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Abstract

Speech enhancement is a long standing problem with numerous applications ranging from

hearing aids, to coding and automatic recognition of speech signals. In this survey paper

we focus on enhancement from a single microphone, and assume that the noise is additive

and statistically independent of the signal. We present the principles that guide researchers

working in this area, and provide a detailed design example. The example focuses on

minimum mean square error estimation of the clean signal’s log-spectral magnitude. This

approach has attracted significant attention in the past twenty years. We also describe the

principles of a Monte-Carlo simulation approach for speech enhancement.

1 Introduction

Enhancement of speech signals is required in many situations in which the signal is to

be communicated or stored. Speech enhancement is required when either the signal or

its receiver is degraded. For example, hearing impaired individuals require enhancement of

perfectly normal speech to fit their individual hearing capabilities. Speech signals produced

in a room generate reverberations, which may be quite noticeable when a hands-free single

channel telephone system is used and binaural listening is not possible. A speech coder

may be designed for clean speech signals while its input signal may be noisy. Similarly, a

speech recognition system may be operated in an environment different from that it was

designed to work in. This short list of examples illustrates the extent and complexity of

the speech enhancement problem.

In this survey paper, we focus on enhancement of noisy speech signals for improving their

perception by human. We assume that the noise is additive and statistically independent

of the signal. In addition, we assume that the noisy signal is the only signal available for
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enhancement. Thus, no reference noise source is assumed available. This problem is of

great interest, and has attracted significant research effort for over fifty years. A successful

algorithm may be useful as a preprocessor for speech coding and speech recognition of noisy

signals.

The perception of a speech signal is usually measured in terms of its quality and in-

telligibility. The quality is a subjective measure which reflects on individual preferences of

listeners. Intelligibility is an objective measure which predicts the percentage of words that

can be correctly identified by listeners. The two measures are not correlated. In fact, it

is well known that intelligibility can be improved if one is willing to sacrifice quality. This

can be achieved, for example, by emphasizing high frequencies of the noisy signal [35]. It is

also well known that improving the quality of the noisy signal does not necessarily elevate

its intelligibility. On the contrary, quality improvement is usually associated with loss of

intelligibility relative to that of the noisy signal. This is due to the distortion that the clean

signal undergoes in the process of suppressing the input noise. From a pure information

theoretic point of view, such loss in “information” is predicted by the data processing theo-

rem [10]. Loosely speaking, this theorem states that one can never learn from the enhanced

signal, more than he can learn from the noisy signal, about the clean signal.

A speech enhancement system must perform well for all speech signals. Thus, from

the speech enhancement system point of view, its input is a random process whose sample

functions are randomly selected by the user. The noise is naturally a random process.

Hence, the speech enhancement problem is a statistical estimation problem of one random

process from the sum of that process and the noise. Estimation theory requires statistical

models for the signal and noise, and a distortion measure which quantifies the similarity

of the clean signal and its estimated version. These two essential ingredients of estimation

theory are not explicitly available for speech signals. The difficulties are with the lack of a

precise model for the speech signal and a perceptually meaningful distortion measure. In

addition, speech signals are not strictly stationary. Hence, adaptive estimation techniques,

which do not require explicit statistical model for the signal, often fail to track the changes

in the underlying statistics of the signal.

In this paper we survey some of the main ideas in the area of speech enhancement

from a single microphone. We begin in Section 2 by describing some of the most promis-

ing statistical models and distortion measures which have been used in designing speech

enhancement systems. In Section 3 we present a detailed design example for a speech en-

hancement system which is based on minimum mean square error estimation of the speech

spectral magnitude. This approach integrates several key ideas from Section 2, and has
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attracted much attention in the past twenty years. In Section 4, we present the principles

of a Monte-Carlo simulation approach to speech enhancement. Some concluding comments

are given in Section 5.

2 Statistical Models and Estimation

Enhancement of noisy speech signals is essentially an estimation problem in which the

clean signal is estimated from a given sample function of the noisy signal. The goal is to

minimize the expected value of some distortion measure between the clean and estimated

signals. For this approach to be successful, a perceptually meaningful distortion measure

must be used, and a reliable statistical model for the signal and noise must be specified.

At present, the best statistical model for the signal and noise, and the most perceptually

meaningful distortion measure, are not known. Hence, a variety of speech enhancement

approaches have been proposed. They differ in the statistical model, distortion measure,

and in the manner in which the signal estimators are being implemented. In this section,

we briefly survey the most commonly used statistical models, distortion measures, and the

related estimation schemes.

2.1 Linear Estimation

Perhaps the simplest scenario is obtained when the signal and noise are assumed statistically

independent Gaussian processes, and the mean squared error (MSE) distortion measure is

used. For this case, the optimal estimator of the clean signal is obtained by the Wiener

filter. Since speech signals are not strictly stationary, a sequence of Wiener filters is designed

and applied to vectors of the noisy signal. Suppose that Yt and Wt represent, respectively,

l-dimensional vectors from the clean signal and the noise process where t = 0, 1, 2, . . ..

Let Zt = Yt + Wt denote the corresponding noisy vector. Let RYt and RWt denote the

covariance matrices of Yt and Wt, respectively. Then, the minimum mean squared error

(MMSE) estimate of the signal Yt is obtained by applying the Wiener filter to the noisy

signal Zt as follows

Ŷt =
[
RYt(RYt + RWt)

−1
]
Zt. (2.1)

Remarkably, this simple approach is one of the most effective speech enhancement ap-

proaches known today. The key to its success is reliable estimation of the covariance

matrices of the clean signal and of the noise process. Many variations on this approach

have been developed and were nicely summarized by Lim and Oppenheim [26]. When RYt is

estimated by subtracting an estimate of the covariance matrix of the noise vector, say R̂Wt ,
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from an estimate of the covariance matrix of the noisy vector, say R̂Zt , then the Wiener

filter at time t becomes (R̂Zt − R̂Wt)R̂
−1
Zt

. The subtraction is commonly performed in the

frequency domain where it is simpler to control the positive definiteness of the estimate

of RY . This approach results in the simplest form of the family of “spectral subtraction”

speech enhancement approaches [26].

MMSE estimation under Gaussian assumptions leads to linear estimation in the form of

Wiener filtering given in (2.1). The same filter could be obtained if the Gaussian assump-

tions are relaxed, and the best linear estimator in the MMSE sense is sought. If we denote

the linear filter for Yt by the l× l matrix Ht, then the optimal Ht is obtained by minimizing

the MSE given by E{||Yt −HtZt||2}. Here E{·} denotes expected value, and || · || denotes

the usual Euclidean norm. Note that when the filter Ht is applied to the noisy signal Zt,

it provides a residual signal given by

Yt − Ŷt = Yt −HtZt = (I −Ht)Yt + HtWt. (2.2)

The term (I − Ht)Yt represents the distortion caused by the filter, and the term HtWt

represents the residual noise at the output of the filter. Since the signal and noise are

statistically independent, the MSE error is the sum of two terms, the distortion energy

ε2d = E{||(I −Ht)Yt||2} and the residual noise energy ε2n = E{||HtWt||2}. The Wiener filter

minimizes ε2d +ε2n over all possible filters Ht. An alternative approach proposed by Ephraim

and Van-Trees [18] was to design the filter Ht by minimizing the distortion energy ε2d for a

given level of acceptable residual noise energy ε2n. This approach allows the design of a filter

which controls the contributions of the two competing components ε2d and ε2n to the MSE.

The resulting filter is similar to that in (2.1) except that RWt is replaced by µtRWt where µt

is the Lagrange multiplier of the constrained optimization problem. The idea was extended

to filter design which minimizes the distortion energy for a given desired spectrum of the

residual noise. This interesting optimization problem was solved by Lev-Ari and Ephraim

in [25]. The estimation criterion was motivated by the desire to adjust the spectrum of the

residual noise so that it is least audible.

In [18], the two estimation criteria outlined above were applied to enhancement of noisy

speech signals. It was noted that there is strong empirical evidence that supports the notion

that covariance matrices of many speech vectors are not full rank matrices. This notion is

also supported by the popular sinusoidal model for speech signals, in which a speech vector

with l = 200 − 400 samples at 8kHz sampling rate, is spanned by fewer than l sinusoidal

components. As such, some of the eigenvalues of RYt are practically zero, and the vector

Yt occupies a subspace of the Euclidean space Rl. A white noise, however, occupies the

entire space Rl. Thus, the Euclidean space Rl may be decomposed into a “signal subspace”
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containing signal plus noise, and a complementary “noise subspace” containing noise only.

Thus, in enhancing a noisy vector Zt, one can first null out the component of Zt in the noise

subspace and filter the noisy signal in the signal subspace. The decomposition of Zt into its

signal subspace component and noise subspace component can be performed by applying

the Karhunen-Loève transform to Zt.

2.2 Spectral Magnitude Estimation

In Section 2.1 we focused on MMSE estimation of the waveform of the speech signal. This

estimation may be cast in the frequency domain as follows. We use (·)′ to denote conjugate

transpose. Let D′ denote the discrete Fourier transform (DFT) matrix. Let Zt = 1√
l
D′Zt

denote the vector of spectral components of the noisy vector Zt. For convenience, we have

chosen to use normalized DFT. We denote the kth spectral component of the noisy vector

Zt by Ztk. Let ΛZt be a diagonal matrix with the variances of the spectral components

{Ztk, k = 0, 1, . . . , l − 1} on its main diagonal. Assume, for simplicity, that RYt and RWt

are circulant matrices [24]. This means that RYt = 1
l DΛYtD

′ and RWt = 1
l DΛWtD

′. Let

Ŷt = 1√
l
D′Ŷt be the normalized DFT of the MMSE estimate Ŷt. Under these assumptions,

(2.1) becomes

Ŷt =
[
ΛYt(ΛYt + ΛWt)

−1
]
Zt. (2.3)

This filter performs MMSE estimation of the spectral components { Ytk} of the clean

vector Yt. It is commonly believed, however, that the human auditory system is more sen-

sitive to the short-term spectral magnitude {| Ytk|, k = 0, 1, . . . , l− 1} of the speech signal

than to its short-term phase {arg( Ytk), k = 0, 1, . . . , l − 1}. This has been demonstrated

by Wang and Lim [37] in a sequence of experiments. They have synthesized speech sig-

nals using short-term spectral magnitude and phase derived from two noisy versions of the

same speech signal at different signal to noise ratios (SNR’s). Thus, they could control the

amount of noise in the spectral magnitude and in the phase. Hence, it was suggested that

better enhancement results could be obtained if the spectral magnitude of a speech signal

rather than its waveform is directly estimated. In this situation, the phase of the noisy

signal is combined with the spectral magnitude estimator in constructing the enhanced

signal. Maximum likelihood estimates of the short-term spectral magnitude of the clean

signal were developed by McAulay and Malpass [32] for additive Gaussian noise. An MMSE

estimator of the short-term spectral magnitude of speech signal was developed by Ephraim

and Malah [14]. The spectral components of the clean signal and of the noise process

were assumed statistically independent Gaussian random variables. Under the same as-

sumptions, the MMSE estimator of the short-term complex exponential of the clean signal,
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exp(j arg( Ytk)), which does not affect the spectral magnitude estimator (i.e., has a unity

modulus), was shown in [14] to be equal to the complex exponential of the noisy signal.

This confirmed the intuitive use of the noisy phase in systems which capitalize on spectral

magnitude estimation.

It is further believed that the human auditory system compresses the signal’s short-

term spectral magnitude in the process of its decoding. It was suggested that a form

of logarithmic compression is actually taking place. Hence, better enhancement of the

noisy signal should be expected if the logarithm of the short-term spectral magnitude is

directly estimated. An MMSE estimator of the log-spectral magnitude of speech signal

was developed by Ephraim and Malah [15] under the same Gaussian assumptions described

above. This approach has attracted much interest in recent years and will be presented in

more details in Section 3.

2.3 The Gaussian Model

The assumption that spectral components of the speech signal at any given frame are

statistically independent Gaussian random variables, underlies the design of many speech

enhancement systems. In this model, the real and imaginary parts of each spectral com-

ponent are also assumed statistically independent identically distributed random variables.

We have mentioned here the Wiener filter for MMSE estimation of the spectral compo-

nents of the speech signal, and the MMSE estimators for the spectral magnitude and for

the logarithm of the spectral magnitude of the clean signal. The Gaussian assumption is

mathematically tractable, and it is often justified by a version of the central limit theo-

rem for correlated signals [4, Theorem 4.4.2]. The Gaussian assumption for the real and

imaginary parts of a speech spectral component has been challenged by some authors, see,

e.g., [33], [30]. In [33], for example, the spectral magnitude was claimed to have a Gamma

distribution. In [30], the real and imaginary parts of a spectral component were assumed

statistically independent Laplace random variables. We now show that the Gaussian and

other models are not necessarily contradictory.

The assumption that a spectral component is Gaussian is always conditioned on knowl-

edge of the variance of that component. Thus, the Gaussian assumption is attributed to the

conditional probability density function (pdf) of a spectral component given its variance.

A conditionally Gaussian spectral component may have many different marginal pdf’s. To

demonstrate this point, consider the spectral component Ytk and its variance σ2
Ytk

. Let

the real part of Ytk be denoted by Y . Let the variance σ2
Ytk

/2 of the real part of Ytk be

denoted by V . Assume that the conditional pdf of Y given V is Gaussian. Denote this pdf
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by p(y|v). Assume that the variance V has a pdf p(v). Then the marginal pdf of Y is given

by

p(y) =
∫

p(y|v)p(v)dv. (2.4)

The pdf of Y is thus a continuous mixture of Gaussian densities. This pdf may take many

different forms which are determined by the specific prior pdf assumed for V . For example,

suppose that V is exponentially distributed with expected value 2λ2, i.e., assume that

p(y|v) =
e−

y2

2v√
2πv

and p(v) =
e−

v
2λ2

2λ2
u(v) (2.5)

where u(σ) is a unit step-function. Substituting (2.5) into (2.4) and using [23, eq. (3.325)]

shows that

p(y) =
1
2λ

e−
|y|
λ (2.6)

or that Y has a Laplace pdf just as it was assumed in [30]. This argument shows that

estimators for a spectral component of speech signal obtained under non-Gaussian models

may be derived using the conditional Gaussian pdf and an appropriately chosen pdf for the

variance of the spectral component. In our opinion, using the conditional Gaussian model

is preferable, since it is much better understood, and it is significantly easier to work with.

The variance of a spectral component must be assumed a random variable, since speech

signals are not strictly stationary. Thus, the variance sequence {σ2
Ytk

, t = 1, 2, . . .} corre-

sponding to the sequence of spectral components { Ytk, t = 1, 2, . . .} at a given frequency

k, is not known in advance and is best described as a random sequence. In [14], [15], the

variance of each spectral component of the clean signal was estimated and updated from

the noisy signal using the decision-directed estimator. In [13], the variance sequence was

assumed a Markov chain and it was estimated online from the noisy signal. In [8], a re-

cursive formulation of the variance estimator is developed following the rational of Kalman

filtering.

A closely related statistical model for speech enhancement is obtained by modeling

the clean speech signal as a hidden Markov process (HMP). An overview of HMP’s may

be found in [19]. Speech enhancement systems using this model were first introduced by

Ephraim, Malah and Juang [16]. An HMP is a bivariate process of state and observation

sequences. The state sequence is a homogeneous Markov chain with a given number of

states, say M . The observation sequence is conditionally independent given the sequence of

states. This means that the distribution of each observation depends only on the state at

the same time and not on any other state or observation. Let Sn = {S1, . . . , Sn} denote the

state sequence where we may assume without loss of generality that St ∈ {1, . . . , M}. Let
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Y n = {Y1, . . . , Yn} denote the observation sequence where each Yt is a vector in a Euclidean

space Rl. The joint density of (Sn, Y n) is given by

p(sn, yn) =
n∏

t=1

p(st|st−1)p(yt|st) (2.7)

where p(s1|s0) = p(s1). When St = j, we replace p(yt|st) by p(yt|j). In [16], [17], p(yt|j)
was assumed to be the pdf of a vector from a zero mean Gaussian autoregressive process.

The parameter of the process, i.e., the autoregressive coefficients and gain, depends on

the state j. This parameter characterizes the power spectral density of the signal in the

given vector. Thus, p(yt|j) was assumed in [16], [17] to be conditionally Gaussian given the

power spectral density of the signal. There are M power spectral density prototypes for

all vectors of the speech signal. The HMP assumes that each vector of the speech signal

is drawn with some probability from one of the M autoregressive processes. The identity

of the autoregressive process producing a particular vector is not known, and hence the

pdf of each vector is a finite mixture of Gaussian autoregressive pdf’s. In contrast, (2.4)

represents a mixture of countably infinite Gaussian pdf’s. In the HMP model, spectral

components of each vector of the speech signal are assumed correlated since each vector is

assumed autoregressive, and consecutive speech vectors are weakly dependent since they

inherit the memory of the Markov chain.

2.4 Signal Presence Uncertainty

In all models presented thus far in this section, the clean signal was assumed to be present

in the noisy signal. Thus we have always viewed the noisy signal vector at time t as

Zt = Yt + Wt. In reality, however, speech contains many pauses while the noise may be

continuously present. Thus the noisy signal vector at time t may be more realistically

described as resulting from two possible hypotheses: H1 indicating signal presence and H0

indicating signal absence. We have

Zt =

{
Yt + Wt under H1

Wt under H0
(2.8)

This insightful observation was first made by McAulay and Malpass [32] who have modified

their speech signal estimators accordingly. For MMSE estimation, let E{Yt|Zt,H1} denote

the conditional mean estimate of Yt when the signal is assumed present in Zt. Let P (H1|Zt)

denote the probability of signal presence given the noisy vector. The MMSE of Yt given Zt

is given by

E{Yt|Zt} = P (H1|Zt)E{Yt|Zt,H1}. (2.9)
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The model of speech presence uncertainty may be refined and attributed to spectral com-

ponents of the vector Zt [14]. This aspect will be dealt with more details in Section 3.

2.5 Multi-State Speech Model

The signal presence uncertainty model may be seen as a two-state model for the noisy

signal. A five-state model for the clean signal was proposed earlier by Drucker [12]. The

states in his model represent fricative, stop, vowel, glide, and nasal speech sounds. For

enhancing a noisy signal, he proposed to first classify each vector of the noisy signal as

originating from one of the five possible class sounds, and then to apply a class-specific

filter to the noisy vector.

The HMP model for the clean signal described in Section 2.3 is a multi-class model.

When HMP’s are used, the classes are not a-priori defined, but they are rather created in

a learning process from some training data of clean speech signals. The learning process

is essentially a clustering process that may be performed using vector quantization tech-

niques [22]. For example, each class may contain spectrally similar vectors of the signal.

Thus, each class may be characterized by a prototype power spectral density which may

be parameterized as an autoregressive process. Transitions from one spectral prototype to

another are probabilistic and are performed in a Markovian manner. The noise process

may be similarly represented. If there are M speech classes and N noise classes, then

M ×N estimators must be designed for enhancing noisy speech signals. Suppose that we

are interested in estimating the speech vector Yt given a sequence of noisy speech vectors

zt = {z1, . . . , zt}. Let p((i, j)|zt) denote the probability of the signal being in state i and

the noise being in state j given zt. Then, the MMSE estimator of Yt from zt is given by

[17]

E{Yt|zt} =
M∑

i=1

N∑

j=1

p((i, j)|zt)E{Yt|zt, (i, j)}. (2.10)

3 MMSE Spectral Magnitude Estimation

In this section we focus on MMSE estimation of the logarithm of the short-term spectral

magnitude of the clean signal. We provide a design example of a speech enhancement

system which relies on conditional Gaussian modeling of spectral components and on speech

presence uncertainty. Recall that the kth spectral component of the clean speech vector Yt

is denoted by Ytk. The variance of Ytk is denoted by σ2
Ytk

. It is assumed that spectral

components { Ytk} with given variances {σ2
Ytk

> 0} are statistically independent Gaussian
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random variables. Similar assumptions are made for the spectral components of the noise

process {Wtk}.
The spectral component Ztk of the noisy signal is given by

Ztk = Ytk + Wtk. (3.1)

Let Htk
1 and Htk

0 denote the hypotheses of speech presence and speech absence in the

noisy spectral component Ztk, respectively. Let qtk denote the probability of Htk
1 . The

spectral components of the noisy signal {Ztk} are statistically independent Gaussian random

variables given their variances {σ2
Ztk
}.

We are interested in estimating the logarithm of the spectral magnitude of each compo-

nent of the clean signal from all available spectral components of the noisy signal. Under

the statistical model assumed here, given the variances of the spectral components and

the probabilities of speech presence, estimation of log | Ytk| is performed from Ztk only.

Since the variances of the spectral components and the probabilities of speech presence are

not available, however, these quantities are estimated for each frequency k from the noisy

spectral components observed up to time t, and the estimates are plugged in the signal

estimate. We use σ̂2
Ytk

and σ̂2
Wtk

to denote estimates of the variances of Ytk and Wtk,

respectively, and q̂tk to denote an estimate of qtk. We next present estimation of the signal

and its assumed known parameter.

3.1 Signal Estimation

The signal estimator is conveniently expressed in terms of the a-priori and a-posteriori

SNR’s. These quantities are defined as

ξtk =
σ2

Ytk

σ2
Wtk

and γtk =
|Ztk|2
σ2

Wtk

(3.2)

respectively, where l denotes the frame length. We also define

ϑtk =
ξtk

ξtk + 1
γtk. (3.3)

The estimates of ξtk and γtk used here are ξ̂tk = σ̂2
Ytk

/σ̂2
Wtk

and γ̂tk = |Ztk|2/σ̂2
Wtk

. To

prevent estimation of the logarithm of negligibly small spectral magnitudes under the hy-

pothesis that speech is absent in Ztk, Cohen and Berdugo [6] proposed to estimate the

conditional mean of the following function of Ytk

f( Ytk) =

{
log | Ytk| , under Htk

1

log νtk , under Htk
0

(3.4)
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where νtk is a spectral threshold. They showed that

̂| Ytk| = exp
{
E

{
f( Ytk) |Ztk; σ̂2

Ytk
, ξ̂tk, q̂tk

}}

=
[
G(ξ̂tk, γ̂tk) |Ztk|

]q̂tk
ν1−q̂tk

tk (3.5)

where

G(ξ, γ) =
ξ

ξ + 1
exp

(
1
2

∫ ∞

ϑ

e−x

x
dx

)
(3.6)

represents the spectral gain function derived by Ephraim and Malah [15] under Htk
1 . Note

that this gain function depends on Ztk and hence the estimator in (3.5) is nonlinear even

when the parameter of the statistical model is known. It was further proposed in [6] to

replace νtk in (3.5) by Gmin|Ztk| where Gmin ¿ 1. This substitution provides a constant

attenuation of |Ztk| under Htk
0 rather than using a constant term that is independent of

|Ztk|. This practice is closely related to the “spectral floor” modification of the spectral

subtraction method proposed by Berouti, Schwartz and Makhoul [3]. The constant atten-

uation retains the naturalness of the residual noise when the signal is absent. Substituting

this constant attenuation in (3.5) gives

̂| Ytk| = [G(ξ̂tk, γ̂tk)]q̂tk G1−q̂tk
min |Ztk|. (3.7)

To form an estimator Ŷtk for the clean spectral component Ytk, the spectral magni-

tude estimator ̂| Ytk| is combined with an estimator of the phase of Ytk. Ephraim and

Malah [14] proposed to use the MMSE estimator of the complex exponential of that phase.

The modulus of the estimator was constrained to a unity so that it does not affect the

optimality of the spectral magnitude estimator ̂| Ytk|. They showed that the constrained

MMSE estimator is given by the complex exponential of the noisy phase.

The integral in (3.6) is the well known Exponential Integral of ϑ, and it can be nu-

merically evaluated, e.g., using the expint function in MATLAB. Alternatively, it may be

evaluated by using the following computationally efficient approximation, which was devel-

oped by Martin et al. [31]

expint(ϑ) =
∫ ∞

ϑ

e−x

x
dx ≈





−2.31 log10(ϑ)− 0.6 , for ϑ < 0.1
−1.544 log10(ϑ) + 0.166 , for 0.1 ≤ ϑ ≤ 1
10−0.52 ϑ−0.26 , for ϑ > 1 .

(3.8)

3.2 Signal Presence Probability Estimation

In this section we address the problem of estimating the speech presence probability qtk.

Define a binary random variable Vtk which indicates whether or not speech is present in
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the spectral component Ztk.

Vtk =

{
1 under Htk

1

0 under Htk
0

(3.9)

Cohen and Berdugo [6] proposed to estimate qtk as the conditional mean of Vtk given Ztk

and an estimate of the parameter of the statistical model. Specifically,

q̂tk = E{Vtk|ztk; σ̂2
Wtk

, ξ̂t} = P (Htk
1 |ztk; σ̂2

Wtk
, ξ̂t). (3.10)

Using Bayes’ rule, they expressed the conditional probability of Hkt
1 in (3.10) in terms of

the Gaussian densities of Ztk under the two hypotheses and some estimate of the prior

probability of Htk
1 . They provided a scheme for estimating the prior probability from

spectral components observed up to time t − 1. Let the prior probability estimate be

denoted by q̂tk|t−1. Following this approach they showed that [6]

q̂tk =

[
1 +

1− q̂tk|t−1

q̂tk|t−1
(1 + ξ̂tk) exp(−ϑ̂tk)

]−1

(3.11)

where ϑ̂tk is the estimate of ϑtk defined in (3.3).

The estimator q̂tk|t−1 is based on the distribution of the a priori SNR, and the rela-

tion between the likelihood of speech absence in the time-frequency domain and the local

and global averages of the a priori SNR. The speech absence probability is estimated for

each frequency bin and each frame by a soft-decision approach, which exploits the strong

correlation of speech presence in neighboring frequency bins of consecutive frames.

3.3 A Priori SNR Estimation

Reliable estimation of the speech spectral component variances is crucial for successful

implementation of the signal estimator (3.7). Ephraim and Malah [14] proposed a decision-

directed variance estimator for their MMSE spectral magnitude estimator. The variance

estimator at a given frame uses the signal spectral magnitude estimate from the previous

frame along with the current noisy spectral component. Let Âtk = ̂| Ytk| denote the MMSE

signal spectral magnitude estimate from Ztk. The decision-directed estimate of the variance

of Ytk is given by

σ̂2
Ytk

=
1

q̂tk

[
αÂ2

t−1,k + (1− α) max
{
|Ztk|2 − σ̂2

Wtk
, 0

}]
(3.12)

where 0 ≤ α ≤ 1 is an experimental constant. The estimator was also found useful when Âtk

is the MMSE log-spectral magnitude estimator [15]. In the latter case, the estimator was

used with q̂tk = 1 since the signal was assumed zero under the null hypothesis. While this
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estimator was found useful in practice, the division by q̂tk may deteriorate the performance

of the speech enhancement system [34]. In some cases, it introduces interaction between

the estimated q̂tk and the a priori SNR, resulting in unnaturally structured residual noise

[28].

Cohen and Berdugo [6] showed that a preferable variance estimator is obtained if Ât−1,k

in (3.12) is replaced by the estimator Ât−1,k|Htk
1

for the magnitude of Yt−1,k obtained under

the signal presence hypothesis, and the division by q̂tk is not performed. The resulting

estimator is given by

σ̂2
Ytk

= α Â2
t−1,k|Htk

1
+ (1− α)max

{
|Ztk|2 − σ̂2

Wtk
, 0

}
(3.13)

Expressing Ât−1,k|Htk
1

in terms of the gain function form (3.7), dividing by σ̂2
Wtk

, and im-

posing a lower bound ξmin > 0 on the a-priori SNR estimate as proposed by Cappé [5], they

obtained the following recursive estimator for ξtk

ξ̂tk = max
{
α G2

(
ξ̂t−1,k, γ̂t−1,k

)
γ̂t−1,k + (1− α) (γ̂tk − 1) , ξmin

}
. (3.14)

The parameters α and ξmin control the trade-off between the noise reduction and the

transient distortion introduced into the signal [14], [5]. Greater reduction of the musical

noise phenomena is obtained by using a larger α and a smaller ξmin, at the expense of

attenuated speech onsets and audible modifications of transient speech components. Typical

values for α range between 0.9 and 0.99, and typical values for ξmin range between -10 and

-25 dB.

3.4 Noise Spectrum Estimation

In stationary noise environments, the noise variance of each spectral component is time

invariant, i.e., σ2
Wtk

= σ2
Wk

for all t. An estimator for σ2
Wk

may be obtained from recursive

averaging of {|Ztk|2} for all spectral components classified as containing noise only.

In non-stationary noise environments, an alternative approach, known as the minimum

statistics, was proposed by Martin [27], [29]. In this approach, minima values of a smoothed

power spectral density estimate of the noisy signal are tracked, and multiplied by a constant

that compensates the estimate for possible bias. We present here a recent algorithm,

developed by Cohen and Berdugo [7], [9], which is based on minima controlled recursive

averaging. This noise variance estimator is capable of fast adaptation to abrupt changes in

the noise spectrum.

Recall that Htk
0 and Htk

1 denote, respectively, speech absence and presence hypotheses

in the noisy spectral component Ztk. A recursive estimate for the noise spectral variance

13



can be obtained as follows.

σ̂2
Wt+1,k

=

{
µ σ̂2

Wtk
+ (1− µ) β |Ztk|2 under Htk

0

σ̂2
Wtk

under Htk
1

(3.15)

where 0 < µ < 1 is a smoothing parameter and β ≥ 1 is a bias compensation factor [9]. The

probability of Htk
1 is estimated here independently of q̂tk in Section 3.2, since the penalty in

misclassification of the two hypotheses has different consequences when estimating the signal

than when estimating the noise spectral variance. Generally, here we tend to decide Htk
0

with higher confidence than in Section 3.2. Let q̃tk denote the estimate of the probability

of Htk
1 in this section. A soft-decision recursive estimator can be obtained from (3.15) by

σ̂2
Wt+1,k

= q̃tk σ̂2
Wtk

+ (1− q̃tk)
[
µ σ̂2

Wtk
+ (1− µ) β |Ztk|2

]

= µ̃tk σ̂2
Wtk

+ (1− µ̃tk) β |Ztk|2 (3.16)

where µ̃tk = µ + (1− µ) q̃tk is a time-varying smoothing parameter.

The probability q̃tk is estimated using (3.11) when q̂tk|t−1 is substituted by a properly

designed estimate q̃tk|t−1. Cohen [9] proposed an estimator q̃tk|t−1 which is controlled by the

minima values of a smoothed power spectrum of the noisy signal. The estimation procedure

comprises two iterations of smoothing and minimum tracking. The first iteration provides

a rough voice activity detection in each frequency. Smoothing during the second iteration

excludes relatively strong speech components, which makes the minimum tracking during

speech activity more robust.

3.5 Summary of Algorithm

i) For t = 0 and all k’s, set σ̂2
Wtk

= |Z0k|2, γ̂−1,k = 1, ξ̂−1,k = ξmin. Set t = 1.

ii) For each k

• Calculate γ̂tk from (3.2), and ξ̂tk from (3.14).
• Calculate q̂tk|t−1 from [6, eq. (29)], and q̂tk from (3.11).

• Calculate G
(
ξ̂tk, γ̂tk

)
from (3.6), and ̂| Ytk| by using (3.7).

• Calculate q̃tk|t−1 from [9, eq. (28)], and q̃tk from the analog of (3.11).

• Update σ̂2
Wtk

by using (3.16).

iii) Set t → t + 1 and go to step ii) for enhancement of the next frame.

4 Monte-Carlo Simulation

14



The Monte-Carlo simulation approach for audio signal enhancement has been promoted by

Vermaak, Andrieu, Doucet, Godsill, Fong and West [20], [36]. In this section we present

the principles of this approach. The clean and noisy speech signals are represented by the

sequences of scalar random variables {Yt, t = 0, 1, . . .} and {Zt, t = 1, 2, . . .}, respectively.

These signals are assumed to satisfy some time-varying state-space equations. The time-

varying parameter of the system is denoted by {θt, t = 1, 2, . . .}. The system is characterized

by three deterministically known non-linear transition functions which we denote here by

f , g and h. The explicit dependence of f on t, and of g and h on θt, is expressed by

writing these functions as ft, g
θt

and h
θt

, respectively. The innovation processes of the

dynamical system are denoted by {Ut, t = 1, 2, . . .}, {Vt, t = 1, 2, . . .} and {Wt, t = 1, 2, . . .}.
These three processes are assumed statistically independent iid processes. The state-space

equations are given by

θt = ft(θt−1, Ut)

Yt = g
θt

(Yt−1, Vt)

Zt = h
θt

(Yt,Wt) (4.1)

for t = 1, 2, . . ..

Assume first that the sample path of {θt} is known. For this case, the signal {Yt} can be

recursively estimated from {Zt}. To simplify notation, we present these recursions without

explicitly showing the dependence of the various pdf’s on the assumed known parameter

path. We use lower case letters to denote realizations of the random variables in (4.1). We

also denote zt = {z1, . . . , zt}. The filtering and prediction recursions result from Markov

properties of the signals in (4.1) and from Bayes’ rule. These recursions are, respectively,

given by

p(yt|zt) =
p(yt|zt−1)p(zt|yt)∫
p(yt|zt−1)p(zt|yt)dyt

, t = 1, . . . , n (4.2)

where p(y1|z0
1) = p(y1), and by

p(yt|zt−1) =
∫

p(yt|yt−1)p(yt−1|zt−1)dyt−1, t = 2, . . . , n. (4.3)

The smoothing recursion was derived by Askar and Derin [2, Theorem 1] and it is given by

p(yt|zn) = p(yt|zt)
∫

p(yt+1|zt)p(yt+1|zn)
p(yt+1|zt)

dyt+1 (4.4)

for t = n− 1, n− 2, . . . , 1, where p(yn|zn) is given by (4.2).

When the sample path of {θt} is given, or when the parameter is time-invariant and

known (θt = θ0 for all t), these recursions can be implemented with reasonable complexity
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for two well known cases. First, when g and h are linear functions, {Vt} and {Wt} are

Gaussian processes, and the initial distribution of Y0 is Gaussian. In that case, {Yt} can

be estimated using the Kalman filter or smoother. Second, when {Yt} takes finitely many

values, then the integrals become summations and the recursions coincide with a version

of the forward-backward recursions for hidden Markov processes, see, e.g., [19, eqs. (5.14)-

(5.16)]. For all other systems, the estimation problem is highly non-linear and requires

multidimensional integrations. No simple solution exists for these situations. Approximate

solutions are often obtained using the extended Kalman filter. The latter applies Kalman

filtering to locally linearized versions of the state space equations.

When the sample path of {θt} is not known, but the three transition functions are

linear and the innovation processes are Gaussian, maximum a-posteriori estimation of {θt}
is possible using the expectation-maximization (EM) algorithm. This was shown by Dembo

and Zeitouni [11] who developed an EM algorithm for estimating {θt} when the signal {Yt} is

a time-varying autoregressive process. The parameter estimator relies on Kalman smoothers

for the clean signal {Yt} and its covariance at each EM iteration. Thus, an estimate of the

clean signal is obtained as a by product in this algorithm. A similar approach for maximum

likelihood estimation of deterministically unknown parameter was implemented and tested

for speech enhancement by Gannot, Burshtein and Weinstein [21].

The computational difficulties in estimating the parameter or the clean signal in (4.1)

have stimulated the use of Monte-Carlo simulations. A good tutorial on the subject was

written by Arulampalam, Maskell, Gordon and Clapp [1]. In this approach, probability

distributions are sampled and replaced by empirical distributions. Thus integrals involving

the sampled pdf’s can be straightforwardly evaluated using sums. Recursive sampling is

often desirable to facilitate the approach. The filters or smoothers designed in this way are

often referred to as particle filters. The “particles” refer to the point masses obtained from

sampling the distribution which is of interest in the given problem. There is more than one

way to simulate the filtering or smoothing recursions presented earlier. We focus here on

the work in [20], [36] where the approach has been applied to speech and audio signals and

compared with the extended Kalman filter. In [20], Monte-Carlo approaches for filtering

as well as smoothing were developed. We shall demonstrate here only the principles of the

filtering approach.

Similarly to the work of Dembo and Zeitouni [11], the signal in [20] was assumed a

Gaussian time-varying autoregressive process, and the additive noise was assumed Gaussian.

In fact, the reflection coefficients of the time-varying autoregressive process were assumed

a Gaussian random walk process, which was constrained to the interval of (−1, 1), but the
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nonlinear transformation from the reflection coefficients to the autoregressive coefficients

was ignored. The logarithm of the gain of the autoregressive process was also modeled as

a Gaussian random walk. The pdf p(θt|zt) of θt given zt was shown to be proportional to

p(θt|zt) ∝
∫

p(zt|θt, zt−1)p(θt|θt−1)p(θt−1|zt−1)dθt−1. (4.5)

This equation can be derived similarly to (4.2). The goal now is to recursively sample

p(θt|zt) and estimate the signal using an efficient algorithm such as the Kalman filter.

Suppose that at time t we have an estimate of p(θt−1|zt−1). This pdf can be sampled

N times to produce N sample paths of θt−1. Let these sample pathes be denoted by

{θt−1(i), i = 1, . . . , N}. Next, for each i = 1, . . . , N , the pdf p(θt|θt−1(i)) can be sampled N

times to provide {θt(1), . . . , θt(N)}. Augmenting the former and latter samples, we obtain

N sample paths of θt given zt−1. We denote these sample paths by {θt(i), i = 1 . . . , N}.
The empirical distribution of θt given zt−1 is given by

q(θt|zt−1) =
N∑

i=1

δ(θt − θt(i)) (4.6)

where δ(·) denotes the Dirac function. Substituting (4.6) for p(θt|θt−1)p(θt−1|zt−1) in (4.5)

gives

p(θt|zt) ∝
N∑

i=1

p(zt|θt(i), zt−1)δ(θt − θt(i)). (4.7)

Next, it was observed that Zt given θt(i) and zt−1 is Gaussian with conditional mean and

covariance that can be calculated using the Kalman filter for estimating Yt given θt(i) and

zt−1. Following this procedure, we now have an estimate of p(θt|zt) which can be resampled

to obtain a new estimate of θt+1 and of Y t+1 at time t+1, and so on. Note that the estimate

of the signal is obtained as a by-product in this procedure.

5 Comments

We have reviewed traditional as well as more recent research approaches to enhancement of

noisy speech signals. The paper was not intended to be comprehensive but rather to provide

a general overview of the area. We have emphasized the methodology and principles of the

various approaches, and presented in some more details one design example of a speech

enhancement system.
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6 Further Reading

The following is a non-comprehensive list of references for further reading on the subject.

The edited book by Lim [R1 ] provides a collection of key papers in the area of speech

enhancement. The book by Quatieri [R4 ] provides extensive background for speech pro-

cessing including speech enhancement. The National Academy Press Report [R2 ] details

the state of the art of speech enhancement at the time of publication. It also addresses

evaluation of speech enhancement systems.

[R1 ] J. S. Lim, ed., Speech Enhancement. Prentice-Hall, Inc, New Jersey, 1983.

[R2 ] J. Makhoul, T. H. Crystal, D. M. Green, D. Hogan, R. J. McAulay, D. B. Pisoni,

R. D. Sorkin, and T. G. Stockham, Removal of Noise From Noise-Degraded Speech

Signals. Panel on removal of noise from a speech/noise National Research Council,

National Academy Press, Washington, D.C., 1989.

[R3 ] Y. Ephraim, “Statistical model based speech enhancement systems,” Proc. IEEE,

vol. 80, pp. 1526-1555, Oct. 1992.

[R4 ] T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice.

Prentice Hall, 2001.

[R5 ] Y. Ephraim, H. Lev-Ari, W. J. J. Roberts, “A Brief Survey of Speech Enhancement,”

to appear in CRC Electronic Engineering Handbook, 200?.
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Defining Terms:

Speech Enhancement: A subject dealing with processing of speech signals, in particular

of noisy speech signals, aiming at improving their perception by human or their correct

decoding by machines.

Quality: A subjective measure of speech perception reflecting individual preferences of

listeners.

Intelligibility: An objective measure which predicts the percentage of spoken words (often

meaningless) that can be correctly transcribed.

Statistical model: A set of assumptions, formulated in mathematical terms, on the behavior

of many examples of signal and noise samples.

Distortion measure: A mathematical function that quantifies the dissimilarity of two speech

signals such as the clean and processed signal.

Signal estimator: A function of the observed noisy signal which approximates the clean

signal by minimizing a distortion measure based on a given statistical model.

Wiener filter: An optimal linear signal estimator in the minimum mean squared error sense.

Monte-Carlo Simulation: A statistical approach to develop signal estimators by sampling

their statistical model.

Hidden Markov Process: A Markov chain observed through a noisy communication channel.
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