to any number of
channels. Experimenting with 100 hours from the AEC-challenge corpus [CSPT21]
reveals the consistent advantage of the DVSS in single and double-talk periods across
various acoustic setups. The DVSS-SNLMS system also re-converges more rapidly and
accurately after abrupt echo-path changes and is more robust to single-to-double-talk
transitions.

The remainder of this chapter is organized as follows. In Section 9.2, we formulate
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the problem. In Section 9.3, we describe the proposed solution. In Section 9.4, we
lay out the experimental setup. In Section 9.5, we present the experimental results.

Finally, in Section 9.6, we draw conclusions.

9.2 Problem Formulation

Our DVSS-SNLMS setup is in Figure 9.1. The left and right near-end microphones

my, (n) and mg (n) at time index n are, respectively,

my, (n) = sy (n) +y (n) +wr, (n), (9.1)

mg (n) = sgr (n) + yr (n) + wr (n), (9.2)

where s, (n) and sg (n) are the near-end speech signals, wy, (n) and wg (n) represent
environmental and system noises, and yr, (n) and yg (n) are the nonlinear reverberant

echo signals, as correspondingly captured by the left and right microphones:

yu (n) = hi}, (n)x{" (n) + hiy, () xRy~ (n), (9-3)

yr (n) = hig (n)x1" (n) + hig (n) xR" (n) . (9-4)

For sake of readability, in this chapter we define notations by using explicit vector
representations. Here, xN (n) and x}{" (n) respectively denote the L-recent samples
from the left and right far-end signals, i.e., x1, (n) and xg (n), subsequent to nonlinear

distortions by nonideal hardware [ICB21b]:

xN (n) = {xEL (n),...,zN" (n — L + 1)}T , (9.5)

xR (n) = {xﬁL (n),...,zx"(n — L + 1)}T , (9.6)

and each of the column vectors hry, (n), hry, (n), higr (n), hgr (n) has L samples and
represents an echo path from the loudspeakers to the microphones, also known as a

room impulse response (RIR). Instead of tracking 4L real-valued coefficients, we turn
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to the more compact widely-linear model [BPGC11] by defining the complex signals:

h (n) = hy (n) + jha (n), (9.7)

h'(n) =h'y (n) + jh's (n), (9-8)

where j = +/—1, and

hy (n) = 0.5(hus (n) + heg (n) ). (9.9)
hy (n) = 0.5(hge, (n) — heg (7)), (9.10)
by (n) = 0.5(hrr (n) — hrg (n) ), (9.11)
b5 (n) = —0.5(hre (n) + hir (n) ). (9.12)

The complex echo signal y (n) = yr, (n)+jyr (n) can now be expressed in a widely-linear

manner by y (n) = hf (n) xNF (n):

h(n) = i\ (9.13)
b’ (n)
_XNL n

N (n) = NL*(( )) , (9.14)

NL

NL () = x (n) 4 jxK¥ (n). The superscripts # and * correspondingly notate

where x
the transpose-conjugate and conjugate operations. As a result, the complex microphone

signal m (n) = my, (n) + jmg (n) can be formulated by

m(n) = hl (n) N (n) + s (n) + w (n), (9.15)

where s (n) = si, (n) + jsgr (n) and w (n) = wy, (n) + jwg (n).

~H

The echo estimation § (n) =h (n)% (n), where x (n) and X" (n) follow the same

notation, is evaluated by tracking the 2L complex-coefficients of h (n) with the SNLMS
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adaptive filter. Subsequently, the complex near-end speech estimate can be drawn by

e(n) =m(n)—=9n)=(y(n) =) +sm)+wn), (9.16)

where e (n) = er, (n) + jer (n). Our focus is two-fold; tracking and cancelling the echo
signal, i.e. nullifying y (n) — 9 (n), and avoiding distortion of the near-end speech, i.e.

preserving s (n).

9.3 DVSS-SNLMS Filter for SAEC

9.3.1 Modeling the SNLMS Filter and Step-size in Double-talk

By placing (9.15) and the definition of § (n) into (9.16), we respectively derive the a
priori and a posteriori errors of the SNLMS filter [PCBG15]:

e(n) = hf (n)xN (n) — il (n—1)x(n)+s(n)+w(n), (9.17)

e(n) = htl (n) N (n) — htl (n)x(n)+s(n)+wn). (9.18)
The update rule of the 2L complex-valued filter coefficients is [FZ11]:

() =B (n— 1)+ 1 (n) % (n) sgn (¢" (). (9.19)

=

where h (0) is a column vector of 2L zeros, the step-size is given by u(n) € R, and

sgn (z) = z/|z| for every z € C, where | - | is the absolute value. From (9.17)—(9.19):

e(n) =e(n) - p(n)sgn (e (n) X" (n) % (n). (9-20)

We now force the a posteriori error to a complete echo-cancellation and extract the
corresponding expression of the step-size p (n) [BPGC11]. Assuming s(n) and w (n)

are zero-mean and uncorrelated [PCBG15]:

2

o2 (n) =c2(n)+o2 (n), (9.21)
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Figure 9.1: Top - SAEC scenario under the widely-linear model. Bottom - the DVSS-
SNLMS block, where a NN estimates the step-size fi* (n) and the SNLMS filter esti-

mates the acoustic paths via h (n).

where o2 (n) = E [|e(n)|*] and o2 (n), o2 (n) follow the same definition. Now, the

E[| - |?] operator is applied on both sides of (9.20), and then (9.21) is substituted into
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(9.20). This process yields

,U(n) —c+ $ 0’? (n); 0121; (TL) — 062 (TL) - 02’ (922)

where ¢ = E(!e]f{H (n)x(n) ) /E( (iH (n)x (n))2> and J is a regularization param-

eter to avoid division by small numbers.

9.3.2 Step-size Optimization with a Data-driven Approach

The mismatch between the adaptive and true filter coefficients is often assessed using

the normalized misalignment measure [BPGC11]:

h(n)—h(n)|
D (n) - = (9.23)
B,
B (n) —h(n — 1) = 1 (n) % (n) sgn (" (n)) ||
l:i )
[Bm ],
where (9.19) was employed to the second transition and || - ||2 is the ¢ norm. We

now solve a constrained nonlinear optimization problem [Rusll] to yield the optimal
step-size. Formally, the normalized misalignment is minimized with respect to the

step-size, in dB:

" (n) = argmin 20log,, D (n), (9.24)
0<p(n)<1

where the condition 0 < p(n) < 1 is dictated by the stability requirements of NLMS-
based adaptive filters [PCBG15]. The active-set optimization algorithm [HZ06] is uti-
lized to perform optimization. According to (9.23), the only values involved in deriving
D (n) are the far-end and the a priori error signals. This data-driven approach does

not require heuristic parameter tuning to estimate p* (n).
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9.3.3 Deep Adaptation to the Optimal Step-size

A deep NN is integrated into our system to model the relation derived in (9.22) be-
tween acoustic signals and the optimal step-size p* (n). Despite the near-end speech
and noise signals being inaccessible in reality, the microphone signal can serve as an
approximation. Thus, the microphone signal, along with the far-end and a priori error
signals, are mapped to their respective step-size. The NN architecture is of a con-
volutional form [AMAZ17] with six input channels, one for the real and one for the
imaginary part of each of the three input signals. These six waveforms undergo short-
time Fourier transform (STFT) [GL84] separately before being fed to the NN. The
specific architecture is standard and follows the one in [ICB22a]. During training, op-
timization is carried to minimize the ¢ norm between the optimal step-size u* (n) and
the output of the network. During inference, the step-size estimate i* (n) is evaluated
by the network and injected to an SNLMS filter that tracks the echo paths. Addressing
complexity analysis, the NN and the SNLMS filter consume 4.2 Mflops and 4.8 MB of
memory, by employing 1.05 Million parameters. Embedding this system into real-life
edge devices for hands-free speech communication is thus considered feasible in terms
of resources [ETS16]. One example of dedicated hardware for this task is the NDP120

neural processor by Syntiant™ [Syn21].

9.4 Experimental Setup

9.4.1 Database Acquisition

The database corpus utilized in this study includes 100 hours of noisy and clean seg-
ments taken from the AEC-challenge [CSP*21], where 25 hours are simulated record-
ings, and 75 hours are real recordings. The AEC-challenge data involves scenarios
with no echo-paths change, where the near-end speaker and devices do not move, and
scenarios with echo-paths change, where either the near-end speaker or devices are mov-
ing. We consider both double-talk periods and single-talk periods with far-end speakers
only. Practically, audio clips are assigned to the original far-end source signal r (n) and

to the near-end speech and noise signals, where s1, (n) = sg (n) and wy, (n) = wg (n) in
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this study. To produce the far-end signals x1, (n) and xg (n), r (n) is randomly propa-
gated via one of 4500 pairs of RIRs that generate gi, (n) and gg (n), i.e., the acoustic
paths between r (n) and the left and right far-end microphones, respectively. To ac-
count for realistic acoustic environments, one of 4500 simulated nonlinear functions is
applied to every xr, (n) and xg (n) pair in a random fashion. These nonlinearities are
modeled after realistic power amplifiers and loudspeakers in current hands-free hard-
ware [ICB21b]. Each pair of nonlinearly-distorted far-end signals x}' (n) and x{% (n) is
randomly propagated via one of 4500 foursomes of near-end RIRs. All RIRs are gener-
ated using the Image Method [AB79] with L coefficients and reverberation times RTg,
where RT¢y ~ U [0.2,0.5] seconds. The near-end SESR and SENR levels were drawn
from [—10,10] dB and [0,40] dB, respectively, where SESR=101log;, (|y (n) |*/|s (n) |?)
and SENR=10log;, (Jy (n)|?/|w (n)|?) in dB [BPGC11]. These ratios are derived by

running 20 ms frames that overlap by 50%.

9.4.2 Preprocessing, Training, and Testing

We recognize the well-known non-uniqueness problem in setups of SAEC, where strong
coherence between x} (n) and x§" (n) may degrade the adaptation process [GB02].
To mitigate that, we apply the following channel-wise transformation introduced in the

context of the widely-linear model [BPGC11]. First, we define the positive and negative
half-wave rectifiers [MHBO1]:

D () = 3 () +0.5 (x (n) + [ () ]]) (9.25)
<N (1) = 5 (n) + 0.5 (x} (1) — xR () [) - (9.26)

With the element-wise operation tan @ (n) = XEL;L (n) /XELL (n):

SN (n) = cos 0 (n) [N (n) ||, (9.27)

XN (n) = sin @ (n) [|XNY (n) |, (9.28)

where eqgs. (9.27) and (9.28) use element-wise arithmetic. This transformation modifies

only phase information, so employing xN (n) and xN" (n) instead of xN(n) and
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xR (n) allows a desired reduction in coherence with the advantage of little distortion.

The entire 100 hours batch of data is split to yield training, validation, and test
sets of sizes 80 hours, 10 hours, and 10 hours, respectively. The split is random, but
constrained to preserve balance and avoid bias by following the principles in [ICB21a].
Using the training and validation parts, the step-size is evaluated once every 8 ms
according to (9.24) with parameter values of 1(0) = 3x 107 and L = 2400. Echo-paths
are abruptly changed once every t seconds, where ¢ ~ U [4, 10], which characterizes in-
the-wild conversations. Waveforms undergo STFT with running time frames that are
16 ms long and have 50% overlap. Before being inserted into the network, every STFT
representation of every channel is attached to its 96 ms past context. Training the
network using back-propagation involves learning rate of 10~* that decays by 1076
every 5 epochs, mini-batch size of 32 ms, and 40 epochs, using Adam optimizer [KB15].
The real-time inference is done on the test set. After the artificial gain of the network
is calibrated according to [ICB21c]|, the step-size estimate is injected from the network
output into the SNLMS, which constantly evaluates the echo paths. Training the
network took 32 minutes for every 1 hours of input data from all channels. The inference
time for the end-to-end system, from the network entry to the echo-paths estimate, is
26 ms on average using an Intel Core i7-8700K CPU @ 3.7 GHz with two GPUs of
Nvidia GeForce RTX 2080 Ti.

9.4.3 Performance Measures

In single-talk periods with only far-end signals and noise presence, we estimate the
echo suppression level between the microphone and enhanced signals using the ERLE
[ITU12], defined as 10logyq (|m (n) |*/|e (n) [?). In double-talk, we consider both the
SDR [VGF06] and the PESQ [ITU17], where SDR = 10log;, (|s (n)|?/|e (n) — s (n) |?)
and is affected by both echo levels and speech distortion levels. The PESQ we report is
the average of the PESQ score between sp, (n) and e, (n), and the PESQ score between
sr (n) and eg (n). These measures are derived with running time frames of 20 ms with
an overlap of 50%. For a complete view of performance, we report the adaptation
convergence times and convergence success rates. Convergence is considered achieved

when D (n) falls below —10 dB and is considered successful if D (n) remains below —10
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dB until echo-paths change [PCBG15].

9.5 Experimental Results

SDR [dB] PESQ ERLE [dB] Norm. Mis. [dB]

DVSS | 3.31+0.6 2.45+0.3 16.1+4.8 -17.3+4.4
NPVSS | 2.47+1.0 2.01£0.4 12.9+5.9 -14.8+4.6
NNVSS | 2.41+1.0 1.86%0.5 12.546.0 -14.2+4.8

SVSS 2.12+0.9  1.73£0.5 10.7£6.5 -13.1+4.8
SNLMS | 1.93+1.1  1.60+0.3 9.7£6.8 -11.6+5.2

Table 9.1: Performance with no echo-paths change.

SDR [dB] PESQ  ERLE [dB] Norm. Mis. [dB]

DVSS | 3.05+0.8 2.27+0.4 10.9+6.3 -12.5+5.7
NPVSS | 2.20+1.2  1.79£0.5 7.9£6.5 -9.9+5.9
NNVSS | 1.98+1.1 1.714+0.5 7.4+6.8 -9.4£6.1

SVSS 1.91+£1.3 1.63£0.5 7.0£6.8 -9.24+5.9
SNLMS | 1.74+1.5 1.51+0.3 6.6£6.3 -8.2%6.0

Table 9.2: Performance with echo-paths change.

DVSS NPVSS NNVSS SVSS SNLMS

4.4s, 79% 7.1s,63% 8.5s, 55% 8.6s, 51% 9.1s, 48%

Table 9.3: Convergence times [sec] and success rates [%)].

Our DVSS-SNLMS approach is matched against the VSS approaches in [MK16b,
BRVT06, HA16], correspondingly abbreviated “NNVSS”, “NPVSS”, and “SVSS”. These
competing algorithms were integrated with the widely-linear model and the SNLMS
filter for an unbiased comparison. The SNLMS filter with step-size of u =3 x 107°,
briefly “SNLMS”, is the classic approach baseline. Performance in Tables 9.1 and 9.2

is outlined with mean and std values, and Table 9.3 shows average test set values.
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Figure 9.2: Convergence comparison to near-end echo paths abrupt change at 5 s, while
SESR and SENR values regularly vary.

We distinguish between the performance when no echo-paths changes occur, i.e., in
Table 9.1, from segments where echo-paths change, as in Table 9.2. In both cases, we
only consider the post-convergence of the adaptive filter. In Table 9.1 and Table 9.2,
the mean value of the results reflects the advantage of the DVSS method over the

competition. The ERLE stresses the leading echo suppression of the DVSS method,
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and the SDR and PESQ measures reveal its ability to maintain low speech distortion
and high speech quality. It is also noted that the low std values of the DVSS indicate
the stability of its performance across various acoustic setups. Table 9.3 affirms that our
method achieves the shortest re-convergence times and the most successful convergence
rates in scenarios with no echo-path changes. Unlike the competition, our method has
shown a prominent ability to track echo paths by adapting the step-size accurately and
rapidly while maintaining high robustness and generalization capabilities. This can be
associated with our approach avoidance of heuristic parameter tuning and of making
acoustic assumptions that often mismatch realistic scenarios.

Fig. 9.2 depicts the desired convergence behavior of the DVSS-SNLMS filter in a
two-fold manner; it shows the most rapid convergence and re-convergence after abrupt
echo-paths change, and it is also the least disturbed by the occurrence of double-talk.
On the contrary, competing VSS-based methods slightly diverge due to double-talk,

which impedes their convergence success afterward.

9.6 Conclusions

Controlling the step-size in adaptive filtering can allow for optimally operate between
convergence rate and adaptation accuracy. This study attempts to bring this ability a
step closer to practice by introducing a general adaptation-control framework that is
both non-parametric and does not require acoustic assumptions and apply it to SAEC.
Using the widely-linear model, we first derive the optimal step-size by minimizing the
filter misalignment in the complex time domain. Then, we train a neural network to
predict this optimal step-size from acoustic data in real time. Based on this step-size
estimate, the SNLMS filter tracks the echo paths and performs well over competition
across various acoustic setups. Future work may focus on generalization to scenarios

where near-end microphones capture different versions of the speech and noise signals.
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Chapter 10

Objective Metrics to Evaluate
Residual-Echo Suppression

During Double-Talk in the

Stereophonic Case

10.1 Introduction

A conversation between a pair of speakers, based in near-end and far-end points, is
common in hands-free communication. The desired-speech captured by the near-end
microphone can be interrupted by echo, which is created by a loudspeaker that emits
nonlinearly-distorted version of the far-end signal that reverberates in the room, and
by additional noises [BGM*01]. An acoustic coupling between the loudspeaker and
the microphone potentially occurs due to this echo presence, which impairs the quality
of acoustic information transmitted to the far-end [GV92]. In SAEC, the echo paths
between a pair of loudspeakers and a pair of microphones are modeled by adaptive
filtering. The echo paths are converted into acoustic-echo approximations that are
subtracted from the microphones [SMH95, BMS98]. Double-talk segments are most
challenging, since the echoes overlap with desired speech. Various studies tried to cope

with it by preserving the speech and removing the echoes [SBPT13, PBC14, CRPP12,
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KS17, MHB01, WQW10, RCP"10, GT98]. In practice, however, echo paths are not
estimated accurately, e.g., when the adaptive filter has not yet converged [BGM™01].
Therefore, a RES system must succeed the SAEC system to eliminate the echoes.

Subjective human evaluation is currently the most accurate assessment of human
perception for speech quality [RBP*19, CNL*21]. Recently, an objective metric called
the AECMOS was introduced. In double-talk specifically, the AECMOS has obtained
impressive accuracy in estimating human ratings [PSST22]. In contrast, RES systems
conventionally use the SDR metric [VGF06] to assess speech quality in double-talk,
e.g., in [CSVH18, DDBW19, PP20, CXCL20, Fan20b, Fan20a, WJ11, KJS21]. It will
be empirically shown that the SSDR is by definition influenced by both distortion
of stereo speech and presence of stereo residual-echo. Thus, for the task of RES in
the stereophonic case, the SSDR is not an adequate indicator of neither the human
evaluation for quality of speech nor of the AECMOS.

To combat it, we introduce a pair of objective metrics to distinctly assess the SDSML
and the SRESL in double-talk. We first consider an RES system that acts as a time-
dependent gain, with a pair of input and output channels. To calculate the SDSML,
this gain is projected into the stereo desired-speech and the result is substituted inside
the SSDR expression. The SRESL requires an estimate of the noisy stereo residual-
echo, achieved by subtracting the stereo desired-speech from the double-talk frame.
The ratio between this estimate without and with the gain applied to it generates the
SRESL. The SDSML and SRESL metrics are evaluated with an RES system, based
on deep learning, which incorporates a tunable design parameter. This study employs
100 hours of recordings that comprise of real signals and of simulations in various
acoustic setups, with a range of echo and noise levels. Results reveal the AECMOS
is well correlated with the SDSML and SRESL with high generalization to various
scenarios. An additional empirical study investigates how the design parameter affects
the tradeoff between the SDSML and SRESL. We then show how varying the design
parameter during training can benefit interchangeable user demands of the RES system,
which often occur in real-life. This study extends a recent work by the authors, which
address the monophonic AEC case [ICB21c¢].

The remainder of this chapter is organized as follows. In Section 10.2, we formulate
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the problem. In Section 10.3, we describe the proposed solution. In Section 10.4, we
revisit the tunable design parameter. In Section 10.5, we lay out the experimental
setup. In Section 10.6, we present the experimental results. Finally, in Section 10.7,

we draw conclusions.

10.2 Problem Formulation

The RES scenario in the stereophonic case is detailed in Figure 10.1. Here, bold letters
notate vectors and matrices, and normal letters notate scalars. The left and right

near-end microphones my, (n) and mg (n) at time index n are respectively:

myp, (n) = sy (n) +y (n) +wr, (n), (10.1)

mg (n) = sgr (n) + yr (n) + wr (n), (10.2)

where s, (n) and sg (n) are the near-end speech signals, wy, (n) and wg (n) represent
environmental and system noises, and yr, (n) and yg (n) are the nonlinear reverberant

echo signals, as correspondingly captured by the left and right microphones:

yu (n) = hi}, (n)x{" (n) + hiy, (n) xRy~ (n), (10.3)

yr (n) = hig (n)x3" (n) + hig (n) xR" (n) . (10.4)

For sake of readability, in this chapter we define notations by using explicit vector
representations. Here, XEL (n) and XEL (n) respectively denote the L last samples of
the left and right far-end signals, xN" (n) and x}" (n), after nonlinear distortions by

nonideal hardware [ICB21b]:

< (n) = [N () ..o (- L4 1)) (10.5)

< (n) = [N () ..ot (- L4 1)] (10.6)

and each of the column vectors hry, (n), hry, (n), higr (n), hgr (n) has L samples and
represents a RIR from the loudspeakers to the microphones. Preliminary, linear echo

is reduced by employing the system in [ICB22a]. This system receives my, (n) and
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Figure 10.1: RES scenario in the stereophonic case.

mpg (n) as inputs, and xy, (n) and xg (n) as reference channels, and generates two pairs

of signals: a pair of echo estimates ¢, (n) and gr (n), and a pair of near-end speech

signal estimates er, (n) and eg (n), given by:

eL (n) = my (n) = gu (n) = (yr (n) — gL (n)) + s1 (n) + wr (n), (10.7)
er (n) = mg (n) = Jr (n) = (yr (n) — r (1)) + sr (n) + wr (n). (10.8)

The RES system aims to suppress the residual echoes, i.e., both yr, (n) — g, (n) and

yr (n) — gr (n), without distorting the desired-speech signals, i.e., s, (n) and sg (n).

10.3 The SDSML and SRESL Metrics

The SDSML and SRESL are developed by assuming a two-input and two-output RES

system that acts as a time-varying gain matrix. The gain matrix in double-talk periods
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is given by:

¢ (n) = 05 3. (n)/eL (n) SL(n)/er (n) ’ (10.9)

Sr(n)/evL(n) Sr(n)/er (n)
where in double-talk er, (n) # 0 and eg (n) # 0. Before introducing the SDSML and
SRESL definitions, we inspect the shortcomings of the SSDR. Extending the traditional

SDR definition [VGF06] to the stereophonic case, it follows that:

SSDR. = 101og;y —° ) I .
HS (n) —S (n) !2 Double-talk (1010)
 0logy, s |
[s(n) —g(n)e(n) H% Double-talk
where:
sn)= | " " sy =" =) o) =" ) (10.11)
sR (1) 5r(n) er (1)

Both stereo desired-speech distortion and stereo residual-echo presence influence
the SSDR value. Since the SSDR employs the term g (n) e (n), a scenario of distortion-
free speech and echo and a scenario of distorted speech without echo may produce an
identical SSDR. value. These scenarios, however, are perceived differently by humans
and present different AECMOS values. It will be empirically shown that the SSDR
and subjective human perception are poorly matched according to the AECMOS. Re-
liable evaluation of RES systems during double-talk can be achieved by separating the
quantification of speech distortion from one of residual-echo suppression. Such dis-
tinction is not provided by the AECMOS metric. Thus, a pair of objective metrics is
introduced by separately employing g (n) to the stereo desired-speech and to the noisy

stereo residual-echo estimate.

The SDSML definition is analogous to the SSDR, except that g (n) is projected to

the stereo desired-speech s (n) solely:

I (n) 13

(
18 () — g (n) s () 113 [ pouble-tanc

SDSML = 10log, (10.12)
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Next, the noisy stereo residual-echo is evaluated as r (n) = e (n) — s (n), and the SRESL

is calculated by:

I (n) |12
SRESL =101 _— . 10.13
%810 718 () 1 () [ | poubie.tati (1013)

It is noted that a constant attenuation may occur by the RES system, which deviates
the SDSML from its real value. The SDSML must be unvaried by this attenuation, so
it is being restored as shown in [ICB21c|. Expressly, § (n) = g (n)s (n), where:

_ (g(n)s(n),s(n))

=" (10.14)

10.4 A Tunable Stereophonic RES System

An RES system based on deep learning, inspired by [ICB21b], is employed to assess the
SDSML and SRESL metrics. It contains six input channels, and two output channels
and operates in the waveform domain. The proposed architecture is comprised of
blocks of NLMs. Each NLM comprises 3 GRUs that contain 16 cells each [CGCB14]
and dropout [SHK*14a] in the recurrent layers, an FCNN with a two-neuron output,
and a PLU activation function with trainable parameters [Nicl8| that is applied to
each output neuron. The architecture is modeled by 3 consecutive NLMs. The first
NLM receives the outputs of the linear SAEC system, i.e. , (n), gr (n), e, (n), er (n),
and the two reference channels x1, (n) and xg (n), and emits two output channels.
The two succeeding NLMs are fed with four entrances each; a pair of output channels
of the previous NLM, and the two reference channels. The last NLM produces the
speech estimates 51, (n) and SR (n). A tunable design parameter 0 < a < 1, originally
introduced in [ICB21a], controls an intrinsic tradeoff that occurs inside a customized

loss function J(a):

J(a) = a-SDSML™! 4 (1 — @) - SRESL ™! (10.15)
)

L Is (n) 113 B _a.< I (m) 13 )1
- (@uwmmsmMQ T\ gmrmE)

where during double-talk §(n),r (n) # 0 and O is a vector of zeros. The parameter «
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compromises between the SDSML and SRESL values in the training stage while J(«)
is minimized. As a result, the stereo desired-speech distortion and stereo residual-echo
suppression levels that the system permits can be adjusted dynamically. For instance,
setting @ = 1 forces the stereo desired-speech prediction to coincide with its ground
truth. Shifting to a = 0, however, focuses on suppressing the stereo residual-echo, but
causes a more substantial stereo desired-speech distortion. Tuning «, i.e., tuning the
SDSML-SRESL tradeoff, can be done dynamically during training.

This RES system contains 23 thousand parameters that consume 550 million FLOPS
and 65 KB of memory. Its embedding on hands-free platforms is thus feasible, e.g., by
considering the NDP120 neural processor by Syntiant™ [Syn21]. The preceding linear
AEC system employs the SNLMS adaptive filter in the sub-band domain [ICB22a].

10.5 Experimental Setup

10.5.1 Database Acquisition

This study makes use of the AEC challenge database [CSP*21] that is sampled at 16
kHz and incorporates English double-talk segments both with and without echo-paths
change. In scenarios of no echo-paths change, the near-end setup does not include move-
ments. In scenarios of echo-paths change, however, the recording involves movement
in the near-end, either by the speaker or the device. This database contains 75 hours
of real clean and noisy recordings and additional 25 hours of synthetic data, which
are assigned to the original far-end source signal r (n) and to the near-end speech and
noise signals, where sy, (n) = sg (n) and w, (n) = wg (n) in this study. To produce the
far-end signals xy, (n) and xg (n), r (n) is randomly propagated via one of 4500 pairs
of RIRs that generate gy, (n) and gg (n), i.e., the acoustic paths between r (n) and the
left and right far-end microphones, respectively. To account for realistic acoustic envi-
ronments, X1, (n) and xR (n) randomly undergo one of 4500 artificial nonlinearities that
confine with practical characteristics of power amplifiers and loudspeakers in modern
hands-free devices [[CB21b]. Each pair of nonlinearly-distorted far-end signals xN" (n)
and x}% (n) is randomly propagated via one of 4500 foursomes of near-end RIRs. All

RIRs are generated using the Image Method [AB79] with L coefficients and reverber-
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ation times RTgp, where RTgy ~ U [0.2,0.5] seconds. The near-end SSER and SSNR
levels were distributed on [—10,10] dB and [0,40] dB, respectively, and are defined
as SSER=101og,, (|ls (n) [/ lly (n) [} and SSNR=101ogyq (|ls (n) 3/ (n) |3) in dB,
where both y (n) and w(n) follow the notations in eq. (10.11) and both ratios are

calculated with 50% overlapping time frames of 5 seconds.

10.5.2 Data Preprocessing, Training, and Testing

The database is divided into 80 hours of training, 10 hours of validation, and 10 hours
of test sets randomly. Bias is averted by following our conventions [ICB2la]. Since
real scenarios often involve an abrupt change in the echo paths, we simulate these to
reoccur every t seconds, where ¢t ~ U [4,10], and set L = 2400. The NN is fed with
50% overlapping time frames of 20 ms and is trained with a learning rate of 10~ that
decays by 1076 every 5 epochs, mini-batch size of 60 ms, and 40 epochs, using Adam
optimizer [KB15] and back-propagation through time. Training the RES system lasted
25 minutes per 10 hours of data and inference took 8 ms per batch on an Intel Core

i7-8700K CPU @ 3.7 GHz with two GPUs of type Nvidia GeForce RTX 2080 Ti.

10.5.3 Performance Measures

Performance is also evaluated with the SSDR, which is influenced by both echo presence
and distortion of speech, and with the PESQ [ITU17] between s (n) and §(n). The
AECMOS is also reported, and is calculated using the API provided by Microsoft as
the average between the AECMOS of §;, (n) and the AECMOS of 8g (n).

10.6 Experimental Results

Results are reported on the test set. In Tables 10.1 and 10.2, both mean and standard
deviation (std) values are given. In Figures 10.7-10.10, only mean values are shown.
Higher mean and lower std values entail better performance for all metrics. The linear
filter convergence confines with the description in [ICB22a, PCBG15]. We use 50%
overlapping time frames of 5 seconds for metrics calculations.

We employ the Pearson correlation coefficient (PCC) [BCHC09] and Spearman’s
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SRC

0.2

04/

+SDSML -i-SRESL I SSDR|

0
0O 025 05 075 1

(87
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Figure 10.4: Scatter plots of the AECMOS versus the SDSML metric.

rank correlation coefficient (SRCC) [Gau0O1] to discover how much the SDSML and
SRESL correlate with the AECMOS, similarly to [PSS*22, RGC21, SCS*21]. This
experiment includes segments both with and without echo-paths change after the linear
SAEC system has converged for a € {0,0.25,0.5,0.75,1}, and the results are shown in
Figures 10.2-10.3. The SSDR and AECMOS are poorly correlated, as pointed out by
the PCC and SRCC mean values that fall below 0.26 for all . However, with average
PCC and SRCC values between 0.8 and 0.89 for all «, the proposed SDSML and SRESL
metrics highly coordinate with the AECMOS. Observing std values, the SDSML and
SRESL show more consistent correlations across o than the SSDR. Figures 10.2-10.3
visualizes the AECMOS versus the SDSML, SRESL, and SSDR metrics for random
sample values drawn from « ~ U [0.25,0.75] with no echo-paths change. The low
matching between the AECMOS and the SSDR. and the high correlation between the
AECMOS and the SDSML and SRESL are now verified. The SDSML and SRESL are
therefore more indicative to subjective human perception of speech-quality evaluation

than the SSDR, according to the AECMOS.

In Tables 10.1 and 10.2 performance metrics are evaluated for scenarios without
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Figure 10.5: Scatter plots of the AECMOS versus the SRESL metric.
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Figure 10.6: Scatter plots of the AECMOS versus the SSDR metric.
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a SDSML  SRESL SSDR

0 |6.15+£0.6 29.6£3.3 4.55£0.9

0.5 | 7.38£0.6 26.4+3.4 5.5240.8

1 | 8.13£0.5 23.1£3.8 6.73+0.7

Table 10.1: Performance with no echo-paths change.

a SDSML  SRESL SSDR

0 |541+1.1 243435 3.61+£1.4

0.5 ]6.29+£1.0 21.7+£4.0 4.60£1.2

1 | 7.01£0.8 18.9+4.9 5.54+1.0

Table 10.2: Performance with echo-paths change.
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Figure 10.7: SRESL versus SSER for various values of «.

and with echo-paths change, respectively, after convergence with a € {0,0.5,1}. The
trend of the SDSML and SRESL is consistent with the one of the SSDR, all of which
deteriorate in the transition from no echo-paths change to echo-paths change peri-

ods. This consistency across various test set setups indicates high generalization of
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Figure 10.10: SDSML versus SSNR for various values of a.

the SDSML and SRESL. The average SDSML values are regularly higher than the
average SSDR, values, as expected. This is directly derived from eq. (10.10), in which
the denominator takes into account both echo and noise. As values of « increase, the
average SDSML values increase while the average SRESL values decrease, both with

and without echo-paths change, as expected.

We now explore how o governs the tradeoff between the SDSML and SRESL. In
Figures 10.7-10.10, results for no echo-paths change periods after convergence are in-
cluded, for a € {0,0.25,0.5,0.75,1}. Lower « values relate to lower SDSML values
because distortion is higher for stereo speech. The SRESL values rise, however, since
more suppression is applied to the stereo residual-echo. Empirically, this tradeoff is
consistent on average for all a. We also explore how practical SSER and SSNR levels
influence this tradeoff. As expected, the more acoustic conditions degrade, the more
the values of both metrics are impaired. Also, regardless of acoustic conditions, it is
maintained that the lower o becomes, the lower the SDSML and the higher SRESL

values appear.

Practical user demands of the RES system may vary. Thus, we propose a design
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scheme that addresses this dynamic need. E.g., let us assume convergence has been
achieved and no echo-paths change occurs. This can be verified by following the defini-
tions in [ICB22a, PCBG15]. Initially, the user requires an average SRESL higher than
24.5 dB and an average SDSML higher than 7.6 dB. They inspect Figures 10.7-10.10
and select « = 0.75. Next, the user concludes that SSER = 0 dB and SSNR = 20
dB, e.g., by respectively analyzing double-talk and near-end single-talk periods. Thus,
they demand a SDSML no lower than 7.4 dB with a maximal SRESL. The user follows
Figures 10.7-10.10 and decides to shift a = 0.75 to o = 0.5 during training. Indeed,
this lowers the average SDSML to 7.45 dB and enhances the average SRESL to over
26.5 dB. These conclusions also hold for the monophonic AEC case [ICB21c].

10.7 Conclusions

We focused on the task of RES in the stereophonic case during double-talk. We first
showed that the widely-used SSDR metric poorly correlates with human speech-quality
ratings. We then proposed a pair of objective measures that distinct between desired-
speech distortion and residual-echo suppression during double-talk. By considering a
deep RES system with a tunable parameter o, we showed that the SDSML and SRESL
correlate well with the AECMOS metric, which may render they are more appropriate
to assess quality of speech. Also, by tuning « during training, we offered a practical
design scheme that allows flexible adjustment of the RES system to a specific SDSML-
SRESL tradeoff. Future work may focus on enhancing subjective experience for RES

systems during double-talk periods by optimizing the AECMOS through tuning of «.
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Chapter 11

Voice-Activity Detection for
Transient Noisy Environment

Based on Diffusion Nets

11.1 Introduction

voice-activity detection refers to a family of methods that perform segmentation of
an audio signal into parts that contain speech and silent parts. In this study, audio
signals are captured by a single microphone and contain clean sequences of speech and
silence. These signals are mixed with stationary and non-stationary noises (transients),
e.g., door knocks and keyboard tapping [DC14, DTC16]. Our objective is to correctly
assign each captured audio frame into the category of speech presence or absence. A
solution to this problem may benefit many speech-based applications such as speech and
speaker recognition, speech enhancement, emotion recognition and dominant speaker
identification.

In acoustic environments that contain neither stationary or non-stationary noise,
speech is detected by using methods that rely on frequency and energy values in short
time frames [KN91, JMR94, VGX97]. These methods show significant deterioration
in performance when noise is present, even with mild levels of SNRs. To cope with

this problem, several approaches assume statistical models of the noisy signal in order
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to estimate its parameters [CK11, CKM06, SKS99, RSBT04, CB01, Coh03]. Nonethe-
less, these methods are incapable of properly modeling transient interferences, which
constitute an essential part of this study. Ideas that involve dimensionality reduction
through kernel-based methods are introduced in [DTC15], where both supervised and
unsupervised approaches have been exploited. However, its main limitation is a signif-
icant low-dimensional overlap between speech and non-speech representations.

Machine learning techniques have been employed for voice-activity detection in re-
cent studies [SCK10, WZ11]. In contrast to classic methods, these approaches learn
to implicitly model data without assuming an explicit model of a noisy signal. In par-
ticular, deep learning based methods have gained popularity in recent years due to
a substantial increase in both computational power and data resources. Mendelev et
al. [MPP15] constructed a deep neural network for voice-activity detection, and sug-
gested to employ the dropout technique [SHK14b] for enhanced robustness. The main
drawback of this method is that temporal information between adjacent audio frames
is ignored, due to independent classification of each time frame. Studies presented in
[LHB15, GMH13, HM13, HL13| used a RNN to integrate temporal context with the
use of past frames. However, the rapid time variations and prominent energy values
of non-stationary noises in comparison to speech are still the main cause of degraded
performance in these methods. A recent study conducted by Ariav et al. [ADC18a]
proposed to use an auto-encoder to implicitly learn an audio signal embedded represen-
tation. To enhance temporal relations between frames, this auto-encoder feeds an RNN.
Despite its leading performance, the reported results are still unsatisfactory. Our study
found that the main limitation of this algorithm is the dense low-dimensional represen-
tation forced by the auto-encoder and into the RNN. This density occurs largely due to
the joint training of speech and non-speech frames, which fails to enhance their unique
features. Thus, their low-dimensional representations, which are the sole information
that feeds the RNN, are embedded closely in terms of Euclidean distance. Eventually,
this poses a difficulty in separation of speech from non-speech frames based merely on
temporal information, which is the core advantage of using RNN architecture.

In this work, we propose an algorithm that addresses the limitations found in

the methods proposed in [DTC15] and [ADC18a]. We independently learn the low-
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dimensional spatial patterns of speech and non-speech audio frames through the DM
method. DM is a method that performs non-linear dimensionality reduction by map-
ping high-dimensional data points to a manifold, embedded in a low-dimensional space
[TCGC13]. The mapped coordinates that lay on this manifold are referred to as DM
coordinates. Since this method preserves locality, frames with similar contents in the
original high dimension are mapped closely in the low, embedded dimension, with re-
spect to their Euclidean distance. We separately apply DM for speech and non-speech
frames through a pair of independent deep encoder-decoder structures. Inspired by the
Diffusion nets architecture [MSCC17], the end of each encoder is forced to coincide with
the embedded DM coordinates of its high-dimensional input. This approach allows us
to differ the intrinsic structure of speech from the ones of transients and background

noises based on the Euclidean metric.

We suggest two variations for the voice-activity detection algorithm, one for real-
time applications and one for batch processes. We test both approaches on five compar-
ative experiments conducted in [DTC15, ADC18a, TIH"10]. Results show enhanced
voice-activity detection performance, that surpasses the known state-of-the-art speech
detection results. Furthermore, our proposed architecture is more robust and has better

generalization ability than competing methods, as demonstrated through experiments.

The remainder of this chapter is organized as follows. In Section 11.2, we formulate
the problem. In Section 11.3, we describe the proposed solution. In Section 11.4, we
lay out the database acquisition and feature extraction processes. In Section 11.5, we
discuss the experimental setup. In Section 11.6, we present the experimental results.

Finally, in Section 11.7, we draw conclusions.

11.2 Problem Formulation

Let s(n) denote the following audio signal:

s(n) =P (n) + s (n) + 5" (n), (11.1)
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where sp, st and t stand for speech, stationary background noise and transient interfer-
ence, respectively. The time domain signal is processed in overlapping time frames of
length M. Let f, € RM denote the nth audio frame and let {f,}._; denote the audio
data set of N time frames. Let H? and H! be two hypotheses that stand for speech
absence and presence, respectively. In addition, let I(f,,) be a speech indicator of the

nth audio frame, defined as:

1, f,e#!
I(£,) = . (11.2)

0, f,eH°

The goal of this study is to estimate I(f,), i.e., to correctly classify each audio frame

f,, as a speech or non-speech frame.

11.3 Proposed Algorithm for Voice-Activity Detection

Our proposed approach comprises several steps, as illustrated in Fig. 11.1. Initially,
feature extraction is employed in the time domain. The features include the MFCCs
and their low-dimensional representation, generated by the DM method. A detailed
description is given in Section 11.4.2. Subsequently, a deep encoder-decoder based
neural network is used to learn the unique patterns of speech and non-speech signals.
Since this structure makes use of the DM method, it is regarded in this study as
DED. Next, error measures are extracted from the deep architecture. Those errors
are represented in a coordinate system, notated in this study as error map. It should
be highlighted that no mathematical operation is applied on the errors extracted from
the network. i.e., the error map is merely a representation form which allows us to
conduct better analysis and gain deeper insights on the performance of our detector,
as will be shown along this paper. A classifier, fed by the coordinates of the error map,
is constructed to separate speech presence and absence. In this study, two different
modes are used for classification. First, a batch mode is considered, where a substantial
corpus of speech and non-speech audio frames must be at hand, in order to evaluate the

outcome of the DM process correctly. In batch mode, both low and high-dimensional
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errors are taken into account during classification. The second classification mode
is real-time, which exploits merely high-dimensional error information. In this case,
integration of DM is not required, which allows a frame-by-frame classification with

negligible delay.

11.3.1 Deep Encoder-Decoder Neural Network

Our approach suggests that speech frames can be separated from non-speech frames
based on their intrinsic low-dimensional representation. Ideas from [MSCC17] are
adopted to merge DM with two independent, identically constructed DEDs, notated
by DED?, where i € {0,1}. DM allows a geometric interpretation of the data by con-
structing its underlying embedding, which can be represented by the middle layer of
any basic encoder-decoder network [ADC18a]. To exploit this property, the middle
layer is forced to coincide with the true DM coordinates of the input layer. As a result,
the encoder of DED? is trained to map spectral features affiliated with H* from their
original space to the lower diffusion space. Subsequently, the decoder of DED? learns
the inverse mapping back to the high-dimensional feature space.

A deep architecture is constructed to implement the above notion, as illustrated in
Fig. 11.1. In this proposed system, each DED comprises two stacked parts, an encoder
and a decoder. The former is constructed from a 72 neurons input layer followed by two
layers of 200 neurons each and a final layer of 3 neurons. The deep decoder is a reflection
of the deep encoder. While the size of the middle and hidden layers are determined
empirically, the size of the input (and thus, the output) layer of each DED is derived
from the feature extraction process, as described in Section 11.4.2. In the output of

each layer, an identical activation function is employed on each neuron (11.12).

11.3.2 Error Maps and Voice-Activity Detection Classifier

Let us denote a single observation of an input feature vector as a and its true DM
coordinates as m. Additionally, m and & denote the encoding of a by a trained encoder
and its reconstruction by a trained decoder, respectively. Each observation is fed into
the trained DEDs simultaneously. That way, the relations between each hypothesis and

the constructed embeddings are compared under the same conditions. These measures
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Figure 11.1: Proposed architecture for voice-activity detection. Dashed line is valid
only for batch mode and solid line is constantly employed for both batch and real-
time modes. ‘En’ and ‘De’ are abbreviations for encoder and decoder, respectively.
Superscripts 0 and 1 relate to the index of the corresponding trained DED. The circled
‘E’ notation refers to an error calculation unit, defined in (11.3).

are employed through eq, (m) and ege (a), where:

Cen (M) = [Jm — s ; eqe (a) = [la —alli, (11.3)

while ||-||; denotes the ¢; norm. Namely, as ee, (m) represents the mapping error,

ede (@) is associated with the reconstruction error of a.

In this study, two classification modes are considered. In the batch mode, both
€en (M) and ege (a) are taken into account. Namely, each observation a ultimately
generates two pairs of errors, one from each DED. These errors are interpreted as a
four-dimensional coordinate that is embedded into an error map. In the real-time mode,
on the other hand, only the decoder error eqe (a) is extracted from each DED. i.e., in
this scenario a two-dimensional coordinate is embedded into the error map.

Subsequently, a SVM classifier with linear kernel is trained on the error map, which
contains the generated error measures from a corpus of observations. The objective of
this classifier is to separate between coordinates affiliated with different hypotheses. As

a result, two decision regions are created, for speech presence and absence. Since DED*
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is trained to construct a low-dimensional manifold on which #! is embedded, frames
related to #* highly fit the learned mapping of DED?. This leads to substantially lower
errors, which could be easily identified as a separate cluster. This assumption is derived
from the property of the DM method, in which the diffusion distance in the original
feature dimension is proportional to the ¢; norm in the diffusion space. In this study,

a classic SVM classifier is shown to be sufficient.

It is worth noting that we have also implemented an alternative architecture to the
one presented in Fig. 11.1, which involves a unified network instead of an SVM. The
goal of this was to assert the improvement, and thus justify the employment, of our
suggested system over the alternative of the fully connected neural network, which is
commonly used in deep learning algorithms. We concatenated the output layer of both
DED branches to each other and to the input layer. Then, this augmented layer was
connected to a single-bit output neuron that carries the VAD decision. Results have
shown very similar performance, with a slight tendency to the SVM based method.
As a results, we have decided to use the originally presented architecture. Two minor
advantages of the SVM can be noted over the unified neural network. First, it is less
computationally expensive in comparison to using an additional hidden layer, which
will consume higher memory and time during back propagation. Second, the original
method explicitly constructs the error measures and feeds them to the SVM, which
leads to high separation of speech from silence. Therefore, the hidden layer attempts
to implicitly represent the data in a similar manner, i.e., to find the relation between
the neurons which will ultimately lead to good separation. Representing the error
measures in the two-dimensional space and applying the SVM on it both serves as a
more natural, intuitive classification algorithm and avoids the infamous “black box”
property of the neural network, as well as grants us the ability to analyze the decision

of the detector in a helpful and profound manner, as will be done later on.
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11.4 Database and Feature Extraction

11.4.1 Database

We adopt the audio database presented in [DTC15] to construct a DED training set,
a classifier training set and a back to end test set. This database is obtained from 11
different speakers reading aloud an article chosen from the web, while making natural
pauses every few sentences. Naturally, these recordings are composed of sequences
of speech followed by non-speech frames. Each sequence varies from several hundred
milliseconds to several seconds in length. These signals were recorded with an estimated
SNR of 25 dB at a sampling rate of 8 kHz. Each of the 11 signals is 120 seconds long
and it is processed using short time frames of 634 samples with 50% overlap, which
effectively generates a 25 frames/second rate. The clean speech signal s°P (n), defined
in (11.1), is used to determine the presence or absence of speech in each time frame,
and to construct a label set accordingly.

These clean audio signals are contaminated by 42 different pairs of additive sta-
tionary and non-stationary noises, which construct a varied data set. The noise signals
employed include white and colored Gaussian noise, babble and musical instruments.

Transients include keyboard taps, scissors snapping, hammering and door knocks.

11.4.2 Feature Extraction

We wish to exploit the ability of deep neural networks to learn complex relations be-
tween their inputs and outputs. Hence, our objective is to feed our architecture with
features that express the unique patterns of each hypothesis (11.2). To generate spectral
information from the time domain database, MFCCs are employed. These coefficients
are concatenated along a fixed number of adjacent frames, in order to gain temporal
context between them. DM is applied to integrate spatial properties and to find a re-

lation between the spectrum of the signal and its geometric low-dimensional structure.

Mel Frequency Cepstral Coefficients

Features based on a spectral representation of audio signals are fully adopted from the

study of Dov et al. [DTC15]. To construct them, weighted MFCCs are employed.
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MFCCs use the perceptually meaningful Mel-frequency scale, which allows a compact
representation of the spectrum of speech [Log00]. MFCC features are used in the
presence of highly non-stationary noise, where they were found to perform well for

speech detection tasks [MC13b].

However, speech frames may have similar MFCC representation to frames compris-
ing highly non-stationary noise as well, since they both have akin spectral attributes.
To address this challenge, noise estimation is performed in each frame and the MFCCs
in that frame are weighted accordingly [DTC15, MC13b, DM80]. This enables better
analysis by separating the background noise from the rest. Next, several consecutive
time frames are taken into account. Hence, the nature of transients, which their typical

duration is assumed to be of the order of a single time frame, can be exploited.

Formally, consider a,, € R as a row vector of C' coefficients, consisting of weighted
MFCCs, and their first and second derivatives, A and AA, respectively. These values

are extracted from the nth time domain audio frame f;,, introduced in Section 5.2. Let:

an = [aanw'-aam-”aanJrJ] € R(QJ—H)C (11.4)

denote concatenation of feature vectors from 2J + 1 adjacent frames, where J is the
number of past and future time frames. For J > 1, the elements of a,, in the presence

of transients are expected to vary faster than in the presence of speech.

In this study, the number of MFCCs is 8, as commonly used. Thus, a,, comprises of
C = 24 coefficients. For practical considerations, we assign a relatively small value of
J = 1. This allows informative characterization of audio frames based on past-future

relations, while consuming low computational load. Thus:

a, = [an—lyanvan+1] € R72- (].15)

Next, standardization is applied on (11.5). Let us assume a set of N observations,

while the nth observation is given by (11.5), for n € {1,..., N}. For each feature index
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le{1,...,72}, a row vector O; € R" is defined as:

0 =a,; (I),...,ay ()] (11.6)

Then, the mean and standard deviation of O; are extracted and termed pu; and oy,

respectively. Next, the following vectors are constructed:

w=1[p1,...,p72| ;0 =1lo1,...,07). (11.7)
Let a,,(1) denote the Ith element of the standardized a,, (1), defined as:

a,() = 2l =m (11.8)
ol

Diffusion Maps

The middle layer of any basic autoencoder architecture can be viewed as a low dimen-
sional representation of its input layer [LTMH13]. Our method exploits this by forcing
the middle layer to coincide with the embedded coordinates of &a,,, generated by the DM
method [CLO6a]. Thus, the encoder learns to approximate this low-dimensional map-
ping, while the decoder learns the inverse high-dimensional mapping. DM is a manifold
learning approach that is established on the graph Laplacian of the high-dimensional
data corpus [CLO6b]. DM has been employed well in several signal processing, image
processing and machine learning applications [LKC06, FFL10, SSN09, TCG12, DA12,
GK13, MC13a, HKC14, CH14].

Let us consider a set of feature vectors {a,,},, constructed according to (11.8). A
weighted graph is created with the elements of the set as nodes (or points), where the
weight of the edge connecting these nodes is given by the commonly used radial basis
function kernel. The scaling parameter of the kernel is set separately for each edge as
in [ZMPO05]. Practically, merely the 10 nearest neighbors of every point are used to
compute the edges. Namely, edges that are not among the nearest neighbors of a, are

nullified.

In order for the embedding and the distribution of the nodes to be independent,
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we perform normalization of the data. Therefore, an approximation of the Laplace-
Beltrami operator on the data is obtained [CL06a, LKCO06]. This operation generates a
row-stochastic matrix P which can be viewed as the transition matrix of a Markov chain
on the data set {a,}. Two sets of bi-orthogonal left and right eigenvectors, {¢,} and
{tm}, are constructed by employing an Eigenvalue decomposition of P. This process

also yields a series of strictly positive eigenvalues 1 = |Xg| > |[A1| > ... > [Ap—1]| > 0.

Through informal experiments, we found that for retaining the desired patterns
of speech and non-speech frames, it is sufficient that the embedded dimension is set
to d = 3 (excluding the trivial dimension associated with Ag). Furthermore, d is
small enough to exclude undesired high frequency noise, mostly represented by higher
dimensions. The low-dimensional embedding of a,, (11.8) is notated by m,, and defined

as:

my = (/\11#1 (én) PR A3¢3 (én)) . (119)

Therefore, the set {a,} is embedded into the Euclidean space R3. In this space, the

Euclidean distance is equal to the diffusion distance in the high-dimensional space of

{a,}.

Our architecture integrates an activation function which maps its input to the in-
terval [0, 1]. On the other hand, m,, often holds values which may exceed this interval.
Therefore, this mismatch increases the error measures defined in (11.3). Earlier works
have demonstrated that prediction accuracy can be improved by normalizing DM co-
ordinates [Bri90]. We employ these notions to overcome the aforementioned mismatch,
by mapping the dynamic range of m,, to [0,1]. Specifically, the transformation that
is employed corresponds to connecting m,, to m,, through a softmax layer [GR96], as

follows:

6mn(k)

mn (k) == 42?:1 emn(l) 2

(11.10)

where 1 < k < 3. As a result, 0 <, (k) <1 and S3_, m, (k) = 1.
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11.5 Experimental Setting

11.5.1 Notation

Let s; € RE denote the noisy audio signal associated with speaker j € {1,...,11},
comprising of L samples. Let sé» denote the union of audio time frames in s; that
belong to hypothesis H’. Then, s’ is defined as the concatenation of sé with respect to

all 11 speakers, namely:
s'=[st,..sh], (11.11)

where ¢ € {0, 1}.

11.5.2 DED Training Process

Let us consider the two distinct sets s” and s!. Two training sets, notated §?r7ded and
§t1r’ded, are created by randomly extracting 70% of s and s!, respectively. Following
Section 11.4.2, the feature vector extracted from the nth frame of §ir7dcd is denoted
gér,ded,n € R™. Next, standardization process (11.8) is applied on the latter, which
yields éﬁnded’n € R™. This reveals two advantages; first, the network performs a
faster learning process. This occurs since standardization implicitly weights all features
equally in their representation. Thus, the rate at which the weights connected to the
input nodes learn is balanced. This balance allows to rescale the learning rate through
the learning process. As a result, the adaptive gradient descent optimization method
can be deployed instead of the traditional gradient descent. Second, this approach
reduces saturation effects, caused by large values assigned to activation functions. Next,
the DM method is applied on the set {gg‘nded,n}n separately, for each ¢ € {0, 1}, as
described in Section 11.4.2. The resulting low-dimensional embedding is clipped to the
dynamic range [0, 1] and denoted by rﬁinded’n € R3. The proposed architecture entails
that while éir,ded,n is fed to DED?, the middle layer of the latter is enforced to coincide

with Ih‘ir,ded,n' Let us denote DEDZ, as the ith trained DED.

We integrate the Positive Saturating Linear Transfer (PSLT) activation function,
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defined as follows:

0, 20
o(2)=4z 0<z2<1¢- (11.12)
1, z>1

The dynamic range that o(z) generates, differently from the known ReLU, suggests
maintaining the fluctuations which may appear along the tangled network. Employing
o(z) is beneficial in terms of low computational load that is consumed during back
propagation, since the derivative of o(z) is simply 1 or 0, neglecting singularities. Dur-
ing back propagation, a nullified derivative will decrease computation time even further,
at the expense of updating the weights of the network with less information. Empiri-
cally, it was shown not to deteriorate performance. Also, it should be highlighted that
complex non-linear patterns can still be learned by the deep architecture. Pre-training
is applied on each layer separately in an unsupervised manner, using encoder-decoder
structures with 1 epoch and learning rate of 0.1. The optimized weights obtained by
this process are considered instead of the random initialization commonly used, which
enhances performance since it helps the network to avoid local minima. Pre-training
is extremely effective in case there is a relatively small amount of training data, as in
our scenario. Next, fine-tuning is applied separately on the encoder and the decoder.
Namely, éinded,n is encoded into a low-dimensional representation and decoded back
to the output layer independently. Subsequently, the two tuned parts are merged and
fine-tuning is again utilized, this time on the full stacked DED. Optimization is em-
ployed by back propagation through time, which makes use of gradient descent method,
parameterized with learning rate of 107 and momentum of 0.9. Prior to pre-training,
the weights are initialized with values drawn from a random normal distribution with
zero mean and variance 0.01. Cost function with Ly weight regularization of 1077,
sparsity regularization of 4 and sparsity proportion of 0.1 is employed. Relatively large
sparsity related parameters were assigned, to achieve two goals. First, this allows the
networks to avoid over-fitting by effectively ignoring weights with negligible values.

Second, it decreases the computational load, since the embedding process involves a

161



sparse affinity matrix. The network was trained until either 1,000 epochs or minimum
gradient value of 1076 were achieved. A typical simulation as such took approximately
10 hours on a i7-7820HQ CPU 64-bit operating system, x64 based processor.

In this study, the architecture was trained using a batch size of 128 observations. As
a result, less memory was used compared with feature-by-feature feeding, since fewer
registers were employed at the same time. Moreover, the training was accelerated due
to less updates performed, i.e., less propagations through the network. On the other

hand, batch training may lead to less accurate and stable estimation of the gradient.

11.5.3 Classifier Training Process

Let §§r7d contain random 15% of observations contained in s’, and s, 4 = {§8r7d, §%r7d]
to be the full classifier training set. sy, o is built so it is disjoint with the DED training
set. Similarly to the DED training process, &, o1, € R™ and My 1y € R? represent
feature vectors extracted from the nth frame of s, , according to (11.8) and (11.10),
respectively.

Error measures are defined to distinguish between features that are mapped and
reconstructed well and features that are not. Consider two outcomes of propagating

Ay o1, through DEDir. Namely, its low-dimensional predicted representation, denoted

by rhi)m, and its subsequently predicted reconstruction, denoted by é%r,n. Conse-
quently, the following error measures are defined, given ay, . :

een(n) £ [1iderctn — 11 (11.13)
which is associated with encoder’, and:

€e(n) = [|air.c1n = ape a1, (11.14)

associated with decoder®. In both cases, ||-||; denotes the ¢£; norm.

According to (11.13) and (11.14), it can be inferred that a pair of numerical errors
is generated by feeding ay, ., to each trained DED. In this study, the two pairs of

errors, associated with DEDY. and DED,, are interpreted as a coordinate in R* and are
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represented by (€2, (n), €4,(n), el (n),elo(n)). Namely, &, ., is eventually represented
in a four-dimensional coordinate system.

An SVM classifier, notated by C, is applied on the error map, as detailed in Section
11.3.2. In this study, C is trained to separate coordinates held by H° from coordinates
held by H! (11.2). Thus, two decision regions are created. In this study, both real-time
and batch modes are considered, as described in Section 11.5.4. For batch mode, C
is trained on both the encoder and decoder errors projected on the error map, i.e., C
is a three-dimensional hyper plane, embedded in R*. Real-time mode only exploits

the decoder error. Namely, in this case the error map is a two-dimensional coordinate

system, and correspondingly C divides R? into two regions.

11.5.4 Testing Process

The DM method requires a batch of both speech and non-speech frames to estimate
the low-dimensional embedding. This is impractical for real-time mode where a very
small number of frames is available. Therefore, two testing processes are presented; a
frame-by-frame testing process in which employment of the DM method is not required,
and a batch testing process, which is shown to be more accurate, with substantially

higher delay.

Batch Mode Testing Process

In batch mode, both the encoder and the decoder errors are exploited, which increases
prediction accuracy. On the other hand, the encoder error is well approximated as
long as a large batch of time domain audio data from both hypotheses (11.2) is at
hand, which leads to delay in prediction. The test set, notated by s;,, is constructed by
following similar steps as in the previous section, while ensuring that the intersection of
Sie and the training sets of the DED neural network and classifier is empty. s, includes
15% of both s” and s' (11.11). For completion, &,,,, € R™ and fe, € R? denote the
feature vectors associated with the nth observation of s, extracted according to (11.8)
and (11.10), respectively.

Let (€%, (n), €}y (n)) represent the two-dimensional coordinate generated by the prop-

)
en

agation of &, ,, through DED!,. €l (n) and € (n) are produced according to (11.13)
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and (11.14), respectively. For the sake of clarity, we neglect the time index n and
address €', (n) and €/, (n) as a two-dimensional coordinate (e, e},). As stated earlier,
(2,,€Y,) and (el,,el,) are concatenated and projected into a four-dimensional error
map. Let R; stand for region j created by the devision C applied to the error map,
where j € {0,1}. Ultimately, the following decision rule is applied by the classifier C
on the input feature vector &, ,,:

0 0o 0 1 1
HY, (edn, €3 €ens €h0) € Ro

Clage,} = o rder e . (11.15)

1 0 0 1 1
H ’ (eenv €der Cen> 6de) € R1

Real-Time Mode Testing Process

Since immediate prediction is often required in many audio-based applications, real-
time mode is considered as the main branch of this study. Compared with the batch
mode, the low-dimensional error is now unavailable. Meaning, the high-dimensional
error becomes the single measure to distinguish between audio frames of different hy-
potheses.

Let €%.(n) denote the error produced by propagating a, , through DED!. In a
similar manner to the batch mode, €J.(n) and e} (n) are joined and projected into a
two-dimensional error map. For sake of clarity, we again address these two measures
as (ege, e(lie). Let R; stand for region j created by the devision C applied to the two-

dimensional error map, where j € {0,1}. As a result, the following decision rule is

considered by the classifier C, regarding input feature vector ay, ,,:

’H07 (eoe,ele)ERO
ClAigen) = e . (11.16)

Hl’ (ege’ eée) S R‘l

11.6 Experimental Results

In each of the experiments described in this section, comparisons are made between

our proposed approach and several competing voice-activity detectors. In order to
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Figure 11.2: Two-dimensional error map, generated by the real-time mode. Red circles
denote speech presence and blue ‘x’ marks denote speech absence. The trained linear
SVM classifier is represented by the dashed line and the decision regions it generates
are notated by Ry and Rj.

avoid skewness and unfair imbalance, performances were generated by using identical
experimental conditions. Specifically, the same test set, acoustic setup and optimization
measure, i.e., TN + TP (true positive + true negative), are uniformly employed. To
allow appropriate assessment of performances, two measures are used: The optimized

TP+TN measure, and the relation between TP and TN measures.

11.6.1 Performance of Proposed Approach
Accuracy

Primarily, the proposed method is applied using 100% of the DED training data set in
a batch mode, as detailed in Section 11.5.4. The accuracy rate is 99.1%. In this mode,
voice activity is detected by using both low and high-dimensional numerical measures.
This performance gives rise to the main assumption of this research. Namely, that
speech can be distinguished from transients based on their underlying geometric struc-
tures. Real-time voice-activity detection is performed according to Section 11.5.4. In
this mode, the accuracy rate reaches up to 98.1% when 100% of the DED training
data set is used. Visualization of the error map is given in Fig. 11.2. It should be

highlighted that similar visualization is not given for the batch mode, since the corre-
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B.10K. M.10H. C.5H. M.OK. B.15S. std

Tamura 73.6 83.8 83.9 73.8 81.2 5.2

Dov - Audio 87.7 89.9 87.8 86.5 90.2 1.6
Dov - Video 89.6 89.6 89.6 89.6 89.6 0
Dov - AV 92.9 94.5 92.8 92.9 94.6 0.9

Ariav - AV 95.8 95.4 95.9 95.1 97.2 0.8

Proposed Real Time 98.4 98.3 98.3 98.3 98.5 0.1

Proposed Batch 99.3 99.6 99.3 99.3 99.5 0.1

Table 11.1: Comparison between voice-activity detection methods in terms of accuracy
rate, with respect to the TP+TN measure.

sponding error map lays in R*. These results reflect on the strong relation between low
and high-dimensional information. Namely, even though low-dimensional measures are
not integrated into the decision rule, the separation in the diffusion space is implicitly
expressed through the inverse mapping of the decoder. Therefore, the reconstructed
high-dimensional information in the feature space is a sufficient measure to tell apart
speech from non-speech frames. By examining the results, high robustness can be con-
cluded. Namely, despite the variety of stationary and non-stationary noises included

in the database, the intrinsic structure of speech is still well detected.

Generalization

Generalization and sensitivity of the proposed method are analyzed by performing an
additional experiment in the real-time mode. These properties are examined with re-
spect to two parameters; the corpus size of the DED training set and the ratio of speech
observations in the latter. In this experiment, 5 different fractions of the full amount
of the DED training set are considered. For each fraction, 5 different ratios between
speech and non-speech observations are inspected. Results are demonstrated in Fig.
11.3. Tt can be observed that the accuracy rate surpasses 95%, even when merely 50%
of the training data is available, which projects on the low sensitivity of the proposed

algorithm to this measure. Also, the maximal accuracy is achieved when the speech
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Figure 11.3: Accuracy rate percentage (TP-+TN) of the proposed method using the
real-time mode. Different fractions of the full DED training set (25,50,75,100[{%]) are
considered along a grid of speech observations ratios.

observations ratio is equal to 50%), i.e., when there is an equal amount of speech and non-
speech observations in the DED training set. This optimal ratio allows the network to
learn two separate manifolds with minimal bias. This bias, if exists, can come to surface
during testing, when one mapping is more robust than the other. In this case, relying
on Euclidean distance between manifolds as done in this research may be harmful for
classification. It can also be inferred that the performance has low sensitivity to changes
in the speech observations ratio parameter. For example, let us consider the results
achieved by exploiting 100% of the training corpus. Then, speech observations ratios of
20%, 50% and 80% yield accuracies of 95.2%, 98.1% and 94.4%, respectively. It is inter-
esting to note that the degradation in performance is not symmetric around the ratio of
50%. i.e., degradation is more noticeable when the amount of noise observations is lower
than those of speech in the training process. This can be related to the high varying
nature of non-stationary noises in comparison to speech. Meaning, larger corpus of tran-
sients is needed to construct a robust low-dimensional structure with the DM method.

As mentioned in Section 11.4.1, the constructed database comprises 42 different
combinations of stationary and non-stationary noises. Thus, a fundamental question
is concerned with the ability of the proposed detection system, and specifically DED?,

to generalize well to other types of noise. In order to increase the generalization ability
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of the suggested detector to noises of various kinds, we performed several actions that
regard both the architecture of the system and the feature extraction process. The
way the architecture is built puts emphasis on both the difference between speech and
noise, and on the similarity of noise to previously trained noises. As a result, the de-
cision mechanism of the system relies on a combination of two learning systems. The
features that are extracted from the time domain are constructed to exploit this form
of architecture. During training, not only temporal and spectral features are derived,
as traditionally done in state-of-the-art methods, but also the informative spatial dif-
fusion map features. This reveals the unique intrinsic geometric structure of speech
utterances. Ultimately, when feeding the system with unseen noise, its intrinsic struc-
ture is evaluated by the system and compared against speech and non-speech frames
separately. Therefore, the performance of the system is not sensitive to unseen noises,
in comparison to competing methods, as shown through the experimental setup detailed

earlier in this section.

11.6.2 Comparison to Competing Methods

In order to assert the performance of our architecture in a global scale, it is com-
pared to 5 voice-activity detectors. The competing methods are presented in [DTC15,
ADC18a, TIH'10] and are denoted “Ariav”, “Dov” and “Tamura”, respectively. Ta-
ble 11.1 presents the performance of each method in 5 different acoustic environments
that compose of transients (keyboard, hammering, scissors) and stationary noises (bab-
ble, musical, colored Gaussian noise) with different SNR values (0, 5, 10, 15 [dB]). The
explicit abbreviations used in the table are as follows; “B. 10 K.” is babble noise with
10 dB SNR and keyboard tapping, “M. 10 H.” is musical noise with 10 dB SNR and
hammering, “C. 5 H.” is colored noise with 5 dB SNR and hammering, “M. 0 K.” is
musical noise with 0 dB SNR and keyboard tapping, and “B. 15 S.” is babble noise
with 15 dB SNR and scissors. The real-time and batch modes are notated by ‘Pro-
posed Real-Time’ and ‘Proposed Batch’, respectively.

It can be observed that the proposed algorithm, even in real-time mode, achieves
the best accuracy rate through all varied setups. It should be highlighted that the pro-

posed solution exploits only audio signals, while competing methods rely on integration
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of both audio and video data.

By observing the std measure in Table 11.1 it is shown that, unlike competing
methods, the performance of the proposed approach is barely affected by the change
in the acoustic environments. This high robustness can be related to the construction
of intrinsic representations of the audio frames. These representations do not consider
the contents of transients or background noises, but merely their intrinsic geometric
patterns. These patterns are unique for speech and non-speech audio frames, which
allows enhanced performance regardless of the setup. The results presented in Ta-
ble 11.1 show slight improvement in comparison to the results presented in Section
11.6.1. While in the former, 5 specific setups are inspected, 37 additional setups are
considered in the latter. This indicates the existence of specific combinations of speech,
stationary and non-stationary noises that are harder to comprehend. Deeper analysis
of this phenomenon should be addressed in future work.

To allow further evaluation, we employ the receiver operating characteristic (ROC)
curve. Three acoustic setups presented in Table 11.1 are considered in Figs. 11.4 —
11.6. In each ROC curve, the real time and batch proposed approaches are compared
against four competing voice-activity detectors. Since the test set is identical and bal-
anced across all methods, a constructive comparison is made by the ROC curves. The
latter allows analysis of the relation between TP and TN, thus delivering information
about the trade-off between the two. It is worth noting that TN can be derived from
the false positive (FP) measure, held by the x axis, by simply applying the relation TN
= 1-FP. It can be observed that our voice-activity detector outperforms the competing

methods in a wide range of operating points.

11.6.3 Performance Analysis

This study presents a voice-activity detection method that reaches substantially higher
accuracy results in comparison to other state-of-the-art methods. This improvement
can be attributed to several novelties, where two of them are considered the most in-
fluential. First, the integration of the DM method, forced at the end of the encoder.
Second, construction of two separate DEDs, one trained with speech presence observa-

tions and the second with speech absence observations. This section is divided into two
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main parts. Initially, the differences between two competing methods and the proposed
approach are analyzed and theoretical explanations of the gap in accuracies are given.
Then, two experiments are conducted to establish these explanations.

First, the method proposed in [DTC15] is considered. In this method, low-dimensional
embedding is built with the DM method, as done in our study. This embedding is con-
structed by considering joint relations between speech and non-speech features. How-
ever, our approach employs the DM method by considering relations between features
of the same hypothesis only. In order to evaluate the influence of this difference on the
degradation in performance, the algorithm proposed in [DTC15] has been implemented.
Consequently, high overlap of speech and non-speech embeddings in the diffusion space
has been observed. This method performs voice-activity detection mainly by modeling
two low-dimensional Gaussian mixture models. Meaning, this approach aims to sep-
arate speech from non-speech coordinates by constructing a separator from a sum of
weighted exponential kernels. As a result, overlapped coordinates are highly at risk to
be misclassified.

Next, the method proposed in [ADC18a] is analyzed. In this approach, a single
auto-encoder attempts to learn the low-dimensional embedding of both speech and
non-speech frames. As a result, joint embedding is shown to lead to high overlap in
the low-dimension, much like in the research conducted in [DTC15]. Additionally, this
architecture does not consider the DM method as a constraint on the embedded data,
so dimensionality reduction is done automatically. This leads to a lack of spatial infor-
mation in the low-dimension and absence of geometric insight. Ultimately, this causes
significant overlap between low-dimensional representations and to deterioration in per-
formance. The high accuracy shown in [ADC18a] can be related to high exploitation of
temporal relations, carried by the RNN, and integration of visual features in the classi-
fication process. To explore the performance of the network without video, the authors
of this work implemented audio-only version of the method presented in [ADC18a].
The outcome shows severe degradation in performance, as the average accuracy is 83%
with respect to all 5 setups considered in Table 11.1.

Two experiments are conducted in order to validate the above notions. First, the

algorithms proposed in [DTC15] and [ADC18a] are implemented with merely audio
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data, as demonstrated in Fig. 11.7. Accuracy rates of these methods are calculated by
employing different fractions of the full DED training set. For this particular exper-
iment, the ratio of speech observations was fixed to 50%, to achieve optimal results.
Several interesting insights can be obtained based on these outcomes. Primarily, there
is a substantial gap between performances when considering only the audio data and
neglecting visual features. Moreover, it is noticeable that the method proposed in
[ADC18a] is not affected as much by the change in the amount of training observa-
tions. As previously stated, the latter does not consider any geometric or structural
constraint on the embedded data. Therefore, as long as the training observations are
divided roughly equal between hypotheses, their amount has lower significance. On the
other hand, the study presented in [DTC15] highly relies on the intrinsic structure of
the data. i.e., the more training observations are available, the better the joint relations
between speech and non-speech features are modeled. In this case, larger training set
leads to a more robust manifold construction.

In order to further explore the core of the advantages of the proposed approach,
another experiment is conducted. This time, the studies in [DTC15] and [ADC18a]
are implemented by integration of several principles of this study. It should be noted
that the detection algorithm presented in each of these studies remains the same. In
[DTC15], the algorithm was altered such that the low-dimensional coordinates are
learned separately for speech and non-speech frames before applying the Gaussian mix-
ture model on the generated manifolds. In [ADC18a], two separate auto-encoders were
implemented. Each auto-encoder learned the low-dimensional mapping of speech and
non-speech audio frames independently. Also, the DM method was applied in a similar
manner to the proposed method in order to integrate spatial information. The output
of each encoder was inserted into a separate RNN. The output of each RNN represents
the probability that a test observation is taken from a speech audio frame. Ultimately,
the probabilities of the two RNNs are intersected and a prediction is made by a con-
structed decision rule.

The results of this experiment are given in Fig. 11.8. For each method, the accuracy
is calculated along a grid of fractions of the full DED training set, while the speech

observations ratio is once again set to 50%. Moreover, the performance of each method
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Figure 11.4: Probability of detection versus probability of false alarm in an acoustic
environment of babble noise with 10 dB SNR and keyboard transient interferences.

is given once with its original implementation and once with the improved implemen-
tation that combines principles from our method. Regarding the studies presented in
[DTC15, ADC18a], the accuracies of the two new implementations significantly im-
prove. Also, these models are less sensitive to changes in the size of the DED training

corpus.

Even though an increase in performance can be observed, the studies presented in
[DTC15] and [ADC18a] still do not reach the results of the proposed method. The
core classification algorithm of each of the three discussed methods remains unchanged
through all the comparative experiments conducted in this study. Therefore, the core

classification algorithm proposed in our study may be responsible for the observed gap.
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Figure 11.5: Probability of detection versus probability of false alarm in an acoustic
environment of colored noise with 5 dB SNR and hammering transient interferences.

11.7 Conclusions

In this work we have performed voice-activity detection with audio-based features. We
separately represented the low-dimensional geometric structures of speech and non-
speech frames by integrating the diffusion maps method with two independent, encoder-
decoder based, deep neural networks. This separation of speech from stationary noises
and transients during the training process of the two networks also led to high robust-
ness and generalization abilities, as well as low sensitivity to the amount of available
training data. The proposed method has shown state-of-the-art results in a real time
mode, and can be integrated into dedicated communication systems. Nonetheless, non
stationary noises are still the main cause of false detection in this research, due to
their high varying nature. This challenge may be addressed by employment of more

distinctive geometric features as well as assimilation of joint constraints between the
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Figure 11.6: Probability of detection versus probability of false alarm in an acoustic
environment of musical noise with 10 dB SNR and hammering transient interferences.
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Figure 11.7: Accuracy rate percentage (TP+TN) of the proposed method using the
real-time mode. Performance is presented along a grid of different fractions of the full
DED training set, while the speech observations ratio is fixed to 50%.
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Figure 11.8: Accuracy rate percentage (TP+TN) of competing methods, along with
the performance of the proposed algorithm in the real-time mode. Accuracy is pre-
sented along a grid of different fractions of the full DED training set, while the speech
observations ratio is fixed to 50%. Each of the two competing methods is implemented
once in the original form (marked ‘Orig’) and once with integration of concepts from
the proposed method (marked ‘Imp’).

encoder and decoder. It would be instructive to further factorize the proposed approach
and analyze the improvement. Moreover, a heuristic explanation regarding the rela-
tion between diffusion maps and the presented method can be meaningful for further
understanding. One hypothesis, for instance, links between transition in time and on
the transition map. Another theory suggests that the corresponding Markov chain is a
sequence of phonemes, and the diffusion rate in the diffusion map corresponds to the
velocity of phonemes pronunciation. Additionally, the performance of the proposed
detection method in reverberant and noisy acoustic environments with signal-to-noise

ratios lower than 0 dB, should be explored.
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Chapter 12

Evaluation of
Deep-learning-based
Voice-Activity Detectors and
Room Impulse Response Models

in Reverberant Environments

12.1 Introduction

VAD aims to determine the boundaries in which speech exists in an observed audio sig-
nal. State-of-the-art deep-learning-based VADs are often trained with anechoic data.
However, real-life acoustic environments are reverberant, which deteriorates VAD per-
formance in practical scenarios. In this study, we mitigate the mismatch between
training data and real data by generating an augmented training set that integrates
anechoic and reverberant audio signals. The reverberant training corpus is generated
by convolving anechoic utterances with a simulated RIRs. Enhanced VAD in rever-
berant environments may benefit a variety of audio-based applications such as speech
enhancement [KDG'16, KDJJ16, ZWMZ16], dereverberation [HWW*15, SK15] and
speech and speaker recognition [KPP*17, GSDY15].
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Deep-learning-based VADs have attained leading performances during recent years,
due to the ability of neural networks to learn non-linear relations and complex patterns
of audio signals. To detect voice activity, Ariav and Cohen [ADC18b] encoded spectral
audio features via an auto-encoder that fed a recurrent neural network. Wagner et al.
[WSSA18] introduced automatic feature engineering through the convolutional layers of
a deep neural network. Leading performance was obtained by Kim and Hahn [KH18]
that integrated an attention model to weight context information into existing deep
learning architectures. Combined end-to-end VAD system was introduced by Ariav
et al. [AC19], that comprised of WaveNet for feature extraction and a deep residual
network for speech detection. Ivry et al. [IBC19] applied ensemble learning with two
deep encoder-decoder structures to learn the unique temporal and spatial patterns of
speech through the diffusion maps method.

In latest decades, several RIR models were proposed to produce reverberant ut-
terances via simulations. An extension of the known image method [AB79] to arbi-
trary polyhedra was first introduced by Borish [Bor84]. Vorliander [Vor89] suggested a
combined modeling that considers both the image method and ray-tracing techniques.
Rindel [Rin93] employed reflection coefficients that are incidence angle-dependent in
the frequency domain, to offer a more accurate characterization of a room response.
A similar model was implemented by Lam [Lam05], but it focused on low frequencies
for more realistic boundary conditions. Valeaua et al. [VPHO06] applied the diffusion
equation to predict room acoustics.

We consider the aforementioned five deep-learning-based VADs [ADC18b, WSSA18,
KH18, AC19, IBC19] and five RIR models [Bor84, Vor89, Rin93, Lam05, VPHO06]. First,
we show that training these detectors with solely anechoic corpus and testing them in
real reverberant rooms and spaces leads to a significantly impeded detection capability.
To include unique acoustic patterns of reverberant data during training, we generated
an augmented training set of nearly five million utterances. This extended corpus com-
prises of anechoic and reverberant signals, where the latter is generated by convolving
the anechoic signals with a variety of RIRs, generated using a fixed RIR model. Then,
all five VADs are independently trained with this augmented training set. This ex-

periment is repeated for each of the five RIR models. All trained detection systems
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are tested in three real reverberant spaces of a classroom, a large concert hall, and
an octagon shaped library. Experimental results demonstrate that the performance
of all detectors is enhanced in each of the tested reverberant environments, regardless
of the RIR model employed during training. Evaluation measures such as accuracy,
precision and recall increase by 20% on average, compared to non-reverberant training.
An interesting outcome shows that the leading accuracy of each detector was consis-
tently achieved by the Valeaua RIR model [VPHO06]. In a similar manner, the detector
introduced in Ivry [IBC19] prevailed competing VADs across all experiments.

The remainder of this chapter is organized as follows. In Section 12.2, we describe
the database generation. In Section 12.3, we introduce the experimental results. Fi-

nally, in Section 12.4, we draw conclusions.

12.2 Database Generation

In this section, we detail the construction of two disjoint datasets: An augmented
training set and a test set. The training set contains both anechoic and reverberant
utterances, that are generated by simulating a fixed RIR model and convolving the
anechoic data with it. In contrast, the test set is constructed with real reverberant
conditions, not simulations.

For the training stage, we employ the TIMIT [GLF*88] training dataset that con-
tains 4620 anechoic utterances, sampled at 16 kHz. Since this corpus is imbalanced
and does not comprise of noises, we perform several preprocessing steps. Initially, since
in TIMIT there are more speech frames than silence frames, we manually add 2 s of
silence for each existing recording in the corpus. Next, we acquire recordings of station-
ary noises such as white and colored Gaussian noise, musical instruments and babble.
These noises are randomly added to both speech and silence frames in SNRs that are
distributed uniformly between [10,20] dB relative to clean anechoic speech.

We perform augmentation of this anechoic training set, so it holds both anechoic
and simulated reverberant data. To simulate varied reverberant environments, 50 rect-
angular spaces are considered, such that the length, width and height are uniformly

chosen from the range 3 — 20 m. This permits both small, medium and large spaces.
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To cover various scenarios, each of the 50 spaces is simulated 20 times, with different
locations of the speaker and the receiver. To obtain a realistic setting, the speaker
and the microphone are limited to height range of 1 — 2 m, and a distance of at least
0.5 m from each other. Each room is simulated with a reverberation time (RT60) that
is chosen uniformly from the interval 0.1 — 1 s, such that both low and high reflective
surfaces are accounted for.

Given an RIR model, we simulate 50 x 20 RIR signals. Each of these responses
is convolved with the anechoic utterances in [GLF188], which results in a reverberant
training set. The augmented training set is simply a composition of the original anechoic
signals with their aforementioned reverberant modifications. Ultimately, for a given
RIR model, the training set comprises of 4620 x 1001 utterances.

In the test stage, we use 100 anechoic utterances from the TIMIT test dataset. To
obtain the reverberant test set, convolution is applied between this corpus and real
recordings of room responses. These RIRs are taken from three reverberant environ-
ments [SS10] of a classroom, a large concert hall and an octagon shaped library. For
each environment, 130 recordings are available, from various locations in the room.

Thus, three test sets are formed, each comprises of 100 x 130 reverberant utterances.

12.3 Experimental Results

In the following experiments, voice-activity detection performance is evaluated by sev-
eral measures. The ROC curve is used to present a trade-off between speech detection
and false-alarm rates in various operation points. The robustness of the VAD and the
sensitivity of its classifier to noises is derived by the AUC measure. Accuracy, preci-
sion, recall and F1-score [Pow20] are also employed in this study. When combined, all
measures strongly indicate on the accuracy, generalization and robustness abilities of
the detector.

In this study, we consider five VADs [ADC18b, WSSA18, KH18, AC19, IBC19]
and address them as Ariav-R, Wagner, Kim, Ariav-W and Ivry, respectively. Also, we
employ five RIR models [Bor84, Vor89, Rin93, Lam05, VPHO06], and refer them as Bor-

ish, Vorlnder, Randel, Lam and Valeaua, correspondingly. We perform the following
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experiment, comprises of two-stages; training stage and test stage. In the first part,
a fixed RIR model is simulated. Then, the steps described in Section 12.2 are imple-
mented with respect to the chosen RIR model. As a result, an augmented training set
is obtained. Next, a VAD system is chosen and trained with the derived training set.
We repeat this experiment for each VAD system and for each RIR model. Ultimately,
this stage yields 5 x 5 trained VAD systems. In the second stage, we test each trained
detector on three test sets, generated in three reverberant environments of a classroom,
a large concert hall and an octagon shaped library, as detailed in Section 12.2. An
experiment conducted by the authors of this study showed that these three acoustic
spaces are characterized by long (1 s), medium (0.8 s) and short (0.6 s) reverberation
time, in correspondence.

By observing Figures 12.1-12.5, several conclusions can be derived. First and fore-
most, if the training set contains merely anechoic data, then the performance of all
VADs is significantly degraded when tested in real reverberant conditions. Respec-
tively, employing the suggested augmented training set that comprises of reverberant
utterances consistently enhances VAD performance in practical scenarios. The reason
is that acoustic patterns and features highly differ between reverberant and anechoic
environments, and this mismatch between the training data and real data is mitigated
by the reverberant augmented training set. Another interesting derivation is that the
RIR model introduced by Valeaua [VPHO06| consistently leads to the highest perfor-
mance, relative to competing RIR models, for all VADs and in all tested acoustics.
One explanation is that the model proposed in [VPHO06] predicts room acoustics better
than the remaining models. It should be noticed that training with Valeaua RIR model
leads to rapid convergence of the ROC curves and leading AUC values. These results
indicate that detectors trained with Valeaua impulse response achieve wide margins
of separation between speech and silence. Therefore, these detectors experience high
robustness from noises and interferences that might shift the classifier.

Further derivations can be made based on Figures 12.6-12.8. The reported results
reaffirm that augmentation of the training set with respect to Valeaua RIR model leads
to enhanced VAD performance in reverberant conditions, compared to training that

merely considers anechoic data. This enhancement can be quantified by approximately
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Figure 12.1: Detection rate versus false alarm rate in a reverberant setup of a classroom.
Comparison is made between the five different training RIR models with VAD by Ivry.
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Figure 12.2: Detection rate versus false alarm rate in a reverberant setup of a classroom.
Comparison is made between the five different training RIR models with VAD by Ariav-
W.
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Figure 12.3: Detection rate versus false alarm rate in a reverberant setup of a classroom.
Comparison is made between the five different training RIR models with VAD by Kim.
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Figure 12.4: Detection rate versus false alarm rate in a reverberant setup of a classroom.
Comparison is made between the five different training RIR models with VAD by
Wagner.
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Figure 12.5: Detection rate versus false alarm rate in a reverberant setup of a classroom.
Comparison is made between the five different training RIR models with VAD by Ariav-
R.
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Figure 12.6: Performance of the five VADs in real reverberant conditions of classroom.
Comparison is made between employing anechoic training (dark) and augmented train-
ing with Valeaua RIR model (light).
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Figure 12.7: Performance of the five VADs in real reverberant conditions of large concert

hall. Comparison is made between employing anechoic training (dark) and augmented
training with Valeaua RIR model (light).
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Figure 12.8: Performance of the five VADs in real reverberant conditions of octagon
library. Comparison is made between employing anechoic training (dark) and aug-
mented training with Valeaua RIR model (light).
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Figure 12.9: Performance of Ivry VAD in real reverberant conditions of classroom.
Comparison is made between the five RIR training models.
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Figure 12.10: Performance of Ivry VAD in real reverberant conditions of large concert
hall. Comparison is made between the five RIR training models.
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Figure 12.11: Performance of Ivry VAD in real reverberant conditions of octagon li-
brary. Comparison is made between the five RIR training models.

20% gap across all performance measures of accuracy, precision, recall and F1-score.
This conclusion also implies high generalization ability of all VADs that are trained with
[VPHOG], since they consistently achieve enhanced performance for all measures and in
all three acoustic environments. Next, let us focus on the interpretation of the accuracy,
precision and recall measures. Since the training and test sets are balanced, these values
strongly characterize the capabilities of the detector. The accuracy measure confirms
that the Valeaua model leads to accurate detection in frames of both speech and silence.
Also, the enhanced precision measure correspondingly lowers the false-positive value,
i.e., non-speech frames has lower probability of being classified as speech. This result
highly benefits applications such as speech enhancement, in which interferences may
lead to severe degradation in practical performance. In a similar manner, the increase
in recall decreases the false-negative measure. Thus, loss of information that typically

lies in speech frames is obviated with higher probability.

Additional results are depicted in Figures 12.9-12.11. Here, we focus on Ivry VAD
[IBC19] that achieved leading performance in all previous experimental results of this
study. It can be deduced that this detector obtains a state-of-the-art performance of
95% in all reported measures when trained with Valeaua RIR model, which prevails

competing VAD methods. Also, this detection system obtains leading accuracy, preci-
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sion and recall measures across all tested reverberant setups. This outcome points on
high generalization ability, robustness for noises and interferences, and prime accuracy

in correctly distinguishing speech from silence.

12.4 Conclusions

In this study, we have considered five different state-of-the-art deep-learning-based
VADs. We have shown that these detectors, when trained with merely anechoic data,
experience substantial degradation in performance when tested in reverberant condi-
tions. To mitigate this mismatch, we simulated an augmented training set that contains
both an anechoic corpus and its reverberant transformation, where the latter was gen-
erated using a fixed room impulse response model. This extension permitted detectors
to learn unique patterns and audio-based features that represent reverberant settings.
The experiment was performed independently with five different room impulse response
models. The training augmentation led to enhanced performance of all VAD systems
when tested in three different real-life reverberant spaces. Improvement was obtained
in terms of both accuracy, generalization and robustness abilities. Also, an average
increase of 20% was held in accuracy, precision and recall measures with respect to
non-reverberant training corpus. This study has also shown that the response model
introduced by Valeaua [VPHO06] consistently leads to the best performance, regardless
of the detector and the tested acoustic environment. That and more, the VAD intro-
duced by Ivry [IBC19] has achieved leading performance across all experiments. In
future work, additional aspects such as feature engineering and dedicated architecture
will be addressed in order to further enhance Ivry detector and adjust it for practical

and reverberant acoustic scenarios.
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Chapter 13

Discussion and Conclusions

13.1 Discussion and Conclusions

This research thesis has introduced state-of-the-art deep learning-based AEC systems,
which are also adequate for embedding into practical hands-free speech communication
platforms. As organizations shift to remote communication, and specifically to remote
conferencing in office environments, there is also an increased need for AEC systems to
perform reliably in real-life conditions. Often, the goal of existing studies was to improve
the average benchmark performance and offer new neural network architectures. When
tested in real-life conditions, however, these methods under-performed. Thus, a solution
that can maintain high performance in various acoustic setups and in high echo and
noise levels became essential. This thesis focuses on the different challenges of the
AEC pipeline and offers solutions that highly perform in practical setups, including for
non-linear AEC, linear AEC, RES, and objective performance assessment.

The non-linearity between the echo captured in the microphone and its origin in
the far-end, which is becoming more dominant as hands-free communication devices
undergo miniaturization. Existing solutions have often assumed complete linearity of
the hardware that plays the far-end speech inside the near-end, which has constantly
shown degraded performance when tested in real-life conditions. To handle this, our
work allows to learn the non-linearities that power amplifiers and loudspeakers insert,
and to estimate them with real-time tracking. This does not remove the non-linear

effects from the AEC pipeline, but rather takes a novel approach of providing the
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linear AEC system a reference of non-linear far-end speech estimate, which has linear
relations with the echo captured in the microphone array. We have shown that this
allows the linear AEC system to be utilized efficiently and to handle challenging real-life
acoustic conditions while remaining lean in terms of resources.

A prominent challenge in AEC is the difficulty in tracking and estimating the linear
echo path using adaptive filtering in real environments of frequent echo path changes
and double-talk periods. To accommodate, we harnessed the power of deep learning
to create a tracking model for the echo path that does not assume any acoustic setup
or heuristic parameterization. A deep learning model learned the optimal adaptation
step-size that promotes most rapid convergence of the misalignment between the true
and estimated echo paths to its minimum. By design, this approach outperformed the
competition in real-life scenarios and allowed to maintain low computational resources.

In practice, even enhanced performance for non-linear AEC and for linear adaption
control are not sufficient for sustainably removing all acoustic echo. This is caused
due to the mismatch between the lengths of real and estimated echo paths that create
inherent linear adaptation error, due to the imperfection of non-linear AEC and linear
AEC algorithms that tend to struggle when acoustic variety increases, and due to the
inevitable convergence time of the adaptive filter that leads to degraded performance
during this period. To that end, we constructed a deep RES system that maps the
output of the linear AEC stage directly to the desired near-end speech. By utilized
a larger amount of resources, this time we managed to build an RES model that also
allows for dynamic tuning between the contracting RES demands of echo suppression
and speech distortion. Using modern neural processors, however, have made our RES
approach feasible for hands-free speech communication platforms on-edge.

In AEC systems, objective evaluation is often ambiguous and objective performance
measures do not comply with human ratings in double-talk periods. This mismatch has
brought inefficient progress to the field of AEC when inspecting real-life setups, due to
broken compassing and biased results. To help resolve this issue, we developed objective
performance measures that have high correlation with subjective human evaluation of
AEC systems quality, i.e. the RESL and DSML, in contrast to the very low correlation

exhibited by previously used measures like the SDR. By relating our new proposed
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measures with modern needs of AEC systems, we also created a user-centric framework
that allows users to choose the values of the RESL and DSML they desire, and thus to
balance between echo suppression levels and speech distortion levels, while maintaining
high subjective speech quality at the output of the AEC system.

SAEC is just as relevant as monophonic AEC for conferencing, but is vastly more
challenging compared to its monophonic counterpart. We managed to successfully
project concepts from our aforementioned monophonic approach to the stereophonic
case, and to witness significant performance improvement in real-life conditions, while
preserving low computational load that complies with hands-free communication stan-
dards. In one instance, we managed to improve adaptation control in the linear SAEC
stage. In a second instance, we proposed an extension to the DSML and RESL per-
formance measures to the stereophonic case, and showed that these also correlate well
with subjective human evaluations compared to competing objective measures. In this
process, we still managed the computational load according to on-edge requirements.

Another principal component to build a successful communication pipeline for mod-
ern conferencing is VAD. In reality, acoustic conditions often contain reverberations,
transients, and stationary noises. We proposed a unique paradigm to distinguish speech
segments in which raw data undergoes geometric analysis in which its underlying geo-
metric structures are extracted and compared to ones of non-speech segments. Across
practical acoustic setups, this approach has helped to separate speech from non-speech
segments and to achieving extremely powerful performance in practice, with a mod-
est amount of computational resources and a short system latency. This VAD system
will propel succeeding hands-free speech communication system such as AEC, but also

speech and speaker recognition, and speech diarization.

13.2 Future Research Directions

This thesis has introduced efficient implementations to improve each of the parts of
an AEC system pipeline, including partially the stereophonic case, and of VAD sys-
tems. These advancements now allow for even further progress, from several research

directions:
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1) Examine real-valued speech signal representations. Decomposing the
speech waveform signal into its frequency sub-bands using a real-valued transform, in
contrast to the common complex-valued representation applied by the STFT and its
modifications, can be efficient and powerful. This transform can enable a utilization
of waveform-based deep learning models, and in certain cases lead to improved per-
formance compared to their STFT-based counterparts. For instance, feedback-based
neural networks that are specifically built for time sequence analysis can be applied ef-
ficiently using this representation, e.g. GRU and LSTM-based systems. Also, preserva-
tion of phase information is achieved, in contrast to STFT-based methods that usually
introduce mismatch between the reconstructed amplitude and original phase informa-
tion. In addition, every sub-band is associated with a lower sample frequency than the
original signal, which may reduce the computational complexity and lower the inference
time of the system.

2) Develop a framework for real-time waveform-based speech processing.
Equipped with a sub-band decomposition of the speech signal, one can respectively
decompose existing speech-based systems into smaller and more efficient sub-systems.
Nowadays, waveform architectures are fed with the complete spectrum of speech signals
that often demands high-resources consumption for high-quality modeling, which is not
optimal for real-time usage. This direction aims to process each sub-band representa-
tion of the speech signal separately and independently by a smaller waveform-based
architecture, and merge their outcomes. Hopefully, each sub-system will require a
small computational load that is reasonable for embedding on real-time mobile com-
munication platforms.

It should be noted that our work has utilized waveform-based processing in the con-
text of non-linear acoustic-echo cancellation. This system managed to achieve leading
results compared to competing methods that utilized time-frequency analysis, while
operating with end-to-end system latency that coincides with real-time mobile com-
munication standards. In addition, it consumes low amount of resources that renders
it adequate for on-device integration in hands-free communication platforms. This
success can also aim to explore additional speech-based applications, such as speech

enhancement in noisy transient environments, speech intelligibility enhancement for
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eavesdropping in unknown acoustic environments, and acoustic fencing.

3) Extend the framework to additional speech processing applications.
We believe that the proposed waveform-based speech processing framework has the
potential to constitute an essential part in the field of real-time hands-free communi-
cation. Specifically, we direct towards three future appliances; speech enhancement
in noisy transient environments, speech intelligibility enhancement for eavesdropping
using hidden microphone recordings, and acoustic fencing in a multi-participant con-
versation.

Speech enhancement in noisy transient environment regards the problem of recover-
ing desired-speech signal from measurements that contain undesired noise and transient
interference in difficult acoustic environments. Today, speech enhancement systems are
highly desirable for various low-power hands-free communications platforms, such as
smartphones, smart speakers, wearable devices, smart homes, IoT endpoints, and more.
For instance, the Amazon Alexa speech inference is still impeded in real-life noisy en-
vironments, and construction noise outdoor still degrades speech intelligibility indoors,
e.g. during a mobile phone conversation. Speech enhancement resembles our previous
studies of residual-echo suppression and non-linear acoustic-echo cancellation, since in
both cases speech should be recovered from degraded measurements. Speech enhance-
ment also draws similarity to our VAD study that detected speech in transient noisy
and reverberant environments. Thus, we propose to project the concepts we already
successfully applied in previous systems to speech enhancement.

We also suggest to address speech intelligibility enhancement for eavesdropping
using hidden microphone recordings in unknown acoustic environments. These may
include ones with strong reverberations, echoes, and interference, and speech not di-
rected at the microphone reception area. This solution should comprise a low-power,
low-resources, on-device system that receives raw audio data, applies deep learning
enhancement algorithms to it, and compresses it before transmission. Today, deep
learning-based speech enhancement is mostly applied to speakers that want to be
heard, intentionally recorded in improved conditions. These methods present lead-
ing performance in suppressing noise and interference by feeding time-frequency signal

representations to complex and computationally-heavy models. However, they do not
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address speech intelligibility enhancement in acoustic setups that characterize hidden
microphone recordings and eavesdropping, and are inadequate for low-power, on-device
applications. Achieving success in the proposed research is valuable in several aspects.
First, creating a low-power speech intelligibility enhancement system and embedding it
into stand-alone eavesdropping devices. Second, exploiting narrow-band transmission
that is cheap, long-range, and low-power consuming, and extending the longevity of
the battery-supplied device. Third, allowing more rapid and improved data inference
by the end-user, i.e. the listener. Forth, reducing cost spent on human trainings that
include big data collection. And fifth, achieving enhanced performance of following
speech recognition algorithms.

Acoustic fencing aims at separating speakers by their physical locations in a room
using a microphone array. Achieving success in this research can benefit many speech-
based applications. For instance, it may improve speech enhancement of a speaker
located in a certain region by attenuating speech sources that are located in other re-
gions in the room. That and more, it may enhance succeeding speech-based systems,
e.g. direction estimation, speaker recognition, and speech recognition. Another on-
demand application nowadays is automatic transcription of conference meetings. By
setting acoustic fences that isolate speakers located in different regions in the room,
more accurate transcription results can be obtained compared with existing methods.
The acoustic fencing system presents a challenging optimization between suppressing
all sources that do not reside inside a certain region, and preserving the information
from that region without distortions. Even though this system can operate offline
and perform heavy computations on the cloud, it is instructive to allow on-device and
real-time applicability, e.g. for automatic translation in a conversation between two
remote sides. Essentially, this problem can be formulated as multi-channel speech
separation, for which various waveform-based systems have been successfully utilized,
however, inadequately in terms of computational resources. Given that we achieve the
aforementioned speech enhancement system, we plan to extend it to a multi-channel
architecture. Even though this system is originally built to preserve speech contami-
nated by noisy measurements, an alternative speech separation point of view can be

adopted. In this perspective, each microphone now contains a desired-speech signal
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and speech inference from several other sources, instead of transient noisy inference.

195



196



Bibliography

[AB79)

[ACO8]

[AC09a]

[ACO9b]

[AC10]

[AC19]

J. B. Allen and D. A. Berkley. Image method for efficiently simulating
small-room acoustics. Journal of Acoustic Society of America, 65(4):943—

950, 1979.

Y. Avargel and I. Cohen. Nonlinear acoustic echo cancellation based on
a multiplicative transfer function approximation. In Proc. International
Workshop on Acoustic Signal Enhancement (IWAENC), pages 1-4. Cite-
seer, 2008.

Y. Avargel and I. Cohen. Adaptive nonlinear system identification in the
short-time Fourier transform domain. IEFE Transactions on Signal Pro-

cessing, 57(10):3891-3904, 2009.

Y. Avargel and I. Cohen. Modeling and identification of nonlinear systems
in the short-time Fourier transform domain. IEFE Transactions on Signal

Processing, 58(1):291-304, 2009.

Y. Avargel and I. Cohen. Representation and identification of nonlinear
system in the short-time Fourier transform domain. In I. Cohen, J. Ben-
esty, and S. Gannot, editors, Speech Processing in Modern Communica-

tion: Challenges and Perspectives, chapter 3, pages 49-88. Springer, 2010.

I. Ariav and I. Cohen. An end-to-end multimodal voice activity detection
using WaveNet encoder and residual networks. IFEE Journal of Selected

Topics in Signal Processing, 13(2):265-274, 2019.

197



[ADC18a]

[ADC18b]

[AMAZ17]

[BCHCO09)]

[BGY5a)

[BGI5b]

[BGM*01]

[BMS98]

1. Ariav, D. Dov, and I. Cohen. A deep architecture for audio-visual voice
activity detection in the presence of transients. Signal Processing, 142:69—

74, 2018.

I. Ariav, D. Dov, and I. Cohen. A deep architecture for audio-visual voice
activity detection in the presence of transients. Signal Processing, 142:69—

74, 2018.

S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a con-
volutional neural network. In Proc. International Conference Engineering

Technology, pages 1-6. IEEE, 2017.

J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation co-
efficient. In Noise Reduction in Speech Processing, pages 1-4. Springer,

2009.

A. Birkett and R. A. Goubran. Limitations of handsfree acoustic echo
cancellers due to nonlinear loudspeaker distortion and enclosure vibration
effects. In Proc. Workshop on Applications of Signal Processing to Audio
and Accoustics (WASPAA ), pages 103-106. IEEE, 1995.

A. N. Birkett and R. A. Goubran. Acoustic echo cancellation using NLMS-
neural network structures. In Proc. International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), volume 5, pages 3035-3038.
IEEE, 1995.

J. Benesty, T. Génsler, D. R. Morgan, M. M. Sondhi, S. L. Gay, et al.
Advances in network and acoustic echo cancellation. New York: Springer,

2001.

J. Benesty, D. R. Morgan, and M. M. Sondhi. A better understanding and
an improved solution to the specific problems of stereophonic acoustic

echo cancellation. IEEE Transactions on Speech and Audio Processing,

6(2):156-165, 1998.

198



[BNH13]

[Bor84|

[BPGC11]

[Bri90]

[BRVTOG6]

[CBO1]

[CBS22

[CDX20]

[CGCB14]

[CH14]

T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. preprint arXiv:1802.09941,
2018.

J. Borish. Extension of the image model to arbitrary polyhedra. The
Journal of the Acoustical Society of America, 75(6):1827-1836, 1984.

J. Benesty, C. Paleologu, T. Génsler, and S. Ciochina. A Perspective on
Stereophonic Acoustic Echo Cancellation, volume 4. Springer Science &

Business Media, 2011.

J. Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocom-

puting: Algorithms, architectures and applications, pages 227—-236, 1990.

J. Benesty, H. Rey, L. R. Vega, and S. Tressens. A nonparametric VSS
NLMS algorithm. IEEFE Signal Processing Letters, 13(10):581-584, 2006.

I. Cohen and B. Berdugo. Speech enhancement for non-stationary noise

environments. Signal Processing, 81(11):2403-2418, November 2001.

J. Casebeer, N. J. Bryan, and P. Smaragdis. Meta-AF: Meta-learning for
adaptive filters. IEEE Transactions on Audio, Speech, Language Process-
ing, 31:355-370, 2022.

M. Chao, L. Dongmei, and J. Xupeng. Optimal scale-invariant signal-
to-noise ratio and curriculum learning for monaural multi-speaker speech
separation in noisy environment. In Proc. Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA

ASC), pages 711-715. IEEE, 2020.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. preprint

arXiv:1412.3555, 2014.

R. R. Coifman and M. J. Hirn. Diffusion maps for changing data. Applied

and Computational Harmonic Analysis, 36(1):79-107, 2014.

199



[CK11]

[CKMO6]

[CLO06a|

[CLO6b]

[CNL*21]

[Coh03]

[Cro80]

[CRPP12]

[CSAR*13]

N. Cho and E. K. Kim. Enhanced voice activity detection using acoustic
event detection and classification. IEEE Transactions Consumer Electron-

ins, 57(1):196-202, 2011.

J. H. Chang, N. S. Kim, and S. K. Mitra. Voice activity detection based
on multiple statistical models. IEEE Transactions Signal Processing,

54(6):1965-1976, 2006.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational
Harmonic Analysis, 21(1):5-30, 06 2006.

R. R. Coifman and S. Lafon. Geometric harmonics: a novel tool for mul-
tiscale out-of-sample extension of empirical functions. Applied and Com-

putational Harmonic Analysis, 21(1):31-52, 2006.

R. Cutler, B. Nadari, M. Loide, S. Sootla, and A. Saabas. Crowdsourcing
approach for subjective evaluation of echo impairment. In Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 406—410. IEEE, 2021.

I. Cohen. Noise spectrum estimation in adverse environments: Improved
minima controlled recursive averaging. IFEFE Transactions Speech and

Audio Processing, 11(5):466-475, September 2003.

R. Crochiere. A weighted overlap-add method of short-time Fourier anal-
ysis/synthesis. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 28(1):99-102, 1980.

S. Cecchi, L. Romoli, P. Peretti, and F. Piazza. Low-complexity imple-
mentation of a real-time decorrelation algorithm for stereophonic acoustic

echo cancellation. Signal Processing, 92(11):2668-2675, 2012.

D. Comminiello, M. Scarpiniti, L. A. Azpicueta-Ruiz, J. Arenas-Garcia,
and A. Uncini. Functional link adaptive filters for nonlinear acoustic echo
cancellation. IEEE Transactions on Audio, Speech, and Language Pro-

cessing, 21(7):1502-1512, 2013.

200



[CSPT21]

[CSPT22]

[CSP+23)]

[CSVHIS]

[CSVH19]

[CXCL20]

[DA12]

[DC14]

R. Cutler, A. Saabas, T. Parnamaa, M. Loida, S. Sootla, et al. Interspeech
2021 Acoustic Echo Cancellation Challenge. In Proc. Interspeech, pages
4748-4752, 2021.

R. Cutler, A. Saabas, T. Parnamaa, M. Purin, H. Gamper, et al. [CASSP
2022 acoustic echo cancellation challenge. In Proc. International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 9107—
9111. IEEE, 2022.

R. Cutler, A. Saabas, T. Parnamaa, M. Purin, E. Indenbom, et al. ICASSP
2023 acoustic echo cancellation challenge. In Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), page to

appear, 2023.

G. Carbajal, R. Serizel, E. Vincent, and E. Humbert. Multiple-input
neural network-based residual echo suppression. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
231-235, 2018.

G. Carbajal, R. Serizel, E. Vincent, and E. Humbert. Joint DNN-
Based Multichannel Reduction of Acoustic Echo, Reverberation and Noise.

preprint arXiv:1911.08934, 2019.

H. Chen, T. Xiang, K. Chen, and J. Lu. Nonlinear residual echo sup-
pression based on multi-stream Conv-Tasnet. preprint arXiw:2005.07631,

2020.

G. David and A. Averbuch. Hierarchical data organization, clustering
and denoising via localized diffusion folders. Applied and Computational

Harmonic Analysis, 33(1):1-23, 2012.

D. Dov and I. Cohen. Voice activity detection in presence of transients
using the scattering transform. In Proc. 28th Convention of the Electrical

€ FElectronics Engineers in Israel (IEEEI), pages 1-5, 2014.

201



[DDBW19]

[DDBW22]

[DMSO0]

[Dob11]

[DPBC20]

[DSA20]

[DTC15]

[DTC16]

[ETS16]

N. K. Desiraju, S. Doclo, M. Buck, and T. Wolff. Online estimation of
reverberation parameters for late residual echo suppression. IEEE/ACM

Transactions Audio, Speech, Language Processing, 28:77-91, 2019.

N. K. Desiraju, S. Doclo, M. Buck, and T. Wolff. Joint online estima-
tion of early and late residual echo PSD for residual echo suppression.

IEEE/ACM Transactions on Audio, Speech, and Language Processing,
31:333-344, 2022.

S. Davis and P. Mermelstein. Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE

Transactions on Acoustics, Speech Signal Processing, 28(4):357-366, 1980.

A. Dobrucki. Nonlinear distortions in electroacoustic devices. Archives of

Acoustics, 36(2):437-460, 2011.

L. Dogariu, C. Paleologu, J. Benesty, and S. Ciochina. An efficient
kalman filter for the identification of low-rank systems. Signal Processing,

166:107239, 2020.

A. Defossez, G. Synnaeve, and Y. Adi. Real time speech enhancement in

the waveform domain. preprint arXiv:2006.12847, 2020.

D. Dov, R. Talmon, and I. Cohen. Audio-visual voice activity detection
using diffusion maps. IEEFE Transactions on Audio, Speech Language Pro-
cessing, 23(4):732-745, 2015.

D. Dov, R. Talmon, and I. Cohen. Kernel method for voice activity de-
tection in the presence of transients. IEEFE Transactions Audio, Speech,

Language Processing, 24(12):2313-2326, 2016.

ETSI ES 202 740: Speech and multimedia Transmission Quality (STQ);
Transmission requirements for wideband VoIP loudspeaking and handsfree

terminals from a QoS perspective as perceived by the user, 2016.

202



[Fan20a]

[Fan20Db]

[FBD*22]

[FD93]

[FEKL20]

[FF22]

[FFL10]

[FZ11]

[Gau01]

B. Fang. An integrated system of adaptive echo cancellation and residual
echo suppression. In Proc. International Conference on Computational

Communication Information Systems, pages 19-23, 2020.

B. Fang. A robust residual echo suppression algorithm even during dou-
ble talk. In Proc. International Conference Information Communication

Signal Processing (ICICSP), pages 6-9. IEEE, 2020.

1. Ficiu, J. Benesty, L. Dogariu, C. Paleologu, and S. Ciochina. Efficient
algorithms for linear system identification with particular symmetric fil-

ters. Applied Sciences, 12(9):4263, 2022.

N. Freire and S. C. Douglas. Adaptive cancellation of geomagnetic back-
ground noise using a sign-error normalized LMS algorithm. In Proc.
International Conference on Acoustics, Speech and Signal Processing

(ICASSP), volume 3, pages 523-526. IEEE, 1993.

A. Fazel, M. El-Khamy, and J. Lee. CAD-AEC: Context-Aware Deep
Acoustic Echo Cancellation. In Proc. International Conference Acoustics,

Speech and Signal Processing (ICASSP), pages 6919-6923, 2020.

J. Franzen and T. Fingscheidt. Deep residual echo suppression and noise
reduction: A multi-input FCRN approach in a hybrid speech enhancement
system. In Proc. International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 666-670. IEEE, 2022.

Z. Farbman, R. Fattal, and D. Lischinski. Diffusion maps for edge-aware

image editing. ACM Transactions Graph, 29(6):145:1-145:10, 12 2010.

M. M. U. Faiz and A. Zerguine. A steady-state analysis of the e-normalized
sign-error least mean square (NSLMS) adaptive algorithm. In Proc. Con-
ference Record of the Forty Fifth Asilomar Conference on Signals, Systems
and Computers (ASILOMAR), pages 538-541. IEEE, 2011.

T. D. Gauthier. Detecting trends using Spearman’s rank correlation coef-

ficient. Environmental Forensics, 2(4):359-362, 2001.

203



[GBO2]

[GFLBJ03]

[GHD"17]

[GK13]

[GL84]

[GLA*20]

[GLF+88]

[GLF+93a]

[GLF+93b)

T. Gansler and J. Benesty. New insights into the stereophonic acoustic
echo cancellation problem and an adaptive nonlinearity solution. IEEE

Transactions Speech Audio Processing, 10(5):257-267, 2002.

A. Guérin, G. Faucon, and R. Le Bouquin-Jeanneés. Nonlinear acoustic
echo cancellation based on Volterra filters. IEEE Transactions on Speech

and Audio Processing, 11(6):672-683, 2003.

K. G. Ghasedi, A. Herandi, C. Deng, W. Cai, and H. Huang. Deep cluster-
ing via joint convolutional autoencoder embedding and relative entropy
minimization. In Proc. International Conference on Computer Vision

(ICCV), pages 5736-5745, 2017.

S. Gepshtein and Y. Keller. Image completion by diffusion maps and
spectral relaxation. IEEE Transactions Image Processing, 22(8):2839-
2846, 2013.

D. Griffin and J. Lim. Signal estimation from modified short-time
Fourier transform. IEEE Transactions Acoustic, Speech, Signal Process-

ing, 32(2):236-243, 1984.

P. K. Gadosey, Y. Li, E. A. Agyekum, T. Zhang, Z. Liu, et al. SD-UNET:
Stripping down u-net for segmentation of biomedical images on platforms

with low computational budgets. Diagnostics, 10(2):110, 2020.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pal-
lett. Getting started with the DARPA TIMIT CD-ROM: An acoustic
phonetic continuous speech database. National Institute of Standards and

Technology (NIST), Gaithersburgh, MD, 107:16, 1988.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pal-
lett. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1. NASA STI/Recon technical report, 93:27403, 1993.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,

et al. DARPA TIMIT acoustic-phonetic continous speech corpus CD-

204



[GMH13]

[GRO6]

[GS97]

[GSDY15]

[GTOS]

[GV92]

[HA16]

[HBEK21]

ROM. NIST speech disc 1-1.1. Technical Report LDC93S1, National In-
stitute of Standards Technology, Gaithersburg, MD, USA, 1993.

A. Graves, A. R. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proc. International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 6645-6649, 2013.

S. Gold and A. Rangarajan. Softmax to softassign: Nerual network algo-
rithms for combinational optimization. Journal of Artificial Neural Net-

works, 2(4):381-399, 1996.

E. B. George and M. Smith. Speech analysis/synthesis and modification
using an analysis-by-synthesis/overlap-add sinusoidal model. IEEE Trans-

actions on Speech and Audio Processing, 5(5):389-406, Sep. 1997.

R. Giri, M. L. Seltzer, J. Droppo, and D. Yu. Improving speech recognition
in reverberation using a room-aware deep neural network and multi-task
learning. In Proc. International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5014-5018. IEEE, 2015.

A. Gilloire and V. Turbin. Using auditory properties to improve the be-
haviour of stereophonic acoustic echo cancellers. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol-

ume 6, pages 3681-3684. IEEE, 1998.

A. Gilloire and M. Vetterli. Adaptive filtering in sub-bands with critical
sampling: analysis, experiments, and application to Acoust. echo cancel-

lation. IEEE Transactions Signal Processing, 40(8):1862-1875, 1992.

M. Hamidia and A. Amrouche. Improved variable step-size NLMS adap-
tive filtering algorithm for acoustic echo cancellation. Digital Signal Pro-

cessing, 49:44-55, 2016.

T. Haubner, A. Brendel, M. Elminshawi, and W. Kellermann. Noise-

robust adaptation control for supervised acoustic system identification

205



[HBK21]

[HBK?22]

[HHB+20]

[HHBK21]

[HHK19]

[HK20]

[HKC14]

exploiting a noise dictionary. In Proc. International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 945-949. IEEE, 2021.

T. Haubner, A. Brendel, and W. Kellermann. End-to-end deep learning-
based adaptation control for frequency-domain adaptive system identifi-

cation. preprint arXiv:2106.01262, 2021.

T. Haubner, A. Brendel, and W. Kellermann. End-to-end deep learning-
based adaptation control for frequency-domain adaptive system identifi-
cation. In Proc. International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 766-770. IEEE, 2022.

T. Haubner, M. M. Halimeh, A. Brendel, W. Kellermann, et al. A synergis-
tic Kalman-and deep postfiltering approach to acoustic echo cancellation.

preprint arXiw:2012.08867, 2020.

T. Haubner, M. M. Halimeh, A. Brendel, and W. Kellermann. A synergis-
tic kalman-and deep postfiltering approach to acoustic echo cancellation.
In Proc. European Signal Processing Conference (EUSIPCO), pages 990—
994. IEEE, 2021.

M. M. Halimeh, C. Huemmer, and W. Kellermann. A neural network-

based nonlinear acoustic echo canceller. IEEFE Signal Processing Letters,

26(12):1827-1831, 2019.

M. M. Halimeh and W. Kellermann. Efficient Multichannel Nonlin-
ear Acoustic Echo Cancellation Based on a Cooperative Strategy. In

Proc. International Conference Acoustics, Speech and Signal Processing

(ICASSP), pages 461-465, 2020.

A. Haddad, D. Kushnir, and R. R. Coifman. Texture separation via a
reference set. Applied and Computational Harmonic Analysis, 36(2):335—
347, 03 2014.

206



[HL11]

[HL13]

[HM13]

[HQZ"23]

[HWW+15]

[HZ06]

[IBC19]

[IBMH22]

[ICB21a]

H. C. Huang and J. Lee. A new variable step-size NLMS algorithm
and its performance analysis. IEFE Transactions on Signal Processing,

60(4):2055-2060, 2011,

W. T. Hong and C. C. Lee. Voice activity detection based on noise-
immunity recurrent neural networks. International Journal on Advanced

Computational Technology (IJACT), 5(5):338-345, 2013.

T. Hughes and K. Mierle. Recurrent neural networks for voice activity
detection. In Proc. International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 7378-7382, 2013.

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, et al. Normalization tech-
niques in training dnns: Methodology, analysis and application. IFEE

Transactions on Pattern Analysis and Machine Intelligence, 2023.

K. Han, Y. Wang, D. Wang, W. S. Woods, I. Merks, et al. Learning
spectral mapping for speech dereverberation and denoising. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 23(6):982-992,
2015.

W. W. Hager and H. Zhang. A new active set algorithm for box constrained
optimization. SIAM Journal on Optimization, 17(2):526-557, 2006.

A. Ivry, B. Berdugo, and I. Cohen. Voice activity detection for transient
noisy environment based on diffusion nets. IEEE Journal of Selected Top-

ics in Signal Processing, 13(2):254-264, 2019.

G. Imen, A. Benallal, M. Mekarzia, and I. Hassani. The NP-VSS NLMS
algorithm with noise power estimation methods for acoustic echo cancella-

tion. In Proc. International Conference on Advanced Electrical Engineer-

ing (ICAEE), pages 1-6. IEEE, 2022.

A. Ivry, I. Cohen, and B. Berdugo. Deep residual echo suppression with

a tunable tradeoff between signal distortion and echo suppression. In

207



ICB21b)]

[ICB21c]

[ICB22a]

[ICB22b)

[ICB22c]

[ITUO01]

[ITU12]

[ITU17]

[Jan04]

Proc. International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 126-130. IEEE, 2021.

A. Tvry, I. Cohen, and B. Berdugo. Nonlinear acoustic echo cancellation

with deep learning. In Proc. Interspeech. IEEE, sep 2021.

A. Ivry, I. Cohen, and B. Berdugo. Objective metrics to evaluate residual-
echo suppression during double-talk. In Proc. Workshop on Applications
of Signal Processing to Audio and Accoustics (WASPAA), pages 101-105.
IEEE, 2021.

A. Ivry, I. Cohen, and B. Berdugo. Deep adaptation control for acoustic
echo cancellation. In Proc. International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 741-745. IEEE, 2022.

A. Tvry, I. Cohen, and B. Berdugo. Objective metrics to evaluate residual-
echo suppression during double-talk in the stereophonic case. Proc. Inter-

speech, pages 5348-5352, 2022.

A. Ivry, 1. Cohen, and B. Berdugo. Off-the-shelf deep integration for
residual-echo suppression. In Proc. International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 746-750. IEEE, 2022.

ITU-T Rec. P.862: Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of narrow-band

telephone networks and speech codecs, Feb. 2001.
ITU-T Rec. G.168: Digital network echo cancellers, Feb. 2012.

ITU-T Rec. P.862.2: Wideband extension to recommendation P. 862 for
the assessment of wideband telephone networks and speech codecs, Oct.

2017.

A. Janczak. Identification of monlinear systems using neural networks
and polynomial models: a block-oriented approach, volume 310. Springer

Science & Business Media, 2004.

208



[IMRO4]

[KB15]

[KDG*16]

[KDJJ16]

[KH18]

[KJS21]

[K1i05]

[KNO1]

[KPP*17]

J.C. Junqua, B. Mak, and B. Reaves. A robust algorithm for word bound-
ary detection in the presence of noise. IEEFE Transactions Speech Audio

Processing, 2(3):406-412, 1994.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In

Proc. International Conference on Learning Representations ICLR, 2015.

K. Kinoshita, M. Delcroix, S. Gannot, E. Habets, R. Haeb-Umbach, et al.
A summary of the REVERB challenge: state-of-the-art and remaining
challenges in reverberant speech processing research. EURASIP Journal

on Advances in Signal Processing, 2016(1):7, 2016.

A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen. Maximum likeli-
hood PSD estimation for speech enhancement in reverberation and noise.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(9):1599-1612, 2016.

J. Kim and M. Hahn. Voice activity detection using an adaptive context

attention model. IEEE Signal Processing Letters, 25(8):1181-1185, 2018.

E. Kim, J. Jeon, and H. Seo. U-convolution based residual echo suppression
with multiple encoders. In Proc. International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 925-929. IEEE, 2021.

W. Klippel. Loudspeaker nonlinearities—causes, parameters, symptoms.
In Audio Engineering Society Convention 119. Audio Engineering Society,
2005.

D. A. Krubsack and R. J. Niederjohn. An autocorrelation pitch detec-
tor and voicing decision with confidence measures developed for noise-
corrupted speech. IEEE Transactions Signal Processing, 39(2):319-329,
1991.

T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur. A study on

data augmentation of reverberant speech for robust speech recognition. In

209



[KS17]

[KTC17]

[Lam05]

[LCH*19]

[LHB15]

[LKCO6]

[LM19]

[Log00]

Proc. International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5220-5224. IEEE, 2017.

A. Kar and M. Swamy. Tap-length optimization of adaptive filters used in
stereophonic acoustic echo cancellation. Signal Processing, 131:422-433,

2017.

P. Kedar, S. P. Taher, and D. P. Chinmay. A comparative study of
categorical variable encoding techniques for neural network classifiers. In-

ternational Journal of Computational Applications, 175(4):7-9, 2017.

Y. W. Lam. Issues for computer modelling of room acoustics in non-
concert hall settings. Acoustical Science and Technology, 26(2):145-155,
2005.

Q. Lei, H. Chen, J. Hou, L. Chen, and L. Dai. Deep Neural Network
Based Regression Approach for Acoustic Echo Cancellation. In Proc. In-
ternational Conference Multimedia Systems and Signal Processing, pages

94-98, 2019.

S. Leglaive, R. Hennequin, and R. Badeau. Singing voice detection with
deep recurrent neural networks. In Proc. International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 121-125, 2015.

S. Lafon, Y. Keller, and R. R. Coifman. Data fusion and multicue data
matching by diffusion maps. IEFEE Transactions Pattern Analysis and
Machine Intelligence, 28(11):1784-1797, 11 2006.

Y. Luo and N. Mesgarani. Conv-TasNet: Surpassing ideal time—frequency
magnitude masking for speech separation. IEEE/ACM Transactions Au-
dio, Speech, and Language Processing, 27(8):1256-1266, 2019.

B. Logan. Mel frequency cepstral coefficients for music modeling. In

International Society for Music Information Retrieval (ISMIR), 2000.

210



[LSK15]

[LTMH13]

[LVRH16]

[LWS16]

[MC13a)

IMC13b)

[ME12]

[MEB10]

[MEG+16]

C. M. Lee, J. W. Shin, and N. S. Kim. DNN-based residual echo suppres-
sion. In Proc. Annual Conference of the International Speech Communi-

cation Association, 2015.

X. Lu, Y. Tsao, S. Matsuda, and C. Hori. Speech enhancement based on

deep denoising autoencoder. In Proc. Interspeech, pages 436-440, 08 2013.

C. Lea, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional
networks: A unified approach to action segmentation. In Proc. European

Conference on Computer Vision (ECCYV), pages 47-54. Springer, 2016.

M. Liu, M. J. Wang, and B. Y. Song. An efficient architecture of the sign-
error LMS adaptive filter. In Proc. Solid-State and Integrated Clircuits

Technology (ICSICT), pages 753-755. IEEE, 2016.

G. Mishne and I. Cohen. Multiscale anomaly detection using diffusion
maps. [EEE Journal of Selected Topics in Signal Processing, 7:111-123,

02 2013.

S. Mousazadeh and I. Cohen. Voice activity detection in presence of tran-
sient noise using spectral clustering. IEEE Transactions on Audio, Speech

Language Processing, 21(6):1261-1271, 2013.

S. Malik and G. Enzner. State-space frequency-domain adaptive filtering
for nonlinear acoustic echo cancellation. IEEFE Transactions on Audio,

Speech, and Language Processing, 20(7):2065-2079, 2012.

M. I. Mossi, N. W. Evans, and C. Beaugeant. An assessment of linear
adaptive filter performance with nonlinear distortions. In Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 313-316. IEEE, 2010.

D. Michal, V. Eugene, C. Gabriel, K. Samuel, and P. Chris. The impor-
tance of skip connections in biomedical image segmentation. In Deep
Learning and Data Labeling for Medical Applications, pages 179-187.

Springer, 2016.

211



[MHBO1]

[MHZS20]

[MK16a]

[MK16b]

[MPP15]

[MSCC17]

INCC16]

[Nic18]

[PBC14]

D. R. Morgan, J. L. Hall, and J. Benesty. Investigation of several types
of nonlinearities for use in stereo acoustic echo cancellation. IEEE Trans-

actions on Speech Audio Processing, 9(6):686-696, 2001.

L. Ma, H. Huang, P. Zhao, and T. Su. Acoustic Echo Cancellation by Com-
bining Adaptive Digital Filter and Recurrent Neural Network. preprint
arXiv:2005.09237, 2020.

J. Malek and Z. Koldovsky. Hammerstein model-based nonlinear echo
cancelation using a cascade of neural network and adaptive linear fil-
ter. In Proc. International Workshop on Acoustic Signal Enhancement

(IWAENC), pages 1-5. IEEE, 2016.

S. Meier and W. Kellermann. Relative impulse response estimation dur-
ing double-talk with an artificial neural network-based step size con-
trol. In Proc. International Workshop on Acoustic Signal Enhancement

(IWAENC), pages 1-5. IEEE, 2016.

V. S. Mendelev, T. N. Prisyach, and A. A. Prudnikov. Robust voice
activity detection with deep maxout neural networks. Modern Applied

Science, 9(8):153, 2015.

G. Mishne, U. Shaham, A. Cloninger, and I. Cohen. Diffusion nets. Applied

and Computational Harmonic Analysis, 2017.

J. Ni, J. Chen, and X. Chen. Diffusion sign-error LMS algorithm: Formu-
lation and stochastic behavior analysis. Signal Processing, 128:142-149,
2016.

A. Nicolae. PLU: The piecewise linear unit activation function. preprint

arXiv:1809.09534, 2018.

C. Paleologu, J. Benesty, and S. Ciochina. Widely linear general kalman
filter for stereophonic acoustic echo cancellation. Signal Processing,

94:570-575, 2014.

212



[PCBG15]

[PCPK15]

[PGC+17]

[Pow?20]

[PP20]

[PSK*+20]

[PSST22]

[RBHHO1]

C. Paleologu, S. Ciochina, J. Benesty, and S. L. Grant. An overview on
optimized NLMS algorithms for acoustic echo cancellation. EURASIP
Journal on Advances in Signal Processing, 2015(1):1-19, 2015.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5206-5210, 2015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, et al. Automatic
differentiation in pytorch. In Proc. Neural Information Processing Systems

(NIPS), 2017.

D. Powers. Evaluation: from precision, recall and F-measure to ROC, in-

formedness, markedness and correlation. preprint arXiv:2010.16061, 2020.

L. Pfeifenberger and F. Pernkopf. Nonlinear residual echo suppression
using a recurrent neural network. In Proc. Interspeech, pages 3950-3954,

2020.

S. H. Pauline, D. Samiappan, R. Kumar, A. Anand, and A. Kar. Vari-
able tap-length non-parametric variable step-size NLMS adaptive filtering
algorithm for acoustic echo cancellation. Applied Acoustics, 159:107074,

2020.

M. Purin, S. Sootla, M. Sponza, A. Saabas, and R. Cutler. AECMOS: A
speech quality assessment metric for echo impairment. In Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 901-905. IEEE, 2022.

A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Percep-
tual evaluation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs. In Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), volume 2,
pages 749-752. IEEE, 2001.

213



[RBP*+19]

[RCPT10]

[RFB15]

[RGC21]

[Rin93]

[RLRL10]

[RPLOY]

[RSB+04]

[RT98)

C. Reddy, E. Beyrami, J. Pool, R. Cutler, S. Srinivasan, et al. A scal-
able noisy speech dataset and online subjective test framework. preprint

arXiw:1909.08050, 2019.

L. Romoli, S. Cecchi, L. Palestini, P. Peretti, and F. Piazza. A novel
approach to channel decorrelation for stereo acoustic echo cancellation
based on missing fundamental theory. In Proc. International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 329-332.
IEEE, 2010.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In Proc. Medical Image Computing

and Computer-Assisted Intervention, pages 234-241. Springer, 2015.

C. K. A. Reddy, V. Gopal, and R. Cutler. DNSMOS: A non-intrusive
perceptual objective speech quality metric to evaluate noise suppressors. In

Proc. International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6493-6497. IEEE, 2021.

J. H. Rindel. Modelling the angle-dependent pressure reflection factor.
Applied Acoustics, 38(2-4):223-234, 1993.

R. Ravaud, G. Lemarquand, T. Roussel, and V. Lemarquand. Ranking of
the nonlinearities of electrodynamic loudspeakers. Archives of Acoustics,

35(1):49-66, 2010.

J. D. Rodriguez, A. Perez, and J. A. Lozano. Sensitivity analysis of k-
fold cross validation in prediction error estimation. IFEFE Transactions on

Pattern Analysis and Machine Intelligence, 32(3):569-575, 2009.

J. Ramirez, J. C. Segura, C. Benitez, A. De La Torre, and A. Rubio.
Efficient voice activity detection algorithms using long-term speech infor-

mation. Speech Communication, 42(3):271-287, 2004.

A. B. Rabaa and R. Tourki. Acoustic echo cancellation based on a recur-

rent neural network and a fast affine projection algorithm. In Proc. An-

214



[Rusl11]

[SB99)

[SBP*13]

[SCK10]

[SCPU11]

[SCST21]

[SDA22]

[SDT21]

nual Conference Industrial Electronics Society (IECON), volume 3, pages
1754-1757. IEEE, 1998.

A. Ruszczynski. Nonlinear optimization. Princeton university press, 2011.

S. G. Sankaran and A. Beex. Stereophonic acoustic echo cancellation using
NLMS with orthogonal correction factors. In Proc. International Workshop

on Acoustic Signal Enhancement (IWAENC), pages 40—43. Citeseer, 1999.

C. Stanciu, J. Benesty, C. Paleologu, T. Génsler, and S. Ciochina. A
widely linear model for stereophonic acoustic echo cancellation. Signal

Processing, 93(2):511-516, 2013.

J. W. Shin, J. H. Chang, and N. S. Kim. Voice activity detection based
on statistical models and machine learning approaches. Computational

Speech Language, 24(3):515-530, 2010.

M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini. Comparison of
Hammerstein and Wiener systems for nonlinear acoustic echo cancelers in
reverberant environments. In Proc. International Conference on Digital

Signal Processing, pages 1-6. IEEE, 2011.

K. Sridhar, R. Cutler, A. Saabas, T. Parnamaa, M. Loide, et al. ICASSP
2021 acoustic echo cancellation challenge: Datasets, testing framework,

and results. In Proc. International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 151-155. IEEE, 2021.

M. Salah, M. Dessouky, and B. Abdelhamid. Design and implementation of
an improved variable step-size NLMS-based algorithm for acoustic noise
cancellation.  Circuits, Systems, and Signal Processing, 41(1):551-578,
2022.

M. Schmidtner, C. Doering, and H. Timinger. Agile working during
COVID-19 pandemic. IEEE Engineering Management Review, 49(2):18—
32, 2021.

215



[SHK ™ 14a

[SHK*14b)

[SK15]

[SKS99]

[SMHY5]

[SRGZ*04]

SS10]

[SSM*19]

[SSN0Y]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929-1958, 2014.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929-1958, 2014.

A. Schwarz and W. Kellermann. Coherent-to-diffuse power ratio esti-
mation for dereverberation. IFEFE Transactions on Audio, Speech, and

Language Processing, 23(6):1006—-1018, 2015.

J. Sohn, N. S. Kim, and W. Sung. A statistical model-based voice activity

detection. IEEE Signal Processing Letters, 6(1):1-3, 1999.

M. M. Sondhi, D. R. Morgan, and J. L. Hall. Stereophonic acoustic echo
cancellation-an overview of the fundamental problem. IEEE Signal Pro-

cessing Letters, 2(8):148-151, 1995.

M. Soria-Rodriguez, M. Gabbouj, N. Zacharov, M. S. Hamalainen, and
K. Koivuniemi. Modeling and real-time auralization of electrodynamic
loudspeaker non-linearities. In Proc. International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), volume 4, pages 81-84.
IEEE, 2004.

R. Stewart and M. Sandler. Database of omnidirectional and B-format
room impulse responses. In Proc. International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 165-168. IEEE, 2010.

I. Szoke, M. Skécel, L. Mosner, J. Paliesek, and J. Cernocky. Building
and evaluation of a real room impulse response dataset. IEEE Journal of

Selected Topics in Signal Processing, 13(4):863-876, 2019.

A. Singer, Y. Shkolnisky, and B. Nadler. Diffusion interpretation of non-
local neighborhood filters for signal denoising. SIAM Journal on Imaging
Sciences, 2(1):118-139, 01 2009.

216



[Syn21]

[TCG12]

[TCGC13)

[TI19]

[TIH*10]

[VGFO6]

[VGX97]

[Vir99)

[Vor89]

[VPHO6]

NDP120 Syntiant™ Neural Processor. https://www.syntiant.com/

ndp120, 2021.

R. Talmon, I. Cohen, and S. Gannot. Single-channel transient interference
suppression with diffusion maps. IEEE Transactions on Audio, Speech

Language Processing, 21(1):130-142, 04 2012.

R. Talmon, I. Cohen, S. Gannot, and R. R. Coifman. Diffusion maps for
signal processing: A deeper look at manifold-learning techniques based on

kernels and graphs. IEEE Signal Processing Magazine, 30(4):75-86, 2013.

AMBT749 Sitara™ Processor. https://www.ti.com/product/AM57497

ggpn=amb5749, 2019.

S. Tamura, M. Ishikawa, T. Hashiba, S. Takeuchi, and S. Hayamizu. A
robust audio-visual speech recognition using audio-visual voice activity

detection. In Proc. INTERSPEECH, pages 2694-2697, 2010.

E. Vincent, R. Gribonval, and C. Févotte. Performance measurement in
blind audio source separation. IEEFE Transactions on Audio, Speech, and

Language Processing, 14(4):1462-1469, 2006.

S. Van Gerven and F. Xie. A comparative study of speech detection
methods. In Proc. 5th Furopean Conference on Speech Communication

and Technology (EUROSPEECH), pages 1095-1098, 1997.

N. Virag. Single channel speech enhancement based on masking properties
of the human auditory system. IEEE Transactions on Speech and audio

Processing, 7(2):126-137, 1999.

M. Vorlander. Simulation of the transient and steady-state sound propaga-
tion in rooms using a new combined ray-tracing/image-source algorithm.

The Journal of the Acoustical Society of America, 86(1):172-178, 1989.

V. Valeau, J. Picaut, and M. Hodgson. On the use of a diffusion equation
for room-acoustic prediction. The Journal of the Acoustical Society of

America, 119(3):1504-1513, 2006.

217


https://www.syntiant.com/ndp120
https://www.syntiant.com/ndp120
https://www.ti.com/product/AM5749?qgpn=am5749
https://www.ti.com/product/AM5749?qgpn=am5749

[VVARC16] S. Van Vaerenbergh, L. A. Azpicueta-Ruiz, and D. Comminiello. A split

[(WC18]

[WJ11]

[WQW10]

[WSSA1S]

[(WZ11]

[XDDL14]

XYC22]

[Yos01]

kernel adaptive filtering architecture for nonlinear acoustic echo cancella-
tion. In Proc. European Signal Processing Conference (EUSIPCO), pages
1768-1772. IEEE, 2016.

D. Wang and J. Chen. Supervised speech separation based on deep learn-
ing: An overview. IEEE/ACM Transactions Audio, Speech, and Language
Processing, 26(10):1702-1726, 2018.

T. S. Wada and B. Juang. Enhancement of residual echo for robust acous-
tic echo cancellation. IEEE Transactions on Audio, Speech, Language

Processing, 20(1):175-189, 2011.

S. Wu, X. Qiu, and M. Wu. Stereo acoustic echo cancellation employing
frequency-domain preprocessing and adaptive filter. IFEFE Transactions

on Audio, Speech, Language Processing, 19(3):614-623, 2010.

J. Wagner, D. Schiller, A. Seiderer, and E. André. Deep learning in par-
alinguistic recognition tasks: Are hand-crafted features still relevant? In

Proc. Interspeech, pages 147-151, 2018.

J. Wu and X. L. Zhang. Maximum margin clustering based statistical
vad with multiple observation compound feature. IEEE Signal Processing

Letters, 18(5):283-286, 2011.

Y. Xu, J. Du, L. R. Dai, and C. H. Lee. A regression approach to speech
enhancement based on deep neural networks. IEEE/ACM Transactions

Audio, Speech, and Language Processing, 23(1):7-19, 2014.

K. Xie, Z. Yang, and J. Chen. Nonlinear residual echo suppression based
on gated dual signal transformation LSTM network. In Proc. Asia-Pacific
Signal and Information Processing Association Annual Summit and Con-

ference (APSIPA ASC), pages 1696-1701. IEEE, 2022.

W. A. Yost. Fundamentals of hearing: An introduction, 2001.

218



[YYC+21]

[2GZ23]

[Zhi19]

[Z1.20]

[ZM18]

[ZMPO5)

[ZTW19]

[ZW18]

[ZWMZ16]

Y. Yu, T. Yang, H. Chen, R. C. de Lamare, and Y. Li. Sparsity-aware
SSAF algorithm with individual weighting factors: Performance analy-
sis and improvements in acoustic echo cancellation. Signal Processing,

178:107806, 2021.

H. Zhao, Y. Gao, and Y. Zhu. Robust subband adaptive filter algorithms-
based mixture correntropy and application to acoustic echo cancellation.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
31:1223-1233, 2023.

H. Zhivomirov. On the development of STFT-analysis and ISTFT-
synthesis routines and their practical implementation. Technology, Ed-

ucation, Management, Informatics (TEM) Journal, 8(1):56—64, 2019.

X.Zhou and Y. Leng. Residual acoustic echo suppression based on efficient

multi-task convolutional neural network. preprint arXiv:2009.13951, 2020.

Z. Zhilu and R. S. Mert. Generalized cross entropy loss for training deep
neural networks with noisy labels. In Proc. Neural Information Processing

Systems (NIPS), page 8792-8802, 2018.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Proc.

Neural Information Processing Systems (NIPS), pages 1601-1608, 2005.

H. Zhang, K. Tan, and D. L. Wang. Deep Learning for Joint Acoustic Echo
and Noise Cancellation with Nonlinear Distortions. In Proc. Interspeech,

pages 4255-4259, 2019.

H. Zhang and D. L. Wang. Deep learning for acoustic echo cancellation
in noisy and double-talk scenarios. In Proc. Interspeech, pages 3239-3243,
2018.

Y. Zhao, D. Wang, 1. Merks, and T. Zhang. DNN-based enhancement of
noisy and reverberant speech. In Proc. International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 6525-6529. IEEE,
2016.

219



[ZWS22]

2717

S. Zhang, Z. Wang, J. Sun, Y. Fu, B. Tian, Q. Fu, and L. Xie. Multi-task
deep residual echo suppression with echo-aware loss. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
9127-9131. IEEE, 2022.

S. Zhang and W. X. Zheng. Recursive adaptive sparse exponential func-
tional link neural network for nonlinear AEC in impulsive noise environ-
ment. IEFEE Transactions on Neural Networks and Learning Systems,

29(9):4314-4323, 2017.

220



NNI’H 7O - YD MINNY NIDNN T0VNIS DAY 1DON MPPIVNN IR IDTY DY VYYD IWIN
MWINAT NI P9NAD WNNYN D 05X NTPNNNND ,NNYP NNYN ROV  WYNNYNR-NtD1N NOIyN

.0”2M7 NOIYN

D2PNT IV DNMIPND DY DIV N TPNNNANPO DNYNN IXIY-27 SODIPN TN DY WwNIND
NPHNIVIY DT MNY IO OPIINNND DYWNINA IOV 29D ,PININ-N¥PA YN IPN-N8Pa N
Sy MPDNPN THNI PN MIPNND 0DIYI 2N JOIND THN IPN It WNHIN .ONIPT MITN NIV P2
N2 TY NNV MOIYN P2 SMYNYN IYad DI YR 2T 0PNV DPVIY OPPOY D) T
TPXITY 27 TPNNPANP DY DWNNAN NN DINYND NN DY NYMINSHA NPNINIAN MYITH Pad
SNY 290 02N DR XY TN OVDIPR T NTNN NIY MINNIY MNIPY DNIXNA NOOWR N1
WONIN DY TTNNND NN DY YDOSTND PONN DY TYNN YT NOMOYI NOIYN DY [, IYRI
D0 DYN DIMP DWINA YTTN D IPRIN ,)ON INKD TN D1DDNI DINON DYV DI195-N2>T
SNY 290 09O NYD - OTIP INNNY DWINIAN ST DY NIANIN NYNM PNy 290 NP D)
D) NIV ,NYN DD TPYNRD NDIYNN DY NMAY iPNONP 0N D) ININ DNNOY DINNAN TTI
NNYPN MIIYN S MYITH DN DANYND NN DY PPN VITIVD DY TPIY 290 PXNONPA

LO»T-NOD

MYNINY MIIYNI 0) VI, NDT-NDDIAN NIIYN DI MYNYN 2337 1PN NDT MY N
129 29 IMIVYAN TYN AUN IPNN KYD 1PN NDT MPYS DTNV QR DY SODIPR TN DTN
D2°2IN WA PYND NIN DY NPINY NTNOA Dy YINKY MYy DNYSN ,DININKRD DNvYa
MOIYN MWD NOY DN NN DN IR DY DPHRY T PN NPIPNN NYODIPN M2a0a
NXMA NN VPP DNIN,NDTH MMN DY 25707900 NXPN NN DPMYN DOTIND NV Mn»p
NOIYN M NN NHYM  MINK NPVDIPN MYMND NT P2 2> TA0VY Y0ITNPRD ITODININ

JN2T MDD NN DY NIYS-TITP NNOVPYLIIIN DY NODINN NPY NTND

iii



0”)IVPINN DXV INDY NN DPANN NN NITYWN NN PATA NAPIYY NOIYN 1INA AN
NTNNY NIIYNN SR DINY MKD NN NIIYNN DX N ,PININ-NYPIN NDTN NN DY D9yan
- NOAYNY IV NDNON P DINPA MNP IRYD WP N LT APy 2N YODIPN TN
DYV ANNRIN PDOPON 19N NTAY 2INPD TN NTNND NN TD . 21IPN-N8PIN NN

N0V NNYN DARYNN NOINY TIYa PIPHNRD ODYNN NPy DY DI9WN

DTN 9N NINYN NAIPMNIN ONX NPNINN TNN DY :DDNN DN DWNIM D195-ND>T SWNIN
TON DV0N P OMYNYN DNRND ADIND TN L, DNVPMINND MY MNP DYDY NP
NON ION D»9N9D DVWNIN 1TPHNNN XD DN»P OIPNHN  .TIWIVNN TN 9190109 1NIND
DP9YNADN DXWNINN DY DHNNIAN 019 SVDIPN TN NTNND MOIYN DY DYHINNN DWINA]
LJPIINNND NY NPODIPN MNIN - N9195 NN oD NMpdyn N20N .0 N PR Do DMIoNnNn
NN NPODIPR MNIN N8N ROV NOIYN DAY AN .0MI0VNID 1900 YV NPPOYD P
NN TN PDOITRD PONN OV TYSN DT VDY TIT VYN 090 NPPVLDIVYNL NYNNNYN
-NTHOVWNIN DY DNV DN ININ MNNN NNNX I NDPY DY MINYON YODIPNRD TN

INVN OINION TNN DID0N TUND OINNND INNYAA N2INA NN MOIONN 0N 9D

YINYD N YVDIPN TN NTNND MOIYN NOYON INNRD NXI0) NYMN NN IV TN DY Mapy ovp
TNN 210010 NN INNND PONN TR P2 ANXNNN IDIN 2APY) 1DOXR MOIYN MNOV-IN APY PINID
YN0 91N DN DWIN ININ DNTIP DIPNNY X DY .NNSY NOIYNIT MINNNID INYON
THIN NN AT DYNTI 2TH D227 DANYND DONNN NPMY NTHY DDA DYTIN 1NN D) 0N
T NOIYN MINN NNIN .OPT-NOD NNYPND NPYLPIS MIIYND DINNND AVYNID NI DY TN
AYANNDN VTN PNION T0NT9 N2 NHDY DT NOHD MOIYNI NYNLND NDIRNNN PIPY TN NITD
NN DY YRNWYNN ST DY MPT 19IND VYYD NN - PV TN NPT MOIYHRHD NPYN) NNON

DN MIND DV MPYN NN DY IPYn TN N7

DV DN YVODIPN TN NTNND MIIWN SV DWNPIN NIIWYND DYRYN TWNR DN TN
D29y MPOADN N .9195-N2T *WNINA APy INITHN 29 OY OINYN MYNYN-1TH OO0
PPN TN ,MAX N¥IN MINA MPY NI 2IPYN TNN NN DN DPODIPNR D2ANNS Ot
3 SV PDLPPNDN DWYAN NN TIND NMI TPEONP MOYA )N IONX MP 0N 23 1PN
TAN NPT NN SV NOIYN NIYOND NNN APPI0N APDOIIOON MPPIvN SNV Nysm DTN
DWNIN 9195-N2T HWNINA NN MDA MPY NN DX NP0 712IWD APPI0NM Ivvn

1277 ANNOOY 1IN QDN XWX NPT DY NMAY TPYONP NOY MPPIVNOY NDXRIN ,DPMININD

ii



9851

Sy MODDIANN FPXIY-ITY FPXIIY-TN TPNNPINPI YODIPR TN NTNND MOIYN NPNN 1w N
DOT-NID NNMYPN MNMNIVOID NYNLND DPRNNN DD DWVIPN DY WITA NPy NTNd

LNT MDY NP POIY N APNN DY DOWN PON NN Nt NPNIM NPAIWN MDY NYNIAN

N2y M2202 TINYA,NPOVNIID MYN DY IMIPH DX IVIN NPONIVI MWD, MNINND DIVA
NTNN DY NN PIAND NINNDD INON) ONYN 22N OPNINPN ODNIN ,TIN IRNIND . NPVISPN
TPHNIVIN DT NNY RN SODIPN TN NTNND MOIYNI TNNN NN INPHN WNIN SVDIPN TN
2NN N¥PN NNIPIN PP N2A0Y 21PN DNPN RIAPIN TIVND DIPT TN ISP Y Pa
DT YOV MIN - MYNN NYN MNP DYDY YN0 PININ N¥PA DONNYNN Nt ¥wNIna
DWNIM N WNIN AINK DNSY ONY DN DY TN DY 1vapy Nyl ,210pN-N8pa NN DY
D MMNT XY MYNINY DINND DMWYV ,DINNNDI NININ 12 ONIVIMN YTV D9 0N 1D O T
NTNND MNDX MOIWN IWNNIY D27 OIPHN MIND  NPYDOVPTING ITWN ,MO»Y YT JTIIN
LDPMNNND DYININI NN JD TYND DV PMYNYN NTPH MO0 PrTY DN PODIPN TN
MDYN HY2 1N NN NDTN NN YN PVDIPRD TN NN TN YR PVPIS PIND 79D

M2 TPPOY IPNN

MY YD TPHIY-TN APHINONPA YODIPRA TN NPYaY NINSA Py NTPHRNN 1k MN
DIV NPN PIAPY TH NTNA PINPY PODIPR TN NTNN PIRDD XY YODIPN TN NTNN Ny

JOOIPN TN NTNHND MOIYN NIAY NMDOVPPAN

12 VPOND T2 TO ,07T-RYD MOIYN Y0IPMT PN TOIN DPNIVPONN DX MRNY DD
-NSPIN NI P WPN L0 DPIRYD KO MYMN Oy TTINNND MNONI YODIPN TN MIIYN
DYYNND 1) DIPP DIAPNN PIRYD XY NI DIPN-N¥PA PPN VOPIN THN PaY PN

LDPADN KD PN OTMIND DIYA MMN DY DN, MIP DMYD N NysaIna vYNnd N






SNYN NOTIND NVPHI INTIZ TN NOMIT N IRIY MOMIH DY DNPNINA YA IPNNN

Ruimioip)a)

DXNYM MONPNN DM DTIDY ,NMN NOR 921D ,ApNND 2D PR AT NN 12NN
DTNRN MNN 29D YNHANN SYTH IPNNHN NJINND ,NIY NN 10D NYY) 101 NP DIPpNnd
DAY DM DYYI T NN PIINNM IPNNN DY MPTN 10 0D INTPRD DYN DY NPHIND

DTN NN TN 29D RO

nmmn

5Y 720NN 0 Y 2 PHRNY T DY ,1ND ONIY MDD POV OUNRIN NNIND MTIND 21872
YTIN WY 091D - 22 INNM NN NPNMIN  LDNVPITY YOV YONN ToNNa 07 DYIVON

.1329N32 20 9PN

IPNNIND D Y MAPY I9INAY TD DY INTI2 TN MOPIT POV 0NN NNND DY MTIND MNIa

.D»NONNNN YAV TIN»A POV ApNNN DY PTIN APy N0V MIaN N2 0INNA

NOD WPYM - YMIYNI MY NPPUNRNM YTND OOY NANRD DR NNRY 0" 1IN OOW NAND

DY OINY M OO KD TOTYOD LONND NP2 DXNVN DININD NN 2D NND T MIND

M52 .09 NOY D) DVP DOYIT MDY IR ThYa MNONN DY NMINYY NYTY ,NNIN DY NOND

SOV YONN TONNI MAIVN MNTY MOLINN 52APd NYT

SNOTIVD dHY MO NN XVIAD DIPN 9 NNY WPV D Dy 001 Dy W M NPNND

.D2IVNN DI OV NPND PINY NI NV D NNd

YNANY ,72VN OYII2) INNY OYIT IR OOV TH0) M) SNYND MTIND NN N ,Y9on ANy
IND DN 2D ANV NN OMYNVYN M IWNN INPI OTHIN DDNRD IR MOND 7D 051 MDD

IR






YODIPN 19 DIva
NPMY N1NIY NYtya

PPN DY NN

ANINN NOAPO MWITH YV 'PON N owd

P9 NOPIT

599 993y PN

DNV MDNOV NON — POV VIDD YN

2023 93nan noan T’9wn 1DV






YODIPN 19 DIva
NPMY N1NIY NYtya

599 993y PN



	List of Tables
	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Background and Motivation
	1.2 Main Contributions
	1.3 Overview of the Thesis
	1.4 Organization

	2 Scientific Background
	2.1 Monophonic Acoustic-Echo Cancellation
	2.2 Stereophonic Acoustic-Echo Cancellation

	3 Nonlinear Acoustic-Echo Cancellation
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Nonlinear Acoustic-Echo Cancellation
	3.4 Experimental Setup
	3.4.1 Database Acquisition
	3.4.2 Data Processing, Training, and Testing
	3.4.3 Performance Measures

	3.5 Experimental Results
	3.6 Conclusions

	4 Deep Adaptation Control for Acoustic-Echo Cancellation
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Deep Variable Step-Size Algorithm
	4.3.1 General NLMS Filter Model in Double-talk
	4.3.2 Data-driven Generation of the Optimal Step-Size
	4.3.3 Optimal Step-Size Learning Using Neural Networks

	4.4 Experimental Setup
	4.4.1 Database Acquisition
	4.4.2 Data Processing, Training, and Testing
	4.4.3 Performance Measures

	4.5 Experimental Results
	4.6 Conclusions

	5 Deep Residual-Echo Suppression with A Tunable Tradeoff Between Signal Distortion and Echo Suppression
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Deep Residual-echo Suppression with Tunable Tradeoff
	5.4 Experimental Setup
	5.4.1 Database Acquisition
	5.4.2 Data Processing, Training, and Testing
	5.4.3 Performance Measures

	5.5 Experimental Results
	5.6 Conclusions

	6 Off-the-Shelf Deep Integration For Residual-Echo Suppression 
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Off-the-Shelf Deep Integration For Residual-Echo Suppression 
	6.4 Experimental Setup
	6.4.1 Database Acquisition
	6.4.2 Data Processing, Traning, and Testing
	6.4.3 Performance Measures

	6.5 Experimental Results
	6.6 Conclusions

	7 Objective Metrics to Evaluate Residual-Echo Suppression During Double-Talk
	7.1 Introduction
	7.2 Problem Formulation
	7.3 DSML and RESL
	7.4 RES System with a Design Parameter
	7.5 Experimental Setup
	7.5.1 Database Acquisition
	7.5.2 Data Processing, Training, and Testing
	7.5.3 Performance Measures

	7.6 Experimental Results
	7.7 Conclusions

	8 A User-centric Approach for Deep Residual-Echo Suppression in Double-talk
	8.1 Introduction
	8.2 Problem Formulation
	8.3 A User-centric Approach for Deep RES
	8.3.1 Providing a user operating-point for the URES framework
	8.3.2 RES with a tunable design parameter
	8.3.3 Estimation of the RESL and DSML metrics
	8.3.4 Maximizing the AECMOS

	8.4 Experimental Setup
	8.4.1 Database Acquisition
	8.4.2 Preprocessing, Training, and Testing
	8.4.3 Performance Measures

	8.5 Experimental Results
	8.5.1 Validating the performance of the RDE models
	8.5.2 The effect of the tolerance threshold values on performance
	8.5.3 The effect of the tolerance threshold values on P
	8.5.4 The effect of echo and noise levels on performance
	8.5.5 The effect of the number of RES instances on performance

	8.6 Conclusions

	9 Deep Adaptation Control for Stereophonic Acoustic-Echo Cancellation
	9.1 Introduction
	9.2 Problem Formulation
	9.3 DVSS-SNLMS Filter for SAEC
	9.3.1 Modeling the SNLMS Filter and Step-size in Double-talk
	9.3.2 Step-size Optimization with a Data-driven Approach
	9.3.3 Deep Adaptation to the Optimal Step-size

	9.4 Experimental Setup
	9.4.1 Database Acquisition
	9.4.2 Preprocessing, Training, and Testing
	9.4.3 Performance Measures

	9.5 Experimental Results
	9.6 Conclusions

	10 Objective Metrics to Evaluate Residual-Echo Suppression During Double-Talk in the Stereophonic Case
	10.1 Introduction
	10.2 Problem Formulation
	10.3 The SDSML and SRESL Metrics
	10.4 A Tunable Stereophonic RES System
	10.5 Experimental Setup
	10.5.1 Database Acquisition
	10.5.2 Data Preprocessing, Training, and Testing
	10.5.3 Performance Measures

	10.6 Experimental Results
	10.7 Conclusions

	11 Voice-Activity Detection for Transient Noisy Environment Based on Diffusion Nets
	11.1 Introduction
	11.2 Problem Formulation
	11.3 Proposed Algorithm for Voice-Activity Detection
	11.3.1 Deep Encoder-Decoder Neural Network
	11.3.2 Error Maps and Voice-Activity Detection Classifier

	11.4 Database and Feature Extraction
	11.4.1 Database
	11.4.2 Feature Extraction

	11.5 Experimental Setting
	11.5.1 Notation
	11.5.2 DED Training Process
	11.5.3 Classifier Training Process
	11.5.4 Testing Process

	11.6 Experimental Results
	11.6.1 Performance of Proposed Approach
	11.6.2 Comparison to Competing Methods
	11.6.3 Performance Analysis

	11.7 Conclusions

	12 Evaluation of Deep-learning-based Voice-Activity Detectors and Room Impulse Response Models in Reverberant Environments
	12.1 Introduction
	12.2 Database Generation
	12.3 Experimental Results
	12.4 Conclusions

	13 Discussion and Conclusions
	13.1 Discussion and Conclusions
	13.2 Future Research Directions

	Bibliography
	Hebrew Abstract

