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Abstract—In this paper, we address the problem of designing
broadband superdirective beamformers under some uncertainties
in the direction of arrival (DoA) of the desired source. We
formulate the signal model with a random steering vector, and
propose a set of maximum signal-to-noise ratio gain (MSNRG)
beamformers from the perspective of maximizing the signal-to-
noise ratio (SNR) gain. The MSNRG beamformers can achieve
maximum SNR gain and almost frequency-invariant beampat-
terns. Preliminary simulation results illustrate the properties and
advantages of the proposed beamformers.

Index Terms—Microphone arrays, fixed beamforming, su-
perdirective beamforming, random steering vector, signal-to-
noise ratio (SNR) gain.

I. INTRODUCTION

Beamforming is one of the the most popular methods to deal
with ubiquitous background noise, reverberation, competing
sources, and interferences [1]–[3]. Beamforming algorithms
can be broadly divided into two categories [2], [4], i.e., fixed
and adaptive ones. In this paper, we focus on the design of
fixed beamformers.

The delay-and-sum (DS) beamforming structure, which has
been widely used in narrowband applications [5], generally has
frequency-dependent directivity patterns [6]. The beamwidth
of the main lobe of the DS beamformer decreases with
the increase of frequency, which makes it unsuitable for
processing broadband desired signals, such as speech, and
suppressing noise and interferences at low frequency bands.
Another drawback of this beamformer is its low directivity
factor (DF), which limits its performance in dealing with
reverberation. Recently, superdirective (SD) [7]–[10] and d-
ifferential [11]–[16] beamformers have attracted much at-
tention due to their frequency-invariant beampatterns, high
DFs, and compact structures. Traditionally, most of the SD
and differential beamformers are designed for point sources
with fixed directions. In practice, however, there are some
uncertainties in the DoA of the source of interest due to
multiple reasons such as movement of the source, inaccurate
DoA estimation, etc [17]–[20]. To take into account DoA
uncertainties, we reformulate the signal model in this paper
and develop a set of MSNRG beamformers that yield the
maximum SNR gain. The beampatterns obtained with the
MSNRG beamformers are almost frequency invariant when

they are applied to microphone arrays with small interelement
spacing. The MSNRG beamformers can control the beamwidth
of the main lobe indirectly. Preliminary simulation results il-
lustrate the properties and advantages of the proposed MSNRG
beamformers.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a plane wave, in the farfield, that propagates
in an anechoic acoustic environment at the speed of sound,
i.e., c = 340 m/s, and impinges on a uniform linear sensor
array consisting of M omnidirectional microphones, where
the distance between two successive sensors is equal to δ. The
direction of the source signal to the array is parameterized by
the azimuth angle θ. In this context, the steering vector (of
length M ) is given by

d (ω, θ) =
[
1 e−ȷωτ0 cos θ · · · e−ȷ(M−1)ωτ0 cos θ

]T
, (1)

where the superscript T is the transpose operator, ȷ =
√
−1 is

the imaginary unit, ω = 2πf is the angular frequency, f > 0
is the temporal frequency, and τ0 = δ/c is the time delay
between two successive sensors at the angle θ = 0.

We are interested in fixed beamformers with small values
of δ, which is much smaller than λ/2, where λ is the signal
wavelength, like in superdirective [7], [21] or differential [22],
[23] beamforming, in order to eliminate spatial aliasing and
achieve high DFs and frequency-independent beampatterns.
But, contrary to these beamformers, the source of interest
(desired source) may not be exactly at the angle θs = 0
(endfire direction) in our context. Here, we assume that there
are some uncertainties in the desired source direction θs, so
that its corresponding steering vector, d (ω, θs), is random.
To simplify the derivation of the beamformers, it will be
assumed in the rest of this paper that θs is uniformly distributed
on the interval [0, ψ], where ψ (0 < ψ < π) is a design
parameter. In practice, ψ can be estimated by the algorithms
presented in [24]–[26]. For conciseness, we assume that the
microphone array and desired source are in the same plane
and the elevation angle is 0. In this case, the mean and the
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covariance matrix of d (ω, θs) are, respectively,

dψ (ω) = E [d (ω, θs)]

=
1

ψ

∫ ψ

0

d (ω, θs) dθs (2)

and

Φd,ψ (ω) = E
{[

d (ω, θs)− dψ (ω)
] [

d (ω, θs)− dψ (ω)
]H}

= Υψ (ω)− dψ (ω)d
H

ψ (ω) , (3)

where E[·] denotes mathematical expectation, the superscript
H is the conjugate-transpose operator, and

Υψ (ω) = E
[
d (ω, θs)d

H (ω, θs)
]

=
1

ψ

∫ ψ

0

d (ω, θs)d
H (ω, θs) dθs. (4)

The matrix Φd,ψ (ω) captures the uncertainties in the random
steering vector d (ω, θs).

With this signal model, the zero-mean observed signal
vector (of length M ) is

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + v (ω)

= d (ω, θs)X (ω) + v (ω) , (5)

where Ym (ω) is the observed signal at the mth microphone,
x (ω) = d (ω, θs)X (ω), X (ω) is the zero-mean desired
signal, and v (ω) is the zero-mean additive noise signal vector,
which is defined analogously to y (ω). The desired signal and
additive noise are assumed to be uncorrelated with each other.
We deduce that the correlation matrix of y (ω) is

Φy (ω) = E
[
y (ω)yH (ω)

]
= ϕX (ω)Υψ (ω) +Φv (ω)

= ϕX (ω)Υψ (ω) + ϕV1 (ω)Γv (ω) , (6)

where ϕX (ω) = E
[
|X (ω)|2

]
and ϕV1 (ω) = E

[
|V1 (ω)|2

]
are the variances of X (ω) and V1 (ω), respectively, with
V1 (ω) being the noise signal at the first microphone,
Φv (ω) = E

[
v (ω)vH (ω)

]
is the correlation matrix of v (ω),

and Γv (ω) =
Φv (ω)

ϕV1 (ω)
is the pseudo-coherence matrix of

v (ω). In the rest, it is assumed that we deal with the diffuse
noise, so that

Γv (ω) = Γd (ω)

= Nf

∫ π

0

f(θ)d (ω, θ)dH (ω, θ) dθ, (7)

where f(θ) is a positive function on the interval [0, π], and

Nf =
1∫ π

0
f(θ)dθ

(8)

is a normalization parameter. Here, we set f(θ) = 1, which
results in the cylindrically isotropic (diffuse) noise field. The
(i, j)th element of the M ×M matrix Γd(ω) in this case is

[Γd(ω)]ij = J0[ω(j − i)/c], (9)

where J0[·] is the zero-order Bessel function of the first kind. It
should be noted that in many studies about superdirective and
differential beamformers [7], [9], [13], the spherically isotropic
noise is used to design and evaluate the beamformers. In this
work, however, since it is assumed that the microphone array
and the desired source are in the same plane and the elevation
angle is 0, the cylindrically isotropic noise field is used.

By applying a complex-valued linear filter (of length M ),
h (ω), to the observed signal vector, y (ω), we obtain the
beamformer output:

Z (ω) = hH (ω)y (ω)

= hH (ω)d (ω, θs)X (ω) + hH (ω)v (ω) , (10)

where Z (ω) is the estimate of the desired signal. We deduce
that the variance of Z (ω) is

ϕZ(ω)

= hH(ω)Φy(ω)h(ω)

= ϕX(ω)hH(ω)Υψ(ω)h(ω) + ϕV1(ω)h
H(ω)Γd(ω)h(ω)

= ϕX(ω)
∣∣hH(ω)dψ(ω)

∣∣2 + ϕX(ω)hH(ω)Φd,ψ(ω)h(ω)

+ ϕV1(ω)h
H(ω)Γd(ω)h(ω). (11)

It is always possible to exploit the deterministic distortionless
constraint:

hH (ω)dψ (ω) = 1. (12)

III. PERFORMANCE MEASURES

The first important measure is the beampattern or directivity
pattern, which describes the sensitivity of the beamformer to
a plane wave impinging on the array from the direction θ. It
is given by

B [h (ω) , θ] = dH (ω, θ)h (ω)

=
M∑
m=1

Hm (ω) eȷ(m− 1)ωτ0 cos θ, (13)

where Hm (ω) , m = 1, 2, . . . ,M are the complex-valued
coefficients of the filter h (ω). The lobe with the highest
amplitude is named the main lobe. The range between the
first nulls on each side of the main lobe is defined as the
beamwidth.

If we take Microphone 1 as the reference, we can define
the input SNR with respect to this reference as

iSNR (ω) =
ϕX (ω)

ϕV1 (ω)
. (14)

The output SNR is defined as

oSNR [h (ω)] =
ϕX (ω)

ϕV1 (ω)
× hH (ω)Υψ (ω)h (ω)

hH (ω)Γd (ω)h (ω)
. (15)
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Fig. 1. Performance of the MSNRG beamformer versus M for different
values of ψ: (a) DF, (b) WNG, and (c) SNR gain in the cylindrically isotropic
noise field. Conditions: δ = 1.0 cm and f = 1 kHz.

From the previous definitions, we deduce that the SNR gain
is

G [h (ω)] =
oSNR [h (ω)]

iSNR (ω)

=
hH (ω)Υψ (ω)h (ω)

hH (ω)Γd (ω)h (ω)

=

1
ψ

∫ ψ
0
|B [h (ω), θ] |2dθ

1
π

∫ π
0
|B [h (ω), θ] |2dθ

, (16)

which is closely related to the front-to-back ratio (FBR) [12],
[13] defined as

R (h) =

∫ π/2
0

|B(h, θ)|2dθ∫ π
π/2

|B(h, θ)|2dθ
(17)

in the cylindrically isotropic noise field.
The most convenient way to evaluate the sensitivity of

the array to some of its imperfections with conventional
superdirective beamformers is via the so-called white noise
gain (WNG), which is defined as

W [h (ω)] =

∣∣hH (ω)d (ω, 0)
∣∣2

hH (ω)h (ω)
, (18)

where d (ω, 0) is the steering vector corresponding to the
desired source, which is assumed to be at the endfire direction.
The maximum WNG that can be achieved by a beamformer
is equal to M [22], i.e., Wmax [h(ω)] = M . Note that
W [h(ω)] < 1 indicates there is white noise amplification.
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Fig. 2. Beampatterns of the MSNRG beamformer for different values of ψ:
(a) ψ = 20◦, (b) ψ = 40◦, (c) ψ = 60◦, and (d) ψ = 80◦. Conditions:
M = 4, δ = 1.0 cm, and f = 1 kHz.

Another important measure with conventional superdirective
beamformers is the DF. It quantifies how the microphone
array performs in the presence of reverberation when the
desired source is at the endfire direction. With the cylindrically
isotropic (diffuse) noise field, the DF is defined as

D [h (ω)] =

∣∣hH (ω)d (ω, 0)
∣∣2

hH (ω)Γd (ω)h (ω)
. (19)

The maximum DF, Dmax [h(ω)], that can be achieved by a
beamformer in this case is equal to 2M − 1 [27].

The WNG and DF will also be used here to evaluate the
new fixed beamformers.

IV. SUPERDIRECTIVE BEAMFORMERS

In (16), we recognize the generalized Rayleigh quotient
[28]. It is well known that this quotient is maximized with
the eigenvector corresponding to the maximum eigenvalue of
Γ−1
d (ω)Υψ (ω). Therefore, the MSNRG beamformer is

hMSNRG (ω) = α (ω) t (ω) , (20)

where α (ω) ̸= 0 is an arbitrary complex number and t (ω)
is the eigenvector of matrix Γ−1

d (ω)Υψ (ω) corresponding to
the maximum eigenvalue, λ (ω). We deduce that

G [hMSNRG (ω)] = λ (ω) . (21)

Clearly, we always have

G [hMSNRG (ω)] ≥ G [h (ω)] , ∀h (ω) . (22)

In practice, it is important to properly choose the value of
α (ω). Here, we have three possibilities.

Let us define the conventional distortionless constraint:

hH (ω)d (ω, 0) = 1. (23)

The first possibility is to find α (ω) in such a way that
the MSNRG beamformer is distortionless in the conventional
sense. Substituting (20) into (23), we get

α (ω) =
1

dH (ω, 0) t (ω)
. (24)
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Fig. 3. Beampatterns of the MSNRG beamformer versus frequency. Condi-
tions: M = 4, δ = 1.0 cm, and ψ = 60◦.

Plugging (24) in (20), we obtain the first kind of MSNRG
beamformer:

hMSNRG,1 (ω) =
t (ω)

dH (ω, 0) t (ω)
. (25)

The second possibility to find α (ω) is by using the de-
terministic distortionless constraint defined in (12). We easily
find the second MSNRG beamformer:

hMSNRG,2 (ω) =
t (ω)

d
H

ψ (ω) t (ω)
. (26)

Finally, the third and last proposed idea to find α (ω) is by
using the power conservation constraint:

hH (ω)Υψ (ω)h (ω) = 1. (27)

Then, the third MSNRG beamformer is

hMSNRG,3 (ω) =
t (ω)√

tH (ω)Υψ (ω) t (ω)
. (28)

It should be noted that, when ψ = 0, i.e., the fixed point source
case, the proposed three MSNRG beamformers degenerate to
the traditional SD beamformer [7], [22].

V. SIMULATIONS

In this section, the performance of the proposed beamform-
ers are evaluated in terms of the beampattern, SNR gain,
WNG, and DF.

First, we examine the DF, WNG, and SNR gain of the
MSNRG beamformer versus the number of microphones,
M , for f = 1 kHz and different values of ψ. A uniform
linear array (ULA) with δ = 1.0 cm is considered. The
performances of the proposed three MSNRG beamformers are
very similar, which is reasonable since the only difference
among them is the choice of the scalar α(ω). So, we just
present the performance of the first kind of MSNRG beam-
formers, hMSNRG,1(ω). As can be seen, when ψ > 0, the
DF of the beamformer hMSNRG,1(ω) is smaller than that of
the traditional SD beamformer (ψ = 0), and the difference
increases with the value of ψ and the number of microphones.
Specifically, when ψ is large, the SNR gain of the MSNRG
beamformer in the cylindrically isotropic noise field does not
increase with M after reaching its maximum, and so is the
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Fig. 4. Performance of the MSNRG beamformer versus frequency for
different values of ψ: (a) DF, (b) WNG, and (c) SNR gain in the cylindrically
isotropic noise field. Conditions: M = 4 and δ = 1.0 cm

WNG. For example, when ψ = 50◦, the maximum SNR
gain in the cylindrically isotropic noise field is obtained when
M = 6 and this gain does no longer increase with the number
of microphones. The WNG stays in a very low level no matter
how many microphones are used. Both the DF and SNR gain
decrease with the increase of ψ, while the WNG increases
with the increase of ψ.

Second, we consider a ULA with M = 4 and δ = 1.0 cm.
The beampatterns of the beamformer hMSNRG,1(ω) for f =
1 kHz and different values of ψ are plotted in Fig. 2. As seen,
the beampatterns of the MSNRG beamformer vary greatly
with ψ. The beamwidth of the beampattern increases with
the value of ψ. Accordingly, the beamwidth of the designed
beampattern can be changed by controlling the value of ψ. It
should be noted, however, that for the given array aperture,
the beamwidth of the designed beampattern cannot be very
narrow, even when ψ = 0, due to the small aperture of the
array. Figure 3 plots the beampatterns of the designed MSNRG
beamformer versus frequency for ψ = 60◦. As seen, the
obtained beampatterns are almost frequency invariant, except
at very low frequencies (f < 100 Hz) due to numerical prob-
lems. The simulation results, i.e., DF, WNG, and SNR gain of
the MSNRG beamformer, hMSNRG,1(ω), in the cylindrically
isotropic noise field versus frequency with different values
of ψ are plotted in Fig. 4. It shows that the DF decreases
with the value of ψ. This is reasonable since the wider is the
beamwidth, the lower is the DF. Also, the SNR gain in the
cylindrically isotropic noise field decreases with the value of
ψ, while the WNG increases with the increase of the value
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of ψ. From Figs 1 and 4, we can see that, even though the
MSNRG beamformer can achieve the maximum SNR gain and
high DF for different values of ψ, it suffers from serious white
noise amplification (very low WNG), even when we use more
number of microphones. Our work in progress is to investigate
how to improve the WNG, while maintain the SNR gain in
the cylindrically isotropic noise field and frequency-invariant
beampattern of the MSNRG beamformer by exploiting the
redundancy provided by more number of microphones.

VI. SUMMARY

We have derived three MSNRG beamformers under some
uncertainties in the DoA of the desired source. According
to the simulations, we cannot always improve the SNR gain
of the MSNRG beamformer by increasing the number of
microphones when ψ is large, which is in contrast to the fixed
point source case. The beamwidth of the MSNRG beamformer
can cover the distributed range of the desired source. The
MSNRG beamformer achieves the maximum SNR gain and
almost frequency-invariant beampatterns. The traditional SD
beamformer is a particular case of the proposed framework.
While we consider only linear arrays, the principle of the
presented beamformers can be generalized to circular and
spherical geometries straightforwardly.
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