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1. Introduction

Microphone array systems are often used for high quality hands-free communication in reverberant and noisy environ-
ments [1]. Compared to single microphone systems, a substantial gain in performance is obtainable due to the spatial
filtering capability to suppress interfering signals coming from undesired directions. In cases of spatially incoherent
noise fields, beamforming alone does not provide sufficient noise reduction, and postfiltering is normally required (see
[2, 3] and references therein). Existing microphone array systems are based on beamforming and multi-channel Wiener
postfiltering. However, a Wiener filter minimizes the mean-square error (MSE) distortion of the signal estimate, which
is essentially not the optimal criterion for enhancing noisy speech. A more appropriate distortion measure for speech
enhancement systems is based on the MSE of the spectral, or log-spectral, amplitude [4, 5]. Furthermore, abrupt transient
interferences are not attenuated, since the postfilter is unable to track and adapt to fast changes in the noise statistics.
Single-channel postfiltering techniques also lack the ability to attenuate transient noise, since transients are generally not
differentiated from the desired speech components.

In this paper, we present a multi-microphone speech enhancement approach for minimizing the log-spectral amplitude
(LSA) distortion in non-stationary noise environments. An adaptive beamformer with a generalized sidelobe canceller
structure is applied to the noisy observed signals. In addition to the beamformer primary output, it provides reference
noise signals by projecting the input signals onto the noise-only subsapce. Presumably, a desired signal component is
stronger at the beamformer output than at any reference noise signal, and a noise component is strongest at one of the
reference signals. Hence, the ratio between the transient power at beamformer output and the transient power at the
reference signals indicates whether such a transient is desired or interfering. Based on a Gaussian statistical model [4],
and an appropriate decision-directed a priori SNR estimate [6], we derive an estimator for the signal presence probability.
This estimator controls the rate of recursive averaging in obtaining a noise spectrum estimate by the Minima Controlled
Recursive Averaging (MCRA) approach [7]. Subsequently, spectral enhancement of the beamformer output is achieved
by applying an optimal gain function, which minimizes the MSE of the log-spectra.

2. Problem Formulation
Let x(t) denote a desired speech signal, and let the observed signals at the output of M microphones be given by

zi(t) = a;(t) x x(t) + nis(t) + nip(t), i=1,....M (1)

where a;(t) is the impulse response of the acoustic path between the desired speaker and the i-th microphone, * denotes
convolution, n;s represents pseudo-stationary noise, and n;; represents undesired transient components. An adaptive
beamformer (specifically, the transfer-function generalized sidelobe canceller (TF-GSC) [8]) is applied to the noisy ob-
served signals. The beamformer comprises a fixed beamformer, which is steered to the look-direction,a blocking matrix,
which generates the reference noise signals by projecting the input signals onto the noise-only subspace, and a multi-
channel adaptive noise canceller, which reduces the stationary noise that leaks through the sidelobes of the fixed beam-
former. We assume that the noise canceller is adapted only to the stationary noise, and not modified during transient
interferences. Furthermore, we expect that some desired speech components may leak through the blocking matrix due to
steering error.

Using the short-time Fourier transform (STFT), the beamformer primary output and the reference noise signals can be
written as

Y(k,0) = X1(k,0) + D1s(k, 0) + D14(k, ) 2)
Uz(k,g) = Xz(k,g) + Dis(k,g) + Dit(k,g), 1=2,....M

where the first term in each signal is a non-stationary component due to the desired speech signal. The other two terms
are stationary and transient noise components. Our objective is to find an estimator X (k, £) for the desired beamformer
output speech, which minimizes the distortion measure

E{(logXl(k,fﬂ —1og\X1(k,£)|)2 Y (k, 0), Us(k, £), - - - ,UM(k,é} . 3)
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Fig. 1. Block diagram of the multi-microphone log-spectral amplitude estimation.

3. Multi-Microphone Log-Spectral Amplitude Estimation

A block diagram of the proposed multi-microphone log-spectral amplitude estimation scheme is shown in Fig. 1. Transient
components are detected at the beamformer output, and an estimate for the signal presence probability is produced based
on a Gaussian statistical model. A noise spectrum estimate is obtained by recursively averaging past spectral power
values, using a smoothing factor that is adjusted by the speech presence probability. Subsequently, spectral enhancement
of the beamformer output is achieved by applying the optimally-modified log-spectral amplitude (OM-LSA) gain function
[6], which minimizes the MSE of the log-spectra.

Let S be a smoothing operator in the power spectral domain, and let M denote an estimator for the background pseudo-
stationary noise, derived using the MCRA approach [7]. The transient beam-to-reference ratio (TBRR) is defined by the
ratio between the transient power of the beamformer output and the transient power of the strongest reference signal:

SY (k, ) — MY (k,£)
22}1{\4 {SU;(k,£) — MU;(k, )} '

Q(k, ) = “4)

2

This ratio indicates whether a transient is likely derived from speech or ambient noise. Assuming that the steering error of
the beamformer is relatively low, and that the interfering noise is uncorrelated with the desired speech, the TBRR is high
only when speech components are present. Hence, by modifying the speech presence probability based on that ratio, we
can generate a double mechanism for non-stationary noise reduction: First, through a fast update of the noise estimate (an
increase in the noise estimate essentially results in lower spectral gain). Second, through the spectral gain computation
(the spectral gain is exponentially modified by the speech presence probability [6]).

Let the a priori speech absence probability be estimated by

1, if A(k,€) < Agor Q(k,0) < Qow
q(k, ) = o ®)
max { %’:@}7_%(1’“5)’ 0} , otherwise,
vigh ow
where A(k,¢) = SY (k,0)/ MY (k, ) represents a local non-stationarity measure, A denotes a threshold for detecting
transients, and 5., and 45, are constants that represent the uncertainty in Q(k, £) during weak speech activity. Based

on a Gaussian statistical model [4], the speech presence probability is given by

q(k, 0)

LB D (14 el ) expl-ol )} ©

p(k, 0) = {1+

where y(k,0) 2 Y (k, O /a(k,£) and £(k,0) 2 E {|X(k,0)|?} /Xa(k, ) are respectively the a posteriori and a

priori SNRs, and v = ~v&/(1 4 £). Computing a time-varying frequency-dependent smoothing parameter by a4 (k, ) =
ag + (1 — aq) p(k, £), we obtain the following estimate for the noise spectrum at the beamformer primary output:

Aa(k, €+ 1) = aq(k, ) Na(k, €) + B[1 — ca(k, 0)]|Y (k, 0> (7)

where ag (0 < ag < 1) represents the minimal value of the smoothing parameter, and (3 is a factor that compensates the
bias when speech is absent. This estimate is fed into the OM-LSA estimator, for estimating the desired speech component
of the beamformer output, X; (k, £).

The proposed noise estimator takes into account transient, as well as stationary, noise components. When speech is absent,
the TBRR is low. Consequently, G(k, ¢) increases to one, the speech presence probability decreases to zero, and &4(k, £)
reduces to its minimal value ay. Hence, the fast update of the noise estimate and the low value of the speech presence
probability facilitate the suppression of noise components, whether stationary or not. In case the noise abruptly changes
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Fig. 2. (a) Segmental SNR, (b) log-spectral distance, and (c) noise reduction, at (AA) microphone #1, (o) TF-GSC output,
(x) single-channel postfiltering output, (solid line) multichannel postfiltering output, and (x) theoretical limit postfiltering
output.

shortly before the onset of speech, single-channel noise estimation techniques either underestimate or overestimate the

noise, depending whether it rises or decreases prior to the speech onset. The underestimation of the noise results in

musical residual noise, while overestimation results in degradation of speech quality. On the other hand, the proposed

method provides improved noise tracking capability allowing to better preserve weak speech components, while avoiding

the musical residual noise phenomena.

4. Experimental Results

To validate the usefulness of the proposed multi-microphone LSA estimation approach under non-stationary noise condi-

tions, we compare its performance to an alternative method in a noisy car environment. Specifically, multi-microphone

speech signals are degraded by an interfering speaker and car noise signals. Then, TF-GSC beamforming is applied to

the noisy signals, followed by either single-channel or multi-channel postfiltering. A linear array, consisting of four mi-

crophones with 5 cm spacing, is mounted in a car on the visor. Clean speech signals are recorded at a sampling rate of

8 kHz in the absence of background noise (standing car, silent environment). An interfering speaker and car noise signals

are recorded while the car speed is about 60 km/h, and the window next to the driver is slightly open (about 5 cm; the

other windows are closed). The input microphone signals are generated by mixing the speech and noise signals at various

SNR levels in the range [—5, 10] dB. Three objective quality measures are used: Segmental SNR (SegSNR), log-spectral

distance (LSD), and noise reduction (NR) [9].

Fig. 2 shows experimental results obtained for various noise levels. The quality measures are evaluated at the first mi-

crophone, the adaptive beamformer output, and the postfiltering outputs. A theoretical limit postfiltering, achievable by

calculating the noise spectrum from the noise itself, is also considered. Clearly, beamforming alone does not provide

sufficient noise reduction in a car environment, owing to its limited ability to reduce diffuse noise [8]. Furthermore,

multi-channel postfiltering is considerably better than single-channel postfiltering. The TF-GSC output is characterized

by a high level of noise, which varies substantially due to the residual interfering components of speech, wind blows,

and passing cars. Single-channel postfiltering suppresses the pseudo-stationary noise components, but is inefficient at

attenuating the transient noise. By contrast, the proposed estimation approach achieves superior noise attenuation, while

preserving the desired speech components. This is verified by a subjective study of speech spectrograms and informal

listening tests.
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