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ABSTRACT

Multi-resolution decompositions, such as the wavelet trans-
form, are often employed in anomaly detection algorithms for
feature extraction. However, the extracted features may be
unreliable for anomaly detection in textures due to inconsis-
tencies between the assumed background model and the true
data. In this paper, we present an anomaly detection scheme
which relies on a statistical model of textures and is specif-
ically designed for detection of anomalies in textures. Mo-
tivated by recent works on texture segmentation and texture
classification, we introduce a multi-resolution feature space
that facilitates anomaly detection with constant false alarm
rate for a wide range of textures. Experimental results demon-
strate that the proposed algorithm, when applied to images
containing background texture, achieves improved detection
results and lower false alarm rate than a competitive anomaly
detection scheme.

1. INTRODUCTION

Anomaly target detection is the process of locating elements
in a scene which are unlikely to be a part of it. This is gener-
ally done with respect to a predefined probabilistic model and
an appropriate feature space, in which a clear segregation be-
tween the anomalous elements and the rest of the background
clutter in the scene is possible. Multi-resolution decomposi-
tions, such as the wavelet transform, are often used for fea-
ture extraction. These decompositions use a set of multi-
scale bandpass oriented filters for decomposing the image, a
process which is effective at decoupling the high-order sta-
tistical features of natural images. In addition, it efficiently
represents the visually relevant features of images [1]. De-
tection methods often use classifiers which employ a proba-
bilistic model upon the derived feature space. Bayesian clas-
sifiers require knowledge of a-priori and posteriori statistics
of both background clutter and anomalous targets and thus
may be a source for loss of robustness. A wide variety of
potential targets which do not necessarily conform to a uni-
form model or even a characterizing subspace, render detec-
tors such as the Matched Signal Detector, the Matched Sub-
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space Detector [2, 3, 4, 5] and the Adaptive Subspace Detec-
tor [6] ineffective. Furthermore, these detection methods use
probabilistic models which are usually Gaussian based, due
to the mathematical traceability of this distribution. Noibar
and Cohen have argued in [7] that these methods are there-
fore not appropriate for modeling two common phenomena
of multi-resolution feature spaces: heavy tails of the marginal
probability density function of the features (known as excess
kurtosis) and volatility clustering (a characteristics in which
large changes tend to follow large changes and small changes
tend to follow small changes); leading to potentially higher
false alarm rates due to the inadequacy between the model and
the data. These phenomena of a wavelet based feature space
therefore call for an alternative scheme that utilizes suitable
long-tailed distributions, such as the Gaussian Scale Mixture
(GSM).

In this paper, we propose an unsupervised anomaly
detection scheme which does not rely on the exhaustive
statistical model of the targets, but rather on the local multi-
resolution statistics of the background clutter and possibly
on some a-priori information of the minimal expected size
of the targets. Our choice of a feature space is motivated
by previous work on the enhancement of texture segmen-
tation by Unser and Eden [8] and texture classification by
Mittelman and Porat [9]. We utilize the Redundant Discrete
Wavelet Transform (RDWT) for the purpose of generating
a multi-resolution feature space. We calculate from the
resulting wavelet coefficients their local second moment
estimates (corresponding to the GSM hidden multipliers
maximum likelihood estimates), followed by the logarithmic
transformation. The use of the logarithmic transformation
was reported to have the effect of variance equalization which
yields better segmentation results [8]. The resulting feature
space, when derived from natural textures, was shown to
follow the Gaussian distribution [10, 11], hence, making it
suitable for use with Bayesian classifiers. We then employ
additional smoothing to the resulting feature channels. This
final averaging reduces the feature component variances and
results in clusters in feature space that are more compact and
easier to distinguish. We show that increasing the size of



the averaging window yields better detection results, as long
as the window size does not exceed the anomalous target
size. Our choice of a classifier is motivated by previous
work on anomaly detection by Goldman and Cohen [12],
where the Single Hypothesis Test (SHT) [13] was used.
Applying the SHT on the proposed feature space yields an
anomaly detection algorithm with constant false alarm rate
(CFAR) regardless of the background clutter and anomaly
type, depending only on the feature space dimensionality.
We have implemented the proposed algorithm and tested
it with various scenes, containing Brodatz-like background
textures and target anomalies [14]. The proposed algorithm
mimics the detection mechanism of the human eye, achieving
outstanding detection results even when using textures with
significant visual resemblance between the anomalous target
and the background clutter.

This paper is organized as follows. In Section 2 we for-
mulate the problem. In Section 3, we present the proposed
anomaly detection scheme. In Section 4, we present experi-
mental results.

2. PROBLEM FORMULATION

Let €2 be the support lattice for {y(s)}scq - the observations
of an image containing a background natural texture with rare
anomalous target signals scattered around in the image, de-
noted as x(s) and n(s) respectively. The target signals are as-
sumed to be much smaller than the support lattice of the back-
ground image and therefore can be regarded as transients. We
define two possible hypotheses for each pixel s € €

HO : y(S) = I(S),
Hy:  y(s) =n(s),
where Hy and H; represent the absence and presence of an

anomaly in the image respectively. The problem at hand is to
define an anomaly detection algorithm that achieves:
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A
Pp =p(H|Hy), Pp=>1-—e,

A 2)
Pra =p(Hi|Hp), Pra < e,

for given values of €; and e5.

3. ANOMALY DETECTION ALGORITHM

A block diagram of the proposed algorithm is presented in
Figure 1. Let {y;(s)},_, ,, denote the jth layer wavelet
coefficients obtained from the mean normalized image ob-
servations y(s) using a RDWT with (m — 1)/3 levels. Let
{tj(s)};_; _,, denote the logarithm of the GSM hidden
multipliers estimate, given by:

> yi(s+r)
reR,

—_— 3
| ; 3

tj(s) =log

y(s)

/ Generate multi-scale \

\_representation using the RDW'Q

yi(S)| ya(s) ==={ ym(s)
[
2 “,/ Non—Linezarity #1 \,
o \ X /
£_ ] (=) J
3 0 - -
3 l l l
EE | J|eececcecee
o £
£ - ~
; ( Spatial Smoothing #1 \
Local Neighborhood )
A o /

«/ Non-Linearity #2 \
log(-) )

¥ t1(5)" ty(s) == 3 tm(s)

J/ Spatial Smoothing #2 \
\\Window Size < Anomaly Size/‘

vi(s) | va(s) ---‘ Vin(S)

B 4 \ 4
/Feature Reduction using KLT\\‘
‘\\ (Optional) )
v vy TTTTT ) 4

Mahalanobis Distance \

Calculation /
L 4
d(s)

\ 4

( Anomaly Detection )

N\ J

Fig. 1. Block diagram of the proposed anomaly detection al-
gorithm.

where R; denotes a given set of indices representing the
N x N local neighborhood of a pixel. Let {v;(s)}
denote the proposed feature space, given by:

> t(s+)

ER
vj(s) = ”W,

j=1,....m

“4)

where Ro denotes a given set of indices represent-
ing the M x M local neighborhood of a pixel. Let
v(s) = [v1(s), v2(s), ..., vm(s)]” denote the feature vector
representing pixel s € Q. Let pu, and p; denote the ex-
pectancy of the random feature vector v(s) under hypothe-
ses Hy and H; respectively. Let 33 and 37 denote the co-
variance matrix of the random feature vector v(s) under hy-
potheses Hy and H; respectively. Following the assumption
that the anomalous targets are rare and can be regarded as
transients:

Bo =

E
o B )7 5)
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The Mahalanobis distance for pixel s € €2 is then given by:
d(s) = (v(s) — o) Zg ' (v(s) — po) - (6)

Following the SHT scheme, the decision rule for pixel s € 2
is defined as follows:

d(s) 2 n, @)

Ho

where 7 is the threshold that determines if a given pixel s € 2
is regarded as an anomaly or background clutter. This deci-
sion rule is based on the statistics of the background clutter
alone. Some a-priori information regarding the minimum ex-
pected size of the targets can be utilized to determine M, thus
improving the performance of the algorithm. The feature vec-
tor v(s) is a linear combination of Gaussian random vectors
with dimension m [10, 11] and as such, it is also a Gaussian
random vector. Since the covariance matrix X is a positive
definite matrix, equation (6) can be formulated as follows:

d(s) = z(s)"z(s), (®)

where z(s) 2 281/2 (v(s) — to). The random vector z(s)
is distributed according to:

z(s)|u, ~ N (0,1),

- - 9
z(s)|m, NN(EO 12 (K4 _ll’(])vzolzl) . ©)

As such, the Mahalanobis distance under hypothesis Hy is
chi-square distributed with m degrees of freedom, regardless
of the background clutter:

d(s)|m, ~ x2,(0). (10)

The false alarm, as formulated in equation (2) is then given
by:
Ppa=1-p (x7(0) <n). (an

A special case is when under hypothesis H; the observations
are assumed to be a linear combination of the target signa-
ture and the background clutter. The statistical distributions
of the two hypotheses are therefore Gaussian with common
covariance matrices (i.e., Xy = ;) and different means.
This yields a detection scheme similar to the RX algorithm
[15]. In particular:

d(s)|m, ~ X2, (N), (12)

where A = (g — [LO)T o' (q — po). The detection rate,
as formulated in equation (2) is then given by:

Pp=1-p(x2, () <n). (13)

When M is increased, the expectancies p, and g, remain
the same. However, the variances of the marginal distribu-
tions under both hypotheses are reduced. The reduction fac-
tor is approximately equal for both background clutter and
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Fig. 2. Mahalanobis distance calculation using a background
clutter image and an anomaly image, both Brodatz like, for
various values of M.

target anomaly whenever the size of the averaging window
is greater than the maximum distance over which pixels are
significantly correlated [8]. As a result, we expect that the de-
tection rate will be a monotone increasing function with the
averaging window size M. Since a parametric form for Pp
is not available for the general case, we have verified this on
various Brodatz like textures [14]. An example is given in
section 4.

4. EXPERIMENTAL RESULTS

4.1. Performance Analysis

In order to verify the theory which states that the proposed
feature space follows the Gaussian distribution and there-
fore conform to kurtosis value of 3, we have tested it on
40 Brodatz-like textures [14] using various averaging win-
dow sizes 1 < M < 40. We have then examined the in-
fluence of the averaging window size M on the performance
of the proposed algorithm. We have observed that given any
two textures from the Brodatz-like database [14], higher val-
ues of M leads to a better detection rate at a pre-determined
false alarm rate. This is shown in Figure 2, using background
and anomaly textures which appear different. Concurrent Re-
ceiver Operation Characteristics (ROC) curves are shown in
Figure 3 (a). Figure 2 shows that the Mahalanobis distance in-
deed follows the chi-square distribution under hypotheses H.
Figure 3 (b) shows ROC curves for various window sizes, de-
rived from background and anomaly textures having evident
visual resemblance. This implies that M should be increased
in order to achieve better performance, where the upper bound
value is derived from the a-priori information of the minimal
expected size of the targets.
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Fig. 3. Calculated ROC curves using various values of M for:
(a) Background and anomaly textures which look different.
(b) Background and anomaly textures having evident visual
resemblance.

4.2. Anomaly Detection Examples

We have performed extensive testings of the proposed algo-
rithm, using both real and synthesized images. Typical im-
ages are shown in Figure 4. The synthesized images were
created using a set of Brodatz-like textures [14] that were
used for both background clutter and anomalous targets. In
particular, we have studied two interesting cases: anomalous
targets taken from textures which appear different from the
background clutter and anomalous targets taken from textures
which have evident visual resemblance to the background
clutter. These are shown in Figure 4 (a-b) with corresponding
detection results in Figure 4 (d-e). It can be seen that the algo-
rithm detects the anomalies in both cases, in spite of the dif-
ficulty to locate it when observing the images with the naked
eye. For real image data, we have used the same set of sonar
images that were used in [12]. The image shown in Figure
4 (c) is a good example for the volatility clustering phenom-
ena that follows multi-resolution decompositions [7]. Never-

o ©

Fig. 4. (a) Synthesized image with anomaly in its center, us-
ing textures not having evident visual resemblance. (b) Syn-
thesized image with anomaly in its center, using textures hav-
ing evident visual resemblance. (c) Real sonar image contain-
ing a sea-mine. (d-f) Corresponding detection results using
m =10, N =3, M = 15.

theless, it can be seen in Figure 4 (f) that this does not affect
the detection of the sea-mine and produces no false alarms
with proper thresholding of the calculated distance.

5. CONCLUSION

We have introduced a multi-resolution feature space and a
corresponding anomaly detection method. The proposed fea-
ture space is well modeled by the Gaussian distribution and
thus is appropriate for use with Bayesian classifiers. Our de-
tection method is based on the Single Hypothesis Test, thus
it is not restricted to targets which follow a uniform model
or reside in a characterizing subspace. The proposed scheme
yields a CFAR detection algorithm which achieves improved
detection results.
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