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ABSTRACT

We present a joint-diagonalization based approach for a
closed-form solution of the asymmetric supercardioid, imple-
mented with circular differential microphone arrays. These
arrays are characterized as compact frequency-invariant su-
perdirective beamformers, allowing perfect steering for all
azimuthal directions. Experimental results show that the
asymmetric supercardioid yields superior performance in
terms of white noise gain, directivity factor, and front-to-back
ratio, when additional directional attenuation constraints are
imposed in order to suppress interfering signals.

Index Terms— Circular differential microphone arrays
(CDMAs), asymmetric beampatterns, supercardioid.

1. INTRODUCTION

In some applications involving broadband speech signals, cir-
cular differential microphone arrays (CDMAs) [1, 2] are
advantageous due to several desired properties, such as
frequency-invariant (FI) directivity pattern, small physical
dimensions, superdirectivity [3,4], and perfect steering for all
azimuthal directions. Circular geometry in general is bene-
ficial for applications like 3D sound recording where signals
may come from any direction [5–8].

Previous works on differential microphone arrays (DMAs),
both for linear and circular geometries [9–13], have consid-
ered only the case of symmetric beampatterns, which is an
inherent limitation of the linear geometry. Yet, in different ar-
ray geometries like the circular one, asymmetric design may
lead to a substantial performance improvement.

Recently we have proposed an analytical model for asym-
metric CDMAs which generalizes the traditional symmetric
model [14, 15]. It is shown that an asymmetric model, com-
pared to a symmetric one, achieves higher performances in
terms of white noise gain (WNG), directivity factor (DF),
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and front-to-back-ratio (FBR) due to a more flexible design
under the constraints of the null directions. Herein, we pro-
pose an alternative approach to that in [14,15], which yields a
closed-form solution for the asymmetric FBR-optimal super-
cardioid directivity pattern, based on the joint-diagonalization
approach. The proposed approach is computationally advan-
tageous as it involves the inversion of a small-size matrix
while the former solution requires calculation of a null-space
matrix and maximization of a Rayleigh-quotient term. In the
simulations section, we present a second-order asymmetric
supercardioid design and demonstrate its benefits with respect
to the symmetric design.

2. SIGNAL MODEL

Consider an acoustic source signal, X(ω), with ω = 2πf de-
noting the angular frequency, that propagates in an anechoic
acoustic environment at the speed of sound, i.e., c ≈ 340m/s,
and impinges on a uniform circular array (UCA) of radius r,
consisting of M omnidirectional microphones, where the dis-
tance between two successive sensors is equal to

δ = 2r sin
( π
M

)
≈ 2πr

M
. (1)

The direction of X(ω) to the array is denoted by the azimuth
angle θs, measured anti-clockwise from the x axis, i.e., at
θ = 0◦.

Assuming the far-field propagation, the time delay between
the mth microphone and the center of the array is τm(θs) =
r
c cos(θs − ψm), m = 1, 2, ...,M, where ψm = 2π(m−1)

M
is the angular position of the mth array element. The mth
microphone signal is

Ym(ω) = ej$ cos(θs−ψm)X(ω) + Vm(ω), m = 1, 2, ...,M,
(2)

where $ = ωr
c , j =

√
−1, and Vm(ω) is the additive noise at

the mth microphone. In a vector form, (2) becomes

y(ω) = [Y1(ω) · · · YM (ω)]
T
= d (ω, θs)X(ω) + v(ω), (3)



where d (ω, θs) is the steering vector at θ = θs, i.e.,

d (ω, θs) =
[
ej$ cos(θs−ψ1) · · · ej$ cos(θs−ψM )

]T
, (4)

the superscript T is the transpose operator, the vector v(ω)
is defined similarly to y(ω), and the acoustic wavelength is
λ = c/f . It is assumed that δ � λ, in order to approximate
the differential of the pressure signal.

Assuming a 2D scenario, the FI beampattern of an N th-
order DMA is given, for any steering angle θs, as [9, 16]

BN (θ − θs) =
N∑
n=0

aN,n cos
n(θ − θs), (5)

where θ is the azimuth, and {aN,n}Nn=0 are real coefficients.
In order to design a practical beamformer, the vector y(ω)

should be multiplied by a complex vector, h(ω), where
h(ω) = [H1(ω) H2(ω) · · · HM (ω)]

T . The correspond-
ing designed beampattern is

B [h(ω), θ] = hH(ω)d(ω, θ). (6)

The vector h(ω) can be obtained using the approaches pre-
sented in [14, 15], which are aimed to design B [h(ω), θ] as
close as possible to BN (θ − θs) (in the mean-square error
sense).

3. ASYMMETRIC BEAMPATTERN FOR CDMAs

Traditional designs of DMAs focus mainly on linear geome-
try which inherently dictates a symmetric beampattern. Ac-
cordingly, (5) is sufficient for FI beampatterns associated with
DMAs. Recently, we extended that design to include also
asymmetric beampatterns. Specifically, an N th-order asym-
metric CDMA beampattern with the mainlobe steered to θs
is [14, 15]

BN (θ − θs) =
N∑
n=0

ξn cos
n(θ − θs) +

bN−1
2 c∑

n=0

µn sin
2n+1(θ − θs)

+

bN2 c∑
n=1

ζn cos(θ − θs) sin2n−1(θ − θs), (7)

which is a trigonometric polynomial of power N with 2N
roots, and {ξ0, ..., ξN , µ0, ..., ζ1, ...} are real coefficients. In
fact, (7) can be equivalently expressed as

BN (θ − θs) =
N∑
n=0

an cos [n(θ − θs)] +
N∑
n=1

bn sin [n(θ − θs)] .

(8)

In the following derivations, we use for convenience (8) in-
stead of (7).

4. OPTIMAL ASYMMETRIC SUPERCARDIOID

The common directivity patterns in the context of microphone
arrays are dipole, cardioid, hypercardioid, and supercardioid.
These patterns, originally developed for linear geometry, are
traditionally symmetric with respect to the steering angle, θs.
In this section, we develop an asymmetric version of the su-
percardioid for CDMAs based on a joint-diagonalization ap-
proach. The supercardioid pattern maximizes the FBR [9],
which is defined for a cylindrical noise field as

F =

∫ π/2
−π/2 B

2
N (θ) dθ∫ 3π/2

π/2
B2N (θ) dθ

, (9)

where we assume, without loss of generality, that the steering
angle is θs = 0◦. Let us define the following vector

q(θ) = [1, cos(θ), ..., cos(Nθ), sin(θ), ... sin(Nθ)]
T
. (10)

Then, we can write that
∫ π/2
−π/2 B

2
N (θ) dθ = cTΓfc and∫ 3π/2

π/2
B2N (θ) dθ = cTΓbc, where

c = [a0, a1, ..., aN , b1, ..., bN ]
T (11)

is a vector of length 2N +1 containing the coefficients of the
asymmetric beampattern (8). The matrices Γf and Γb of size
(2N + 1)× (2N + 1) are given by

[Γf ]l,k =

∫ π/2

−π/2
ql(θ)qk(θ)dθ l, k = 0, 1, ..., 2N

[Γb]l,k =

∫ 3π/2

π/2

ql(θ)qk(θ)dθ l, k = 0, 1, ..., 2N,

(12)

where qi(θ) , [q(θ)]i is the ith element of the vector q(θ).
It can be shown that [Γf ]l,k = 0 and [Γb]l,k = 0 for 0 ≤

l ≤ N andN+1 ≤ k ≤ 2N . Also, [Γf ]l,k = 0 and [Γb]l,k =
0 for N + 1 ≤ l ≤ 2N and 0 ≤ k ≤ N . Therefore, the
coefficients {an}Nn=0 and {bn}Nn=1 are independent. Hence,
the circular geometry provides more degrees of freedom in
the design of optimal patterns such as the supercardioid, and
additional directional constraints should be imposed. The first
one is the distortionless constraint:

BN (θs = 0◦) = 1, (13)

leading to
∑N
n=0 an = 1. We can add up to L ≤ 2N attenua-

tion constraints of the form:

BN (θ = θl) = gl, l = 1, 2, ..., L, (14)

where 0 ≤ gl ≤ 1. We formulate these constraints as

Hcc = g, (15)



where Hc is the constraint matrix of size (L+1)× (2N +1),
typically non-diagonal. Vector g of length L + 1 contains
the coefficients gl, l = 1, 2, ..., L, and a single unity entry,
satisfying (13).

Now we can formulate the optimization problem which
provides the asymmetric supercardioid beampattern:

max
c

cTΓfc

cTΓbc
subject to Hcc = g. (16)

In order to solve (16), both Γf and Γb can be jointly diag-
onalized as follows [17]:

TTΓfT = Λ, (17)

TTΓbT = I2N+1, (18)

where

T = [t1 t2 · · · t2N+1] (19)

is a full-rank square matrix of size (2N + 1) × (2N + 1),
I2N+1 is the identity matrix of size (2N+1)× (2N+1), and

Λ = diag (λ1, λ2, ..., λ2N+1) (20)

is a diagonal matrix of size (2N + 1)× (2N + 1) containing
the eigenvalues of the matrix Γ−1b Γf in a descending order,
i.e., λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λ2N+1 ≥ 0. The columns of the
matrix T are

tl =
t′l√

t′Tl Γbt′l

, l = 1, 2, ..., 2N + 1, (21)

where t′l is the lth eigenvector of the matrix Γ−1b Γf , corre-
sponding to the lth eigenvalue λl. We also define the vector:

c′ = T−1c. (22)

Substituting (17), (18) and (22) to (16), we get the equivalent
optimization problem:

max
c′

c′TΛc′

c′T c′
subject to HcTc′ = g. (23)

The solution to the unconstrained version of (23) is known to
be λmax = λ1, and for that case c′opt = [γ, 0, 0, ..., 0] where
γ is a constant. Since we have L + 1 constraints that should
be satisfied, the optimal vector c′opt is of the form:

c′opt =
[
γT 0T2N−L

]T
, (24)

where γ is a vector of length L + 1 and 02N−L is a column
vector containing 2N − L zeros. Taking a vector c′opt with
more thanL+1 non-zero elements may lead to inferior results
as proven in [16] (See Property 2.3.1, pp.45). Therefore, (23)
can be reduced to

HcT̃γ = g, (25)

where

T̃ = [t1 t2 · · · tL+1] (26)

is a matrix of size (2N +1)× (L+1) that contains the L+1
eigenvectors corresponding to the L + 1 largest eigenvalues
of the matrix Γ−1b Γf . The solution to (25) is

γ =
(
HcT̃

)−1
g. (27)

Substituting (22) and (24) into (27), we have

copt = T̃
(
HcT̃

)−1
g. (28)

5. A DESIGN EXAMPLE

In this section, we present a design example of the second-
order asymmetric supercardioid. Second-order designs re-
quire at least M = 5 microphones. Let us assume that the
steering angle is θs = 0◦ and we would like to impose two
nulls at θ1 = 90◦ and θ2 = 245◦. We choose r = 0.75 cm
which leads to δ = 0.88 cm.

First, we need to find the corresponding analytical asym-
metric beampattern. Solving (28), the optimal coefficients
vector, c (11), is calculated and substituted into (8). The
two additional roots are θ3 = 133◦, and θ4 = 190◦. Fig-
ure 1(a) shows the analytical beampattern of the second-order
asymmetric design (blue solid line), its symmetric version
(black dashed line), i.e., the beampattern for the case that
θ3 = 115◦, and θ4 = 270◦, and also the second-order un-
constrained symmetric supercardioid (red circles line), which
was derived in [9] and obtained for nulls at θ1 = 106◦, and
θ2 = 153◦. The latter is obtained by a direct optimization of
the FBR without any constraints on the null directions. Fig-
ure 1(b) shows a second example where two directional con-
straints θ1 = 115◦ and θ2 = 230◦ were imposed. Table 1
summarizes the FBR values obtained by the three compared
approaches for both examples. One can see that compared
to the symmetric approach, the asymmetric design is signifi-
cantly less sensitive than the symmetric design to the values
of θ1 and θ2. Furthermore, the asymmetric design achieves
higher FBR values, which are closer to those values obtained
by the unconstrained approach.

Table 1: Front-to-Back-Ratio, F [dB], Achieved by Each of
the Designs of a Second-Order Supercardioid for Two Differ-
ent Choices of Constraints.

θ1 = 90◦

θ2 = 245◦
θ1 = 115◦

θ2 = 230◦

Asymmetric 22.97 24.23
Symmetric 9.44 22.30
Unconstrained symmetric 26.31 26.31



30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

0dB

-10dB

-20dB

-30dB

-40dB

(a)

30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

0dB

-10dB

-20dB

-30dB

-40dB

(b)

Fig. 1: Beampatterns for the second-order asymmetric su-
percardioid (blue solid line) and its symmetric version (black
dashed line). The red circles line is the unconstrained second-
order symmetric supercardioid [9]. (a) θ1 = 90◦, θ2 = 245◦.
(b) θ1 = 115◦, θ2 = 230◦.

Using the calculated values of c (11) and of {θi}4i=1, we
can calculate h(ω) using one of the methods presented in
our previous work [14,15] and design the second-order asym-
metric supercardioid. In the following, we consider only the
first example, i.e., the one with the parameters θ1 = 90◦ and
θ2 = 245◦.

Figure 2 shows the WNG, the DF, and the FBR1 as a
function of frequency for the second-order asymmetric su-
percardioid (blue solid line), the second-order symmetric
supercardioid (black dashed line), and the second-order un-
constrained symmetric supercardioid (red circles line). These
performance measures are defined as [16]

W [h(ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)h (ω)
, (29)

D [h(ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)Γdn (ω)h (ω)
, (30)

F [h(ω)] =

∫ π/2
−π/2 B

2 [h(ω), θ] dθ∫ 3π/2

π/2
B2 [h(ω), θ] dθ

, (31)

where

[Γdn (ω)]ij = sinc

(
2ωr

c

∣∣∣∣sin [π (i− j)M

]∣∣∣∣) . (32)

The performance of the asymmetric design is very sim-
ilar to that of the unconstrained supercardioid in terms of
WNG, DF, and FBR while the symmetric design achieves
much lower FBR and similar DF. In [14], we derive also
the asymmetric hypercardioid and show that the asymmetric

1for a cylindrical noise field
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Fig. 2: WNG (a), DF (b), and FBR (c) vs. frequency for
the second-order asymmetric supercardioid (blue solid line),
the second-order symmetric design (black dashed line), and
the second-order unconstrained symmetric supercardioid (red
circles line) with M = 5 sensors. θ1 = 90◦, θ2 = 245◦.

design can achieve superior performance also in terms of DF.
In addition, practical methods to improved the WNG, based
either on regularization methods or increasing the number of
sensors, can be found in [18] and are not included here as we
would like to concentrate on the comparison between sym-
metric and asymmetric designs.

6. CONCLUSIONS

We have presented an alternative solution to an asymmetric
supercardioid, which is based on the joint-diagonalization ap-
proach. The proposed solution is computationally more effi-
cient than an existing alternative solution. Simulation results
demonstrate that the asymmetric model yields a more flexi-
ble design and superior performance in several real-world ap-
plications involving beamforming for speech signals such as
teleconferencing, hand-free communications, and more.
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