
Single-Channel Blind Source
Separation of Audio Signals

Yevgeni Litvin





Single-Channel Blind Source
Separation of Audio Signals

Research Thesis

In Partial Fulfillment of The Requirements for the Degree of

Master of Science in Electrical Engineering

Yevgeni Litvin

Submitted to the Senate of the Technion - Israel Institute of Technology

Tichrey 5770 Haifa October 2009



ii

This Research Thesis Was Done Under The Supervision of Prof.

Israel Cohen and Dr. Dan Chazan in the Electrical Engineering

Department

It was supported by the Israel Science Foundation under Grant

1085/05 and by the European Commission under project Memories

FP6-IST-035300.

Acknowledgment

I am grateful to Prof. Israel Cohen and Dr. Dan Chazan for their guidance

throughout all stages of this research. I'm also grateful to Prof. Jacob Benesty

for his guidance throughout my work on the subject of spectral kurtosis.

Special thanks to my beloved wife Paulina for her love and support.

The generous �nancial help of The Technion is gratefully acknowledged.



Contents

1 Introduction 1

1.1 Monaural source separation . . . . . . . . . . . . . . . . . . . . . 3

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Bayesian Source Separation 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Mixture components estimation in Bayesian framework . . . . . . 13

2.3.1 Normally distributed mixture components . . . . . . . . . 13

2.3.2 Gaussian mixture distribution of the mixture . . . . . . . 15

2.3.3 GMM based source separation algorithm . . . . . . . . . . 17

2.4 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Subband Frequency Modulating Signal Modeling 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Energy separation algorithm . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Continuous signals . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Discrete signals . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Energy of frequency modulating signal . . . . . . . . . . . . . . . 27

3.3.1 Energy of frequency modulating signal . . . . . . . . . . . 28

iii



iv CONTENTS

3.3.2 EFMS analysis of real signals . . . . . . . . . . . . . . . . 33

3.3.3 EFMS analysis of synthetic signals . . . . . . . . . . . . . 34

3.4 Source separation procedure . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Synthetic signals . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Real signals . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Bark-Scaled WPD 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Bark-scaled wavelet packet decomposition . . . . . . . . . . . . . 52

4.3 Mixture components estimation . . . . . . . . . . . . . . . . . . . 54

4.4 Training and separation . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Synthetic signals . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Real signals . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Short Time Spectral Kurtosis 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Spectral kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Kurtosis of signal mixture . . . . . . . . . . . . . . . . . . 65

5.2.2 Kurtosis estimation . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Physical interpretation . . . . . . . . . . . . . . . . . . . . 66

5.3 Short time spectral kurtosis of real audio signals . . . . . . . . . 67

5.4 Source separation using STSK . . . . . . . . . . . . . . . . . . . . 70

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS v

6 Conclusion 73

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Joint Time-Frequency Analysis 79

A.1 Short time Fourier transform . . . . . . . . . . . . . . . . . . . . 79

A.2 Discrete wavelet transform . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Mapping based complex wavelet transform . . . . . . . . . . . . . 82

B Approximate W-DO orthogonality 85



vi CONTENTS



List of Figures

1.1 BASS tasks taxonomy [1] . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Input signal preprocessing for the DESA algorithm. A Dashed

line shows which portions of the spectrum were originally �ltered

out by wa (n). (a) input signal that contains 10 carriers. (b)

frequency domain representation of the signal at the STFT �lter-

bank output (Xk (m)). (c) STFT �lterbank output modulated

to the intermediate frequency (X̃k (n)). . . . . . . . . . . . . . . 31

3.2 Upper pane shows the spectrogram (50 lower frequency bands) of

the �she had� utterance. Vertical axis labels show frequency band

numbers. Second pane shows the estimated AM component of the
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17-th frequency band (â17). Third pane shows the instantaneous

frequency estimation Ω̂i,16 of the 20-th frequency band. Lower
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Abstract

In this thesis we address the problem of audio source separation from a single

audio source. Blind source separation (BSS) of audio signals has been an active

area of research in recent years. BSS from a single audio channel is a special

case of general BSS problem where data from only one source is available to

the algorithm. The problem becomes easier if separated audio signals belong to

di�erent signal classes that can be classi�ed based upon prior knowledge using

existing statistical learning techniques.

Single audio channel BSS is an under-determined problem with arbitrarily

many solutions so some assumptions or prior knowledge are required to perform

the separation. Statistical independence, signal sparsity, psycho-acoustical prop-

erties, statistical models of spectral shapes and its time trajectories are among

properties used to distinguish between sources in a mix. Although many exist-

ing solutions produce satisfactory results in special cases, the general problem

of single audio channel BSS remains unsolved.

We de�ne and study three di�erent algorithms. We note that for some sets

of signal classes, the frequency modulating (FM) component of subbands carries

discriminative information. For example, this is true in an important case of

speech and music signals. This observation motivates our �rst algorithm. We

use time localized energy of the FM component for the classi�cation of time-

frequency bins and create a binary mask that is used for rejecting the undesired

signal. The di�erence in the subband FM signal energy of speech and musical

signals, together with sparseness and independence of mixture components make

xv
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the separation possible. We show that the proposed algorithm exhibits superior

performance when compared to a competitive source separation algorithm.

In the second algorithm we use Bark Scaled (BS) Wavelet Packet Decom-

position (WPD) analysis. The BS-WPD analysis was previously used in the

speech enhancement task. We introduce a modi�cation of the BS-WPD analysis

and combine it with an existing BSS algorithm based on the Gaussian Mixture

Modeling (GMM). In the �rst stage of the algorithm, the signal is analyzed

using modi�ed BS-WPD analysis and a Gaussian mixture model is trained. In

the second stage a mixed signal is separated using the statistical model. The

baseline separation algorithm relies on the di�erences in statistical model pa-

rameters. The proposed psycho-acoustically motivated non-uniform �lterbank

structure reduces feature vectors dimension. It simpli�es training procedure of

the statistical model and in some scenarios results in better performance.

Finally, we de�ne short time spectral kurtosis (STSK) as a time localized

estimate of spectral kurtosis. Our third algorithm uses a value of STSK as a local

time-frequency feature for the classi�cation of time-frequency bins. We create

a binary mask based on values of STSK. This algorithm relies on di�erentiating

properties of STSK, sparseness and independence of mixed signals. The mask

is capable of rejecting the undesired signal. We present good audio source

separation experimental results. In our work we use an ad-hoc de�nition of

STSK. A rigorous de�nition of the STSK and study of its properties may bene�t

source separation and other applications. These topics are subjects for future

research.
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Chapter 1

Introduction

Blind source separation (BSS) is the task of recovering a set of signals from a

set of observed signal mixtures. The problem of BSS is common for di�erent

signal processing tasks. It is also at the heart of numerous applications in audio

signal processing. BSS algorithms that operate on audio signals are sometimes

called Blind Audio Source Separation (BASS) algorithms [1].

Cherry [3] coined the ability of the human hearing system to concentrate on a

single speaker in the presence of other interfering signals such as other speakers,

music or noise as �cocktail party e�ect�. Although, human audio segregation

abilities are fascinating, not necessarily a full audio separation is performed in

the inner ear or somewhere in the auditory cortex. It is possible that the human

hearing system is only cable of recognizing semantic objects in one of several

audio streams the listener is exposed to.

Di�erent settings for the BSS task arise in di�erent applications. In di�erent

settings the prior and the posterior information available to a source separation

algorithm may di�er, such as: number of sources and number of observed chan-

nels; mixing model (instantaneous, echoic, convolutive, linear, non-linear); prior

information on signal statistical properties of signals; presence of noise.

One of the crucial factors in the de�nition of the BSS problem is the ratio of

the number of observed channels to the number of audio sources in the mixture.

1
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If the number of observed channels is equal to the number of extracted sources

then it is usually called an even-determined or a determined case. In an over-

determined case the number of channels is greater than the number of sources

and in an under-determined case the number of channels is smaller than the

number of sources. The under-determined case is the most di�cult to handle

and requires stronger assumptions on the mixture component properties.

Another important factor that di�erentiates between BSS problem setups is

the mixing model. Instantaneous mixing model implies that several instanta-

neous mixtures are observed, each having source components mixed in a di�erent

proportion. Echoic mixing model allows di�erent delays for each component in

each channel. The convolutive mixing model allows di�erent linear �ltering of

sources at each channel. Naturally, instantaneous is a degenerate case of echoic

mixing model and echoic is a degenerate case of convolutive mixing model. The

convolutive mixing model is the best in describing a real room recording of sev-

eral audio sources, but is also the most di�cult to handle. In more recent works,

non linear mixing models are also studied.

Most source separation algorithms assume that mixture components are sta-

tistically independent. Although, this is a reasonable assumption in many cases,

it is not necessarily true for all applications. For example, one of the source sep-

aration applications is separation of individual musical instrument from poly-

phonic musical excerpt. In this case, the assumption of statistical independence

is inaccurate because if musical instruments play statistically independent parts,

then there would be no harmonic nor temporal structure and the musical piece

would be a cacophony.

In this work we study the most extreme under-determined case when only

a single mixture is observed. We assume presence of two mixture components,

instantaneous linear mixing model and absence of noise.
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1.1 Monaural source separation

Vincent et al. [1] classify BASS tasks into two groups, according to the desired

output: Audio Quality Oriented (AQO) and Signi�cance Oriented (SO). Figure

1.1 depicts the taxonomy of BASS applications.

The purpose of AQO applications is to generate an audio signal that can be

listened to directly or after some post-processing. The AQO applications are

also divided into two groups: �one versus all� and �audio scene modi�cation�

applications. The aim of �one versus all� applications is to separate a single

audio source from the mixture. The �audio scene modi�cation� applications aim

to change mixing proportions without removing mixed components completely.

The �one versus all� problem is more di�cult since it requires separation of

all mixing components. If we have acquired all mixture components then the

solution of the �audio scene modi�cation� would be a simple remixing of these

components. On the other hand, solution of the �audio scene modi�cation�

problem does not provide a solution to the �one versus all� problem.

Some examples of �one versus all� applications are: separation of individual

musical instrument tracks from a polyphonic mixture; speech enhancement and

de-reverberation; restoration of old recordings [4]; object-based audio coding.

Some examples of �audio scene modi�cation� are: remixing of existing audio

recordings and signal enhancement in hearing aids.

Signi�cance oriented applications usually do not aim at extracting audio

sources but to extract features that are necessary for some cognitive function-

ality. Some examples of SO applications are speech recognition in the presence

of other sources [5]; speaker identi�cation in presence of other sources [6]; poly-

phonic music transcription [7]; musical instrument identi�cation in polyphonic

music [8].

Di�erent approaches rely on one or more properties of mixture components to

perform separation such as statistical independence, sparseness, certain spectral

and temporal structure. Following is a short description of several single channel
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Figure 1.1: BASS tasks taxonomy [1]

source separation approaches.

Co-channel speaker separations

Some single channel source separation algorithms assume that both sources

contain speech signals. Early attempts to solve this problem stem form speech

enhancement algorithms that are designed to separate speech from a background

noise using pitch information [9]. Hanson [10] implemented a co-channel speaker

separation system that �rst estimated the pitch of one of the talkers and then

used harmonic information and spectral subtraction technique to separate two

speech signals. In order to be e�ective in the presence of loud noises or inter-

fering speakers this kind of approach usually requires more complex algorithms

which take into consideration the possibility of noise or the presence of two

pitches. These techniques aim at separating harmonic parts of speech, hence

they are also applicable to musical instrument separation from polyphonic mu-

sical signals.

Independent component analysis and sparse decomposition

The blind source separation problem was �rst formulated in a statistical frame-

work by Herault et al. [11] in 1984. Comon [12] introduced the Independent

Component Analysis (ICA) in 1994 and numerous theoretical and practical

works followed. A basic ICA algorithm assumes even-determined BSS case and
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instantaneous mixing model. Under these assumptions, a demixing matrix has

to be found. In order to �nd such matrix the ICA algorithm minimizes statis-

tical dependency between unmixed channels. Various methods may be used in

order to reduce statistical dependency, such as maximization of non-Gaussianity

between channels or minimization of mutual information [13]. The search is usu-

ally done using gradient descent or �xed point algorithms. Unfortunately, most

algorithms in the ICA family require several mixtures to be observed in order

to perform the separation.

If a signal at hand is known to be sparse in some domain, then a sum of

two sparse signals will be less sparse than its components. The BSS algorithms

that use this property looks for a matrix that will produce sparsest signals after

demixing [14]. Unfortunately, like in the ICA case, such algorithms require

several observed channels to be available.

Computational auditory scene analysis

Many algorithms that deal with source separation of audio signals are based on

results acquired in psychoacoustical studies. Bregman's book �Auditory scene

analysis: The perceptual organization of sound� [15] contains various psychoa-

coustical studies and provides a basis for the computational implementation of

algorithms that mimic behavior of human auditory apparatus. Computational

implementations of psychoacoustic rules are known as Computational Auditory

Scene Analysis (CASA). A particularly interesting aspect of ASA is the segre-

gation of audio signal into separate audio streams using segregation cues. For

example, if two di�erent frequency sine tones have the same onset in time, then

according to the Audio Scene Analysis (ASA) principles they belong to the same

audio stream, i.e. produced by the same source.

An example of an algorithm that uses CASA approach is presented by F.R.

Bach and M.I. Jordan in [16]. They use spectral clustering algorithm to as-

sign time-frequency bins of the STFT to two di�erent audio sources. Distances

between every two time-frequency bins are de�ned using ASA motivated seg-
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regation cues. For example, two time-frequency bins likely belong to the same

source if they are adjacent in time or frequency. After a similarity matrix is

created a clustering algorithm assigns each time-frequency point to one of two

classes. The interfering source is removed using a binary mask created using

time-frequency bin assignments and the demixed component is recovered in the

time domain.

T. Virtanen and A. Klapuri use sinusoidal modeling to separate several har-

monic sounds [17]. First, they use peak tracking to model the entire mixture as

a set of sinusoid trajectories. Amplitude, frequency modulations and the proba-

bility of two trajectories to have same fundamental frequency are combined into

a single similarity measure that is used later for clustering.

Semi-blind source separation

In some cases a database of audio samples is available and statistical signal

models can be trained in a supervised manner before the separation process. In

this case various techniques from statistical learning can be used. Algorithms

that rely on these kind of statistical models are sometimes called Semi-Blind

Source Separation Algorithms (SBSS) [18, 19].

In [2], Benaroya introduced a source separation algorithm based on GMM

and Hidden Markov Model (HMM) statistical modeling of source signal classes.

First GMM or HMM models are trained for each signal class using spectral

shapes acquired from the STFT analysis. During the separation stage, these

models are used to estimate mixture components using Maximum A-posterior

(MAP) or Posterior Mean (PM) estimates. Authors also showed that using

more complicated HMM model does not improve the separation performance

signi�cantly when compared to the GMM model. Some extensions to that work

were presented in [19]. For example, Gaussian Scaled Mixture Model which takes

into account variations in amplitude of sounds with similar spectral shapes.

Ozerov et al. [18] proposed to use GMM model adaptation. Model adapta-

tion is successfully used in speaker recognition applications [20]. In the experi-
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mental results, the authors demonstrated their method by separating a singing

voice from the accompanying musical instruments. Model adaptation was per-

formed during signal excerpts when no vocal was present.

Another signal modeling technique that was found useful in single channel

source separation is Auto Regressive (AR) modeling. Srinivasan et al. [21] pro-

posed a codebook of Linear Predictive Coe�cients (LPC) trained on speech and

interfering signal. Their approach suggests using maximum likelihood estima-

tion to �nd the most probable pair of codebook members. Wiener �lter is used

later to suppress the interfering signal. In [22] LPC coe�cients are treated as

random variables. In these works both algorithms are described and tested in

the setup of speech enhancement in the presence of non stationary noise. Nev-

ertheless, they are also applicable to the source separation scenario by modeling

one of the sources as speech and the other as noise.

All algorithms presented above in the context of SBSS have common sig-

nal codebook modeling approach. They all have a deterministic, stochastic or

even adaptive codebook at the core of the algorithm. A detailed description of

codebook methods for source separation can be found in [23].

Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) [24] can be applied to mixture mag-

nitude spectrogram X ≈ AS. After the factorization, columns of A contain

frequency basis functions and S contains representation coe�cients. Assuming

di�erent audio sources have di�erent spectral characteristics and by assigning

frequency basis function (columns of A) to di�erent audio sources we can re-

construct individual sources [25]. An example of NMF based algorithm which

incorporates inter-frame temporal continuity prior and uses sparse prior for the

NMF proposed by Hoyer [26] can be found in [27].

When using NMF for source separation, each audio source is represented

by several frequency basis functions. In order to reconstruct source signals

some sort of clustering must be performed on the columns of A. In case of
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musical instruments separation, di�erent notes have di�erent basis function,

even when played using the same instrument, although their frequency shapes

are similar up to some scaling in frequency. FitzGerald et al. [28, 29] presents a

modi�cation of the NMF based approach by using positive tensor factorization.

Their approach makes it possible to use a single frequency basis function for

a wide range of notes played by the same instrument, hence eliminating the

need for clustering and reducing redundancy in matrix A. A di�erent approach

that aims to solve frequency basis function redundancy in the harmonic musical

instrument separation that also adds sparsity optimization goal, can be found

in [30].

1.2 Overview of the thesis

In this work we focus on blind and semi-blind source separation of signals. We

use audio signals in our experiments, but some of the proposed methods can

be extended to other types of signals, such as neural signals, seismic, �nancial,

images and others. In this section we brie�y describe the original contribution

of this thesis.

An AM-FM decomposition (the FM component in particular) of real sig-

nal classes (e.g. speech and music) subbands carries discriminative information

about signal class. First we de�ne new time-frequency signal space where each

coe�cient de�nes the subband frequency modulating signal energy. In the train-

ing stage, we learn a simple statistical model of the coe�cients for each signal

class. We create a binary mask in the STFT domain and use it to recover

mixture components. FM signal energy was found to be a good di�erentiat-

ing factor when speech and musical signals are concerned. Sparseness of audio

signals in the STFT domain together with the statistical independence make

it possible to use binary mask to suppress an interfering signal. We compare

the performance of this method to an existing GMM based source separation

algorithm. The experimental results obtained using the proposed method are
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signi�cantly better compared to those obtained using the best known current

approach where the discrimination is based on di�erences in spectral properties.

We present a source separation algorithm that uses novel time-frequency

analysis method based on a Bark Scaled Wavelet Packet Decomposition (BS-

WPD)[31]. The original BS-WPD was modi�ed in order to adapt it for the

source separation task: we introduced shiftability to the BS-WPD transform

using mapping based complex wavelet transform (Fernandes et al., 2003 [32])

and modi�ed a BS-WPD subsampling scheme to achieve similar sampling fre-

quencies at all subbands at the expense of representation redundancy. We used

an existing GMM based source separation algorithm [2] with the new signal

analysis. The proposed analysis method results in spectral vectors of reduced

dimension, hence allows simpler statistical modeling. Psycho-acoustically moti-

vated �lterbank structure also results in better perceptual quality of the sepa-

rated signals. Experimental results showed improved performance compared to

an existing GMM algorithm that uses Short Time Fourier Transform (STFT) in

some scenarios and comparable performance in other scenarios. The complexity

of the separation algorithm was reduced because of smaller dimension of the

vector space achieved by coarser frequency resolution in high frequencies.

Finally, we study a possible application of spectral kurtosis to the task of

source separation from a single sensor. We de�ne short time spectral kurtosis

(STSK) and its ad-hoc estimator. We use it to create an STFT domain binary

mask capable of rejecting interfering signal. The STSK provides means for local

time-frequency bins classi�cation. Sparseness and independence of audio sources

make it possible to use binary masks for separation. Although, the separation

algorithm introduced is extremely simple, the experimental results show very

good performance compared to a GMM based source separation algorithm. The

use of spectral kurtosis is relatively new in the �eld of audio signal processing.

Our experiments suggest that it can be used successfully for source separation

from a single channel.
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1.3 Organization

The organization of this thesis is as follows. In Chapter 2 we de�ne a source

separation problem from a single channel. We present GMM based Bayesian ap-

proach together with GMM based source separation algorithm. This separation

algorithm is used extensively throughout the thesis as a baseline for comparison

and a prototype to the algorithm presented in one of the following chapters.

In Chapter 3 we show a way to estimate energy of the frequency modulating

signal and present a separation algorithm based on the subband AM-FM de-

composition of the mixture signal. In Chapter 4 we present a constant sampling

rate Bark scaled wavelet packet decomposition (CSR-BS-WPD) and a source

separation algorithm. In Chapter 5 we de�ne Short Time Spectral Kurtosis

(STSK), study some properties of spectral kurtosis and present simple source

separation algorithm that uses STSK together with experimental study of the

proposed algorithm. Finally, in Chapter 6 we conclude our work and propose

some directions for future research.



Chapter 2

Bayesian Source Separation

2.1 Introduction

Benaroya et al. [19] presented Bayesian formalism for the source separation

problem. They showed that in the case of two signals and only one observed

mixture the probabilistic formalism leads to multiple solutions, hence the prob-

lem is underdetermined. On the other hand, when Bayesian formalism is used,

prior assumptions on the distribution of sources can be incorporated into the

problem. Prior assumptions resolve the ambiguity of the probabilistic formalism.

Benaroya et al. studied a case of Gaussian, generalized Gaussian distribution

and Gaussian Mixture Models.

Gribonval et al. [33] proposed a number of performance measures for BSS

applications. These performance measures take into account special properties

of BSS algorithms such as ability to recover a source up to a multiplicative con-

stant in multichannel BSS algorithms; distinguish di�erent types of distortions:

those caused by an interfering signal; and others caused by artifacts introduced

by an algorithm.

The remainder of this chapter is organized as follows. In Section 2.2 we

formulate a monaural source separation problem. In Section 2.3 we shortly

present Benaroya's approach to source separation previously published in [19].

11
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We present the GMM based source separation algorithm used as a baseline

for comparison in the following chapters. Section 2.4 presents performance

evaluation measures used in our experimental results.

2.2 Problem formulation

In this section we formally de�ne the problem of single channel source separation

under the assumption of instantaneous mixing and noise absence.

Let s1 (n) and s2 (n) be time domain signals that belong to di�erent signal

classes. Let x (n) be a mixture of s1 (n) and s2 (n)

x (n) = s1 (n) + s2 (n) (2.1)

The problem of source separation is de�ned as �nding estimates ŝ1, ŝ2.

The same problem can also be de�ned in the frequency domain using STFT

transform (A.3)

Xk (m) = S1,k (m) + S2,k (m)

where k is the frequency band index and m is the time index. Once we �nd

estimates for Ŝ1 and Ŝ2 ISTFT transform (A.4) can be used to obtain time

estimates of the components.

There are several bene�ts in solving the separation problem in the STFT

domain. The STFT analysis window length is usually selected in a way that

results in almost stationary and circular signals (i.e., has a Toeplitz covariance

matrix) in each analysis window. As we will show in Section 2.3 this simpli�es

evaluation of the Maximum posterior (MAP) estimator. Besides, the coe�-

cients of speech and music signals in the STFT domain are sparse and for two

independent sources, most of the signal energy is located in the non-overlapping

coe�cients. This property was studied by Yilmaz et al. in [34] and was coined

there as approximate W-disjoint orthogonal (W-DO). More details about W-
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DO can be found in Appendix B. This property justi�es separation of signal

mixtures using simple binary masks in the STFT domain.

2.3 Mixture components estimation in Bayesian

framework

In [19] Benaroya et al. develop Bayesian formulation of source estimation under

the assumption that both sources are Gaussian and then extend the estimation

to the generalized Gaussian and Gaussian mixture distribution case. In this

section we shortly present the results that are relevant to our work.

2.3.1 Normally distributed mixture components

Let s1 and s2 be two vectors in RN . Assume s1, s2 are Normally distributed

independent random variables with zero mean and Σ1,Σ2 covariance matrices.

The p.d.f. function in this case is given by

pc (s) =
1

(2π)
N/2 |Σc|1/2

exp

(
−1

2
sTΣ−1

c s

)
c ∈ {1, 2}

Assume the linear mixture of s1, s2 is observed

x = s1 + s2 (2.2)

Our goal is to �nd estimates ŝ1, ŝ2 of s1, s2.

Likelihood of the observation is given by

p (x|s1, s2) = δDirac (x− (s1 + s2)) (2.3)

It is clear that Maximum Likelihood (ML) estimator

(ŝ1, ŝ2)ML = arg max
s1,s2

p (x|s1,s2)
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will not produce any meaningful results since any ŝ1 = x − ŝ2 maximizes the

likelihood. The prior knowledge can be introduced by using MAP estimation.

Due to source independence, the a-priori probability can be factored

p (s1,s2) = p (s1) p (s2)

and MAP estimator is given by

(ŝ1, ŝ2)MAP = arg max
s1,s2

p (s1,s2|x)

= arg max
s1,s2

p (x|s1,s2) p1 (s1) p2 (s2)

Likelihood function (2.3) imposes a constraint x = s1 + s2 under which

estimation of MAP estimator ŝ1 reduces to

ŝ1 = arg max
s1

p1 (s1) p2 (x− s1)

= arg min
s1

(− log p1 (s1)− log p2 (x− s1))

= arg min
s1

(
1

2
sT1 Σ−1

1 s1 +
1

2
(x− s1)

T
Σ−1

2 (x− s1)

)

, arg min
s1

J (s1)

J is a quadratic function in s1 and since Σ1 and Σ2 are positive semi de�nite,

J has a single minimum in s1.

∇s1J (s1) = Σ−1
1 s1 − Σ−1

2 (x− s1)

The minimum is found by solving ∇J = 0 in respect to s1

0 =
(
Σ−1

1 + Σ−1
2

)
s1 − Σ−1

2 x
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which results in

ŝ1 = (Σ1 + Σ2)
−1

Σ1x

MAP estimator ŝ2 can be found in the same way:

ŝ2 = (Σ1 + Σ2)
−1

Σ2x

If we assume that s1 and s2 are stationary and approximately circular

processes, the covariance matrices Σ1,Σ2 are Toeplitz and diagonalized by

Fourier basis vectors. Let F be discrete Fourier transform operator. De�ne

Sc , Fsc, X , Fx. The distribution of S1, S2, X are also Gaussian and given

by

Sc ∼ N
(
0,diag

(
σ2
sc

))
c ∈ {1, 2}

X ∼ N
(
0,diag

(
σ2
s1 + σ2

s2

))

MAP estimator of Ŝ1 is given by

Ŝ1 (i) =
σ2

1 (m)

σ2
1 (m) + σ2

2 (m)
X (m) (2.4)

We see that MAP estimator (2.4) coincides with Posterior Mean (PM) esti-

mator (Wiener �lter) in case of Gaussian prior on mixture components.

2.3.2 Gaussian mixture distribution of the mixture

Simple Gaussian prior assumption on the signal distribution does not hold for

most real signals such as speech or music. One solution is to assume Gaussian

Mixture prior densities (GMM prior) [19].

GMM model describes signal distribution as an outcome of a two stage
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process: �rst an active component k is selected out of K Gaussian distributions

in the mixture; then we draw an observation sample using the selected model

parameters
{
µ(k),Σ(k)

}
where µ(k) and Σ(k) are the expectation value and the

covariance matrix of the k-th component. The probability of selecting k-th

component is given by wk (k-th element of probability vector w). The GMM

model is de�ned by
({
µ(k)

}K
k=1

,
{

Σ(k)
}K
k=1

, w
)
.

We introduce two hidden variables q1 (m) and q2 (m) in order to estimate

mixture components using GMM prior. In the rest of this subsection we omit

time index m to simplify the notation. q1 and q2 are associated with active

component of GMM models of both signals at time m. Mixture component

estimation reduces to simple Gaussian case described in the previous section

when conditioned on values of q1 and q2. We denote γj,k = p (q1 = j, q2 = k|x).

The MMSE estimator for the mixture component Ŝ1 is given by

Ŝ1 =

K∑

j,k=1

γj,kΣ
(j)
1

(
Σ

(j)
1 + Σ

(k)
2

)−1

X (2.5)

The estimator for Ŝ2 is derived in the same manner.

The MAP estimator is acquired by �rst evaluating (j∗, k∗) = arg maxj,k γj,k

and

Ŝ1 = Σ
(j∗)
1

(
Σ

(j∗)
1 + Σ

(k∗)
2

)−1

X (2.6)

The value of γj,k is given by

γj,k ∝ p (X|q1 = j, q2 = k) p (q1 = j) p (q2 = k) (2.7)

= g
(
X; Σ

(j)
1 + Σ

(k)
2

)
w

(j)
1 w

(k)
2
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Algorithm 2.1 GMM based source separation algorithm

Training

1. Compute time frequency representation S1,k (m) , S2,k (m) of training sig-
nals s1 (n) , s2 (n) (A.3)

2. Train Λ1,Λ2 GMM models using data vectors |S1,k (m)| , |S2,k (m)| and
EM algorithm.

Separation

1. Compute time frequency representation Xk (m) of mixed signal x (n)
(A.3).

2. For all time indexes m

(a) For all pairs (j, k) ∈ {(j, k) |j ∈ {1, . . . ,K} , k ∈ {1, . . . ,K}}
i. Compute γj,k (m) using (2.7)

(b) Estimate Ŝ1, Ŝ2 using (2.5) or (2.6)

3. Compute estimates of mixture components in time domain using (A.4)

2.3.3 GMM based source separation algorithm

Now we combine results from the previous section and repeat the de�nition

of the GMM based source separation algorithm (Algorithm 2.1) published by

Benaroya and Bimbot in [2].

The training stage is performed o�ine, given a database of signals from

two di�erent classes. For each signal class, a time-frequency representation

of signals is obtained using the STFT transform (A.3). The GMM model of

spectral magnitude vectors for each time frame is trained using EM algorithm

[35] with the assumption of diagonal covariance matrix.

In the separation stage, the STFT transform is applied to the mixture. Then,

the value of γ is calculated for all possible active GMM component combinations

and estimates of both source signals are obtained using PM estimator (2.5) or

MAP estimator (2.6) in the time-frequency domain. The separated component

signal estimators are recovered using ISTFT (A.4).

This algorithm is used as a baseline for comparison of novel algorithms pro-

posed in this thesis. In Chapter 3.1 we compare this algorithm to an algorithm
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based on locate time-frequency FM properties of signals. In Chapter 4 we study

the e�ect Bark-Scaled signal analysis has on the separation quality and in Chap-

ter 5 we compare it to a novel algorithm that uses Spectral Kurtosis values for

classi�cation of time-frequency bins and signal separation.

2.4 Evaluation criteria

In this section we de�ne evaluation criteria used in experiments to evaluate the

performance of the proposed algorithms. We use common distortion measures

described in [33] and BSS_EVAL toolbox [36]. Mixture components s1, s2 are

assumed to be uncorrelated. Let ŝc be an estimate of sc. The estimator will

have the following decomposition:

ŝc = yc + ec,interf + ec,artif

yc , 〈ŝc, sc〉 sc

ec,interf , 〈ŝc, sc′〉 sc′

ec,artif , ŝc − (yc + 〈ŝc, sc′〉 sc′)

where c is the target class and c′ is the interfering class. Now the following

criteria are de�ned:

SDR , 10 log10

‖yc‖2

‖ec,interf + ec,artif‖2

SIR , 10 log10

‖yc‖2

‖ec,interf‖2

SAR , 10 log10

‖yc + ec,interf‖2

‖ec,artif‖2

Signal to Distortion Ratio (SDR) measures the total amount of distortion

introduced to the original signal, both due to the interfering signal and artifacts

introduced by the algorithm. Signal to Interference Ratio (SIR) measures the

amount of distortion introduced to the original signal by the interfering signal.
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Signal to Artifact Ratio (SAR) measures the amount of artifacts introduced

to the original signal by the separation algorithm that do not originate in the

interfering signal.

Usually some algorithm working point can be chosen to tune the trade-o�

between interfering signal leakage (SIR) and the distortion to the desired signal

(SAR). For example it is possible to reduce SIR to −∞ simply by zeroing source

estimation. However, the SAR measure will become very high in this case. SDR

is a kind of cumulative measure for both SIR and SAR, hence it is convenient

to compare algorithm performance based on SDR.

Two additional measures used are Log Spectral Distance (LSD)

LSD (X,Y ) :=

√√√√
K∑

k=1

N∑

m=1

(
20 log10

|Xk (m)|
|Yk (m)|

)2

where Xk (m), Yk (m) are compared signals in the STFT domain and Signal to

Noise Ratio (SNR)

SNR (ŝ, s) = 10 log10

∑|s|
n=1 s (n)

2

∑|s|
n=1 (ŝ (n)− x (n))

2

where |s| denotes number of samples in s.

2.5 Summary

We have formulated the source separation problem from a single channel. We

have demonstrated how a mixture can be separated using MAP estimation when

Gaussian or Gaussian mixture distribution are assumed on the mixture com-

ponents. We also presented a source separation algorithm that relies on the

assumption of Gaussian mixture distribution of mixture components. This al-

gorithms is used as a comparison baseline in the following chapters and also

inspires the algorithm presented in Chapter 4. Finally, we described the eval-

uation measures used in the following chapters to compare the performance of
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some novel source separation techniques. We use these performance measures

throughout the thesis.



Chapter 3

Subband Frequency

Modulating Signal Modeling

3.1 Introduction

In [37, 38] H. M. Teager and S.M. Teager studied air�ow and �uid dynamics

of human speech apparatus. They described several nonlinear phenomena as

well as their sources. Later, Kaiser formulated Teager Energy Operator (TEO)

[39, 40]. In [41, 42, 40] the TEO was used to derive a discrete energy separation

algorithm (DESA) that separates a signal into its amplitude (AM) and frequency

modulating (FM) components. Applications of the AM-FM decomposition of

audio signals include formant tracking [43], enhancement of speech recognition

and speaker recognition features [44, 45, 46, 47], speech coding [48], analysis

and re-synthesis of musical instruments sound [49].

Sinusoidal modeling was previously used for BSS by Virtanen and Klapuri

[17]. Their approach requires peak tracking in the spectral domain to establish

sinusoidal trajectories followed by grouping of detected trajectories into di�erent

audio streams. Although, our approach can also be seen as a kind of sinusoidal

modeling, it does not require peak tracking or grouping which may improve the

21
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robustness of the separation algorithm.

In [34], Yilmaz et al. de�ne an approximate W-disjoint orthogonality (W-

DO) as an approximate �disjointness� of several signals in the short-time Fourier

transform (STFT) domain. They suggest a quantitative W-DO measure and

provide evidence of the high level of the W-DO for two speech signals. Their

work provides a theoretical basis for speech signal separation using time-frequency

bins binary making. Refer to Appendix B of this work for additional details.

In this chapter, we propose a source separation algorithm capable of segre-

gating several audio sources from a single channel based on di�erences of FM

components statistical properties. We use Discrete Energy Separation Algo-

rithm (DESA) to estimate frequency-modulating (FM) signal energy. We create

time varying �lter in the time-frequency domain which is capable of rejecting the

interfering signal. The estimation of the FM signal energy uses instantaneous

signal properties that are localized both in time and frequency. We present

experimental results and demonstrate feasibility of our approach both on syn-

thetic and real audio signals and compare our results to a competitive source

separation algorithm. Although we demonstrate our algorithm on speech and

piano play signals, the proposed algorithm is applicable to other large classes of

audio signals as well.

The core idea of the modulation frequency analysis and �ltering is analysis

and modi�cation of the subband amplitude modulating (AM) signal. If STFT

analysis of subband AM signal is performed, then the resulting signal domain

is called joint frequency domain. An application of joint frequency analysis

and modi�cation include monaural source separation [50, 51] and speech en-

hancement [52, 53]. Signi�cant amount of attention was payed to di�erent AM

demodulation techniques [52, 54, 55] when an emphasis was made to �nd an

appropriate demodulation method that would allow signal modi�cation in the

joint frequency domain. A comprehensive survey of this �eld can be found in

Schimmel's work [52]. Our work relates to the joint-frequency analysis in the

sense that we are interested in the FM component and not in the AM component
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of the subband AM-FM decomposition.

Our algorithm uses an AM-FM analysis. First we �lter the input signal by

an STFT �lterbank. Then we use the DESA algorithm to estimate a frequency

modulating signal in each of the subbands for a given instant in time and an

energy of the frequency modulating signal (EFMS). In the training stage a

statistical model of EFMS values of all frequency bands is learned for each

signal class. In the separation stage, time-frequency bins in the STFT domain

are classi�ed into one of target signal classes using EFMS values. The interfering

signal is suppressed by zeroing time-frequency bins attributed to the interfering

signal. Finally, we reconstruct the separated component by inverting the STFT.

The remainder of this chapter is structured as follows. In Section (3.2) we

present the TEO operator and DESA algorithm. In Section 3.3 we describe

the estimation of EFMS and present some examples of real audio signal. We

explain why the proposed method should perform well at the separation task.

Section 3.4 describes a simple training procedure used to learn EFMS features

of various audio classes and Bayesian risk minimization approach used to create

a STFT domain binary mask that �lters out the interfering signal. Section 3.5

presents evaluation of the proposed algorithm performance. The summary is

given in Section 3.6.

3.2 Energy separation algorithm

In this section we present continuous and discrete forms of a Teager Energy Op-

erator (TEO). We also present AM-FM decomposition algorithms: continuous

time Energy Separation Algorithm (ESA) and discrete time Discrete Energy

Separation Algorithm (DESA) for the discrete signals [40].

3.2.1 Continuous signals

Let xc (t) be a continuous time signal. In his work, Teager [37, 38] noted the

importance of analyzing speech from the point of view of the energy required
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to generate the signal. He used a non-linear energy tracking operator Ψc and

its discrete counterpart Ψ. These operators were systematically introduced by

Kaiser [39, 56].

Ψc [xc (t)] = (ẋc (t))
2 − x (t) ẍ (t)

For a undriven linear undamped oscillator with an amplitude A, e.g. a body

of a mass m and a spring of constant k, the instantaneous total energy (kinetic

and potential) is given by

Eosc =
1

2
mẋ2

c +
1

2
kx2

c

=
1

2
m (Aω0)

2
(3.1)

where ωo =
√
k/m is an oscillation angular velocity. The position of the body

is described by a solution to the equation mẍ+ kx = 0 and is given by

xc (t) = A cos (ω0t+ θ)

The TEO of xc (t) evaluates to

Ψc [xc (t)] =

(
d

dt
A cos (ω0t+ θ)

)2

+A cos (ω0t+ θ)
d2

dt2
A cos (ω0t+ θ)

= A2ω2
0 sin2 (ω0t+ θ) +A2ω2

0 cos2 (ω0t+ θ)

= 2A2ω2
0 (3.2)

which is proportional to (3.1). If the amplitude A (t) or the angular velocity

ω0 (t) vary in time, then under certain conditions described in [42],Ψc (and its

discrete version Ψ) can track the energy of that signal.

ESA is a simple method which aims to separate amplitude and frequency
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modulation components from a continuous time signal

xc (t) = a (t) cos (φ (t))

φ (t) , ωct+ ωm

ˆ t

0

r (τ) dτ + θ

The instantaneous angular frequency

ωi ,
d

dt
φ (t)

= ωc + ωmr (t)

Let a (t) and r (t) be band limited signals with ωa and ωf highest non-zero

angular frequencies of a (t), r (t) respectively. Let κ be the AM index. Both,

the instantaneous frequency and the amplitude components, contribute to the

value of Ψc as can be seen in (3.2).

Under conditions

ωa � ωc and κ� 1 (3.3)

ωf � ωc and ωm/ωc � 1 (3.4)

the following two equations separate these components and de�ne the ESA

algorithm [40]:

ω0 ≈

√
Ψc [ẋc (t)]

Ψc [xc (t)]
(3.5)

|A| ≈ Ψc [xc (t)]√
Ψc [ẋc (t)]

(3.6)

3.2.2 Discrete signals

Let x (n) = xc (nT ) be a sampled version of xc (t) where T is the sampling

period. A discrete version of TEO (Ψ) de�ned:
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Ψ [x (n)] = x2 (n)− x (n− 1)x (n+ 1)

In the discrete signal case we assume the following signal model

x (n) = a (n) cos

(
Ωcn+

n∑

i=0

r (i)
1

T
+ θ

)

where n is a discrete time index, Ωc is a carrier angular frequency, θ is some

constant phase value and a (n), r (n) are amplitude and frequency modulating

signals respectively.

Similarly to (3.5), (3.6), Ψ [x (n)] is used to estimate the instantaneous fre-

quency Ω̂i (n) and the instantaneous amplitude â (n):

Ω̂i (n) ≈ 1

2
arccos

(
1− Ψ [x (n+ 1)− x (n− 1)]

2Ψ [x (n)]

)
(3.7)

≈ Ωc + q (m)

|â (n)| ≈ 2Ψ [x (n)]√
Ψ [x (n+ 1)− x (n− 1)]

(3.8)

Conditions equivalent to (3.3), (3.4) in the discrete case are:

Ωa � Ωc and κ� 1 (3.9)

Ωf � Ωc and
sup {r (n)}

Ωc
� 1 (3.10)

where Ωa,Ωf are the bandwidths of a (n) and r (n) respectively and κ is an

AM modulation index (a (n) assumed to be positive). Several versions of DESA

algorithm are described in [40] . The di�erence between di�erent versions of

DESA algorithm is the way time derivatives of x (n) are estimated. Equations

(3.7), (3.8) de�ne DESA-2 algorithm.
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3.3 Energy of frequency modulating signal

In this section we demonstrate frequency modulation analysis on some examples

of speech and piano signals. We de�ne the energy of the frequency modulating

signal (EFMS). We show that the EFMS of speech and piano signals can be used

as local time-frequency discriminating factor which can be used to reject the

interfering source. These examples will motivate formulation of our algorithm.

Partials of voiced phonemes in speech signals have a stronger frequency mod-

ulating component than partials of piano signals. In order to de�ne an algorithm

that exploits this property we need to formulate a quantitative measure for this

phenomenon.

Let x (n) be a time signal. We assume it is an harmonic signal with one

or more harmonic partials present. We treat each partial as a separate carrier.

Most of the AM-FM demodulation algorithms, including DESA, cannot deal

with multiple carriers being present in the analyzed signal. In order to apply the

analysis we note that each of the signals produced by �ltering the analyzed signal

through a narrow band �lterbank is likely to contain a single FM modulated

carrier. In our work we use STFT �lterbank.

The STFT transform of x (n) is given by (A.2). Let us repeat the de�nition

here as well for completeness:

Xk (m) =

∞∑

n=−∞
w (mM − n)x (n) e−j

2π
N kn (3.11)

where w (n) is the analysis window with support of N and bandwidth of bw ra-

dian and N ,M de�ne frequency and time resolution of the transform. Equation

(3.11) can be rewritten in a �lter like form

Xk (m) = e−j
2π
N kmM (x ∗ wa) (mM) (3.12)

where wa (n) is an analytic bandpass �lter generated by shifting w (n) in fre-

quency by 2πk/N radians.
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The time series Xk (m) indexed by m, can be treated as a time domain,

bandpass version of the analytic signal of x (n) with bandpass center frequency

shifted to zero. We assume that only a single partial is present in Xk (m).

This allows us to use AM-FM decomposition algorithm. In the AM-FM de-

composition, each harmonic will act as a carrier. Instantaneous deviations from

the carrier frequency (caused by intonation in speech and speech production

nonlinearities) will appear as a frequency-modulating signal.

3.3.1 Energy of frequency modulating signal

Assume the AM-FM model for the l-th harmonic partial

xl (n) = a (n) cos

(
Ωcn+

n∑

i=0

r (i)
1

T
+ θ

)
(3.13)

Let bx be xl (n) bandwidth. Assume that the xl (n) energy is found almost

entirely in the k-th band of the STFT �lterbank which results in the approxi-

mation.

xa (n) ≈ xl (n) ∗ wa (n) (3.14)

Where xa (n) is an analytic signal of xl (n). Equation (3.14) can hold only

approximately since the theoretical bandwidth of a frequency modulated signal

is in�nite. We can also write

Ωc +
bx
2
<

2π

N
k +

bw
2

⋂
Ωc −

bx
2
>

2π

N
k − bw

2
(3.15)

∣∣∣∣
2π

N
k − Ωc

∣∣∣∣ <
bw − bx

2
(3.16)

After modulating xa (n) by a complex exponent e−j2πkn/N and decimation
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by a factor of M , the output of the STFT �lterbank (3.12) is given by

Xk (m) ≈ a (mM) exp j

(
Ω̃cmM +

mM∑

i=0

r (i)
1

T
+ θ

)
(3.17)

Ω̃c = Ωc −
2π

N
k (3.18)

Ω̃c is close to zero and from (3.16), (3.18) yields
∣∣∣Ω̃c
∣∣∣ < bw/2. Since the band-

widths of a (n) and r (n) remain unchanged the DESA algorithm assumptions

(3.9), (3.10) no longer hold. In the notations of this section

Ωf � Ω̃c

Ωa � Ω̃c

The remedy is to modulate the �lterbank output to some intermediate frequency

Ωif by multiplying Xk (m) by ejΩifm

We choose Ωif = π
3 (shift Xk (m) by π

3

[
rad
sec

]
) i.e. we set a new carrier

frequency to be in the lower 1
3 -rd of the frequency axis so as to minimize the

risk of aliasing (the choice of Ωif = π
3 , (e.g. instead Ωif = π

2 ) was dictated by

better experimental results). DESA operates on the real valued signals, we use

only the in-phase component of the modulated �lterbank output

X̃k (m) = <
(
Xk (m) ejΩifm

)
(3.19)

In order to avoid aliasing during modulation and in-phase component ex-

traction the following conditions must hold

Ωif ≥
bxM

2
(3.20)

Ωif ≤ π −
bxM

2
(3.21)

Assume that the bandwidth of bx is equal to the STFT subband bandwidth,
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i.e.

bx = 2π/N (3.22)

and the location of the intermediate-frequency is arbitrary

Ωif = απ (3.23)

for some 0 < α < 1. Substituting (3.22), (3.23) into (3.20), (3.21) results in the

following bound on M :

M ≤ min {αN, (1− α)N} (3.24)

Fig. 3.1 shows an example of the processing steps. A synthetic harmonic

signal with ten partials is used in this example. First partial is an FM modulated

signal. The FM modulating signal is a sinusoid having an amplitude of 2π and

a frequency of 10 Hz. The Fourier transform of the signal is shown in Fig.

3.1(a). Most of the energy of the �rst partial is located in the 21-st band. The

Fourier transform of X21 (m) is shown in Fig. 3.1(b). X21 (m) is a complex

signal, hence positive and negative frequencies of the Fourier transform are not

complex conjugate. Fig. 3.1(c) shows the Fourier transform of X̃21 (m). X̃21 (m)

is a real valued signal modulated to the intermediate frequency. The dashed line

shows regions of the spectrum originally �ltered out by wa.

DESA estimator (3.7) can now be used to �nd the FM component of X̃k (m)

Ω̂i,k (m) ≈ 1

2
arccos


1−

Ψ
[
X̃k (m+ 1)− X̃k (m− 1)

]

2Ψ
[
X̃k (m)

]




The instantaneous frequency Ω̂i also includes a slowly varying Ω̃c+Ωif term.

To remove it we �lter Ω̂i with a high pass �lter hr which results in an estimate

of r (n) . We note that Ωc is not necessarily constant in time, but assume that
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Figure 3.1: Input signal preprocessing for the DESA algorithm. A Dashed line
shows which portions of the spectrum were originally �ltered out by wa (n). (a)
input signal that contains 10 carriers. (b) frequency domain representation of
the signal at the STFT �lterbank output (Xk (m)). (c) STFT �lterbank output
modulated to the intermediate frequency (X̃k (n)).
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Figure 3.2: Upper pane shows the spectrogram (50 lower frequency bands) of
the �she had� utterance. Vertical axis labels show frequency band numbers.
Second pane shows the estimated AM component of the 16-th frequency band
(â16). Third pane shows the instantaneous frequency estimation Ω̂i,16 of the

16-th frequency band. Lower pane shows the EFMS (Ê16 (n)).

it changes slowly compared to r (n).

r̂ (m) ≈
(

Ω̂i ∗ hr
)

(m)

≈
((

Ω̃c + Ωif + r (n)
)
∗ hr

)
(m)

We de�ne the EFMS by

Êk (m) ,
(
u ∗ r̂2

k

)
(m) (3.25)

where u (m) is an Nu points Hamming window which purpose is to reduce the

variance of the energy estimator r̂2
k (m). In the rest of the paper we denote the

EFMS of a time signal x (n) by Ê {x}k (m) and omit x and indices k, m when

the meaning is clear from the context.
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Figure 3.3: Upper pane shows the spectrogram (50 lower frequency bands) of the
piano play sample. Vertical axis labels show frequency band numbers. Second
pane shows the estimated AM component of the 17-th frequency band (â17).
Third pane shows the instantaneous frequency estimation Ω̂i,16 of the 20-th

frequency band. Lower pane shows the EFMS (Ê16 (n)).

3.3.2 EFMS analysis of real signals

Figure 3.2 shows a speech fragment containing the utterance �don't ask me

to carry�. The upper pane shows the 50 lower frequency bands of the STFT

�lterbank output. First six harmonic partials are visible. We manually pick

16-th frequency band which contains the second partial for some period of time.

The second pane shows amplitude envelope â16 (m) of the selected frequency

band estimated by the DESA algorithm. There are several amplitude peaks

corresponding to voiced phonemes. Third pane shows Ω̂i,16 estimate. The lowest

pane shows EFMS Ê16 (m) values. In voiced parts of the speech fragment the

energy of the FM component is high. Fricative and plosive phonemes are not

described well by the AM-FM model and DESA estimate of the instantaneous

frequency has high variance at these locations. The result is high values of

EFMS at /sh/ and /d/ phoneme locations. This observation is consistent with

our claim that the EFMS of speech is higher than the EFMS of piano play.

The piano play fragment depicted in Fig. 3.3 contains several piano notes.

As in the previous case, we manually pick a frequency band that contains a single
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harmonic partial. We take the 17-th band and perform the same analysis. We

observe that Ê17 (m) values are low while the note is being played, hence we have

the evidence that a piano produces audio signals with low EFMS. We speculate

from the examination of Figs. 3.2 and 3.3 that it is harder to discriminate signal

classes by the shape of amplitude envelope than by the shape of instantaneous

frequency and EFMS Ê.

3.3.3 EFMS analysis of synthetic signals

In the next example, we apply EFMS analysis to synthetic signals: a harmonic

signal (x1) and white noise with unit variance (x2). The harmonic signal has

fundamental frequency f0 = 250 Hz and Np = 30 partials. Let p denote the

index of a partial. The carrier frequency and the amplitude of the frequency

modulating signal of p-th partial are f0 · p and A0 · p. Both grow linearly with

the index of the partial, like in a speech or a musical signal. The frequency fFM

of the FM component is �xed fFM = 10 Hz.

x1 (n) =

Np∑

p=1

x1,p (n)

x1,p (n) = cos

(
2πf0pn+

n∑

i=0

qp (n)
1

T

)

qp (n) = 2πA0p cos (2πfFMn)

Fig. 3.4 shows the distribution of EFMS values for every value of frequency

(only values of EFMS that are located at time-frequency bins that have high en-

ergy participate in this analysis. The exact method for selecting these frequency

bins is described in Section 3.4.1). The amplitude of the FM signal grows lin-

early with the index of the partial. In the case of a sinusoidal signal, the square

root of signal energy is proportional to its amplitude. The dashed line in Fig.

3.4 shows theoretically predicted values of
√
Ê . It is given by A0f/

√
2f0. Ac-
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Figure 3.4: Distribution of the EFMS values for the synthetic signal (x1) having
30 partials with linearly increasing amplitude of frequency modulating compo-
nent. A dashed line shows theoretically predicted values.
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Figure 3.5: Distribution of EFMS values for white noise (x2).
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Figure 3.6: Distribution of EFMS values for speech signal.

tual values of
√
Ê are located in the vicinity of theoretically predicted values,

but not exactly on it. There are several reasons for the mismatch:

• Bandpass �ltering of a frequency modulated signal alters its sidebands.

This results in distortion of the FM modulating signal. This is especially

true for high frequency partials: their bandwidth is relatively high due to

the high amplitude of the modulating signal.

• Partials that �leak� to neighboring bands have low SNR levels and result

in EFMS estimates similar to EFMS of white noise.

White noise signal is not described well be the AM-FM model. The resulting

EFMS values for all frequency bands are distributed randomly around some

constant value as can be seen in Fig. 3.5.

Figs. 3.6 and 3.7 show EFMS distributions for a speech and a piano signal

respectively. The EFMS analysis of speech resembles white noise for frequency

greater than 500 Hz. Smaller values of EFMS are present under 500 Hz but

nevertheless they are generally higher than EFMS values of a piano play. The

piano play has relatively low values of EFMS that grow approximately linearly

with frequency, as was predicted by the harmonic signal model.
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Figure 3.7: Distribution of EFMS values for piano play (x2).

3.4 Source separation procedure

We assume mixing model as in (2.1). As in previous sections, we denote STFT

transform by capital letter, e.g. STFT of sc (n) is denoted by Sc,k (m), where

c ∈ {1, 2} denotes the signal class index.

In the training stage we �nd the empirical probability density function for

Ê {s1} and Ê {s2}. In the separation stage we use estimated pdf to de�ne a

minimum risk decision rule for classi�cation of STFT time-frequency bins based

on Ê {x}.

3.4.1 Training

The empirical probability density function for class c (P̂rc

(
Ê
)
) is estimated

using a normalized histogram of

{
Ê {sc}k (m) | (k,m) ∈ Qc

}

whereQc is a set of time-frequency bin indices where the energy is high compared

to the neighboring bins. Let Mk,m be the median of energy values in the time-

frequency vicinity of (k,m) bin
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Figure 3.8: Empirical probability density function. EFMS of piano play have
higher probability obtaining low values then EFMS of speech.

M {Sc}k,m = median
{
|Sc,i (j)|2 | |i− k| ≤ d, |j −m| ≤ d

}

where d de�nes the vicinity.

δE is a threshold that de�nes which energy values are considered high. Qc

is given by

Qc ,

{
(k,m)

∣∣∣∣∣20 log10

|Sc,k (m)|
M {Sc}k,m

≥ δE

}
(3.26)

Fig. 3.8 shows empirical p.d.f. of
√
Ê for speech and piano play signals.

Large non overlapping areas indicate that the separation of these signals using

only Ê {x} values should be possible.

3.4.2 Separation

In this section we explain how we use of Bayes minimum-cost decision rule with

reject option ([57] see 2.11.13-14) to construct optimal STFT binary mask, the
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�ltering process and the recovery of demixed source signal estimate.

Denote by ξk (m) = Ê {x}k (m) the estimated value of EFMS. Let H
(c)
k (m)

be a hypothesis that signal from source c is present in (k,m) time-frequency

bin. We will omit indices (k,m) for brevity where possible. Let R1 and R2 be

the classi�cation decision regions for di�erent classes and Rr a rejection region,

i.e. we prefer not to assign the sample into either class. Let λij be a penalty for

assigning a sample ξ to class i when in fact the sample belongs to class j and

λr be a penalty for rejecting a sample. We de�ne a loss function

L =

ˆ
R1

λ12p
(
H(2)|ξ′

)
p (ξ′) dξ′ +

ˆ
R2

λ21p
(
H(1)|ξ′

)
p (ξ′) dξ′ +

ˆ
Rr

λrp (ξ′) dξ′

In order to minimize this loss function, the decision regions should satisfy

ξ ∈ Ri ⇐⇒




λijp

(
H(j)|ξ

)
p (ξ) < λjip

(
H(i)|ξ

)
p (ξ)

λijp
(
H(j)|ξ

)
p (ξ) < λrp (ξ)

ξ ∈ Rr ⇐⇒ λrp (ξ) ≤ λijp
(
H(j)|ξ

)
p (ξ)

i, j ∈ {1, 2} ; i 6= j

De�ning η ,
p(ξ|H(1))p(H(1))
p(ξ|H(2))p(H(2))

we rewrite the classi�cation decision rule using

Bayes formula as

ξ ∈ Rr ⇐⇒





λr
λ12
≤ 1

1+η

λr
λ21
≤ 1

1+1/η

(3.27)

ξ ∈ R1 ⇐⇒





λ12

λ21
< η

λr
λ12

> 1
1+η

(3.28)

ξ ∈ R2 ⇐⇒





λ12

λ21
> η

λr
λ21

> 1
1+1/η

(3.29)
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We can tune the algorithm by changing values of λ12, λ21, λr.

In order to decrease the number of class 1 time-frequency bins that are

classi�ed falsely as class 2 we may increase value of λ12. This will result in

higher penalty for this kind of error on the one hand (less false alarm errors),

but on the other hand more time-frequency bins that truly belong to class 1 will

now be classi�ed as class 2 (more misdetect errors). In other words, the SIR of

class 1 decreases and SAR increases.

If we decrease λr, more time-frequency bins will be rejected, i.e. not assigned

to any of the signal classes. This increases the number of time-frequency bins

that cannot be classi�ed reliably and decreases the number of time-frequency

bins of the interfering signal in both audio sources simultaneously. In other

words, SAR increases and SIR decreases for signals of both classes. In our

application, actual values of λ12, λ21, λr are tuned manually.

We design a binary mask in the STFT domain by assigning each time-

frequency bin to one of the signal classes based on (3.27)-(3.29). Time-frequency

bins that are assigned to the interfering source or rejected are zeroed and those

assigned to the desired signal are set to 1. In order for the binary mask to be

e�ective, we assume that approximate W-disjoint orthogonality [34] holds. The

quantitative measure of the W-DO property is described in Appendix (B). We

verify the W-DO assumption in our experimental results in Section 3.5.

Binary masks are de�ned by

M
(c)
k (m) =





1 ξk (m) ∈ Rc

0 otherwise
(3.30)

c ∈ {1, 2}

The interfering source is removed by multiplying STFT transform of the mixture

by M (c)
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X̂
(c)
k (m) = M

(c)
k (m)Xk (m) (3.31)

Inverse STFT transform (A.4) gives time domain estimate of the demixed source

x̂(c) (n) = ISTFT
{
X̂

(c)
k (m)

}
(3.32)

We conclude this section with the summary of the our algorithm shown in

Algorithm (3.1). In the training stage, we learn the distribution of EFMS values

for both signal classes. We need to identify time-frequency bins that contain

the target signal, otherwise, the distribution of the EFMS values will be e�ected

by irrelevant values of EFMS originate from time-frequency regions containing

only noise. In 1.a time-frequency regions with high energy are found, the EFMS

values are estimated in 1.b and p.d.f. modeled using normalized histogram.

In the separation stage, the EFMS values are estimated in the entire time-

frequency space. Each time-frequency bin is classi�ed into either class or rejected

based on the p.d.f. estimated in 1.c. Finally, a binary mask is created using the

classi�cation decision in 2.b. and the time domain version of separated signal

is obtained by masking and inverse STFT transform.

3.5 Experimental results

In this section we present experimental results. First we verify the feasibility

of source separation on synthetic signals and then we separate two real audio

recordings of speech and piano play. We compare performance of the proposed

algorithm to an existing source separation algorithm (see Section (2.3.3).
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Algorithm 3.1 EFMS based source separation algorithm

Training

1. For each signal class c ∈ {1, 2}

(a) Find a set of high energy time-frequency bins Sc using equation (3.26)

(b) Estimate EFMS values Ê for all time-frequency bins in Sc using
equation (3.25)

(c) Estimate p.d.f. of Ê using normalized histogram

Separation

1. Estimate EFMS Ê of mixture for all time-frequency bins

2. For all time-frequency bins (k,m) of the mixture

(a) Estimate EFMS Ê.

(b) Use p.d.f. estimate from the training to either signal class or reject
using equations (3.27)-(3.29).

3. For each class c ∈ {1, 2}

(a) Generate time-frequency binary mask using (3.30).

(b) Estimate time-frequency of a single source using (3.31).

(c) Obtain time domain estimate using (3.32).
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Figure 3.9: Spectrogram of synthetic signals used for testing: (a) strongly fre-
quency modulated signal (b) weakly frequency modulated signal.

3.5.1 Synthetic signals

First we verify the ability of the proposed algorithm to segregate signals that

di�er in their subband frequency modulation signal energy. We choose synthetic

signals which properties are similar to voiced phonemes and piano play (i.e.

several frequency modulated partials). More precisely:

sc (n) =

Nh∑

l=0

cos

(
l · 2πf (c)

c n/fs +

n∑

m=0

q
(c)
l (m)

1

T

)

q
(c)
l (n) = l · d(c) cos

(
2πf (c)

m n/fs

)

where c ∈ {1, 2} is class index, Nh is the number of harmonic partials, fc, fs and

fm are carrier, sampling and modulation frequencies respectively and d is the

modulating signal amplitude. We chooseNh = 6, f
(1)
c = 400 [Hz], f

(1)
m = 10 [Hz],

d(1) = 20, f
(2)
c = 500 [Hz], f

(2)
m = 10 [Hz], d(2) = 1. Note that d(1) � d(2) as

assumed by our model for speech and piano. We normalize variance of sc to 1.

Fig. 3.9 shows spectrograms of synthetic signals used in this experiment and

Fig. 3.10 shows source signal estimates recovered from the mixture. We can see

that mixture components and their extracted counterparts looks very much the

same.

We perform another experiment that shows that our algorithm is capable of

separating white noise from weakly frequency-modulated signal. Signals chosen
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Figure 3.10: Spectrograms of (a) estimate of strongly modulated signal and
(b) weakly frequency modulated signal. Both signals are recovered from 0 dB
mixture.
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(a) 10.4 15.3 12.3 1.2 10.8 24.5 11.1 1.2
(b) 10.5 12.2 15.8 2.2 13.3 32.9 13.3 2.2

Table 3.1: Synthetic signals separation. (a) Two frequency modulated signals.
(b) Noise and frequency modulated signal.

for this experiment have similar properties to fricative phonemes and piano play.

Table 3.1 shows separation performance results and Fig. 3.11 shows the

spectrogram of source signals estimate recovered from the mixture. The spectro-

gram of noise signal is omitted. As in the previous case, the extracted harmonic

component has only few artifacts that look like a �musical noise�.

We conclude that our method is capable of segregating two audio signals

having similar properties to real speech and piano play by visually examining

the spectrograms of the signals estimates and noticing high values of objective

measures. Nevertheless, looking at Fig. 3.10(b) we notice that some energy

of the second partial (800 Hz ) of s1 �leaked� to ŝ2. We attribute this leakage

to simpli�ed learning of EFMS distribution at di�erent frequency bands. The

amplitude of the frequency modulating signals of each partial grows linearly with

the amplitude of the frequency modulating signal of the fundamental partial

as explained in Section (3.3.3). Nevertheless we do not take this e�ect into

consideration in our algorithm.
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Figure 3.11: Spectrograms of reconstructed weakly frequency modulated signal.

3.5.2 Real signals

Now we describe simulation and informal listening test results of the proposed

algorithm and compare its performance to a simple GMM monaural separation

algorithm described in Section (2.3.3).

We use 60 seconds of speech (male only) taken from TIMIT database sampled

at 16 KHz for GMM training. We use 1024 points STFT transform, Hamming

synthesis window, 50% overlap and 12 components GMM.

The parameters used for the proposed algorithm were: N = 1024, M = 64,

Nu = 121, δE = 15dB, λ12 = λ21 = 1, λr = ∞, α = 1/3. We used a Hamming

synthesis window for the STFT transform. The high-pass �lter used for the

removal of Ωc component is 122 taps FIR �lter with stop angular frequency of

0.01π.

The WDO value (see Appendix (B)) for the pair of signals used in our

experiment equals to 0.96 which according to [34] guaranties perceptually perfect
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Oracle mask 18.9 42.6 18.9 0.73 17.9 47.2 18.0 0.8
EFMS 6.1 11.8 7.8 2.4 6.4 19.7 6.6 2.0
GMM 2.4 9.3 3.8 2.9 2.6 7.9 4.8 2.5

Table 3.2: EFMS based separation algorithm performance

separation using the following binary mask in the STFT domain

M̃
(1)
k (m) =





1
|S1,k(m)|
|S2,k(m)| > 1

0 otherwise
(3.33)

M̃
(2)
k (m) =





1
|S1,k(m)|
|S2,k(m)| ≤ 1

0 otherwise
(3.34)

We will call masks de�ned in (3.34) �oracle� masks. The performance of the

oracle mask in source separation induces an upper bound in the mean square

sense on the performance of any separation algorithm that uses binary masking

and same analysis �lterbank. We present the results of source separation using

these masks together with other separation results.

We evaluated the performance of algorithms using another 45 seconds of

speech and piano signals. The results are shown in Table 3.2. The �oracle�

masks obtain the highest performance according to all measures. However, this

is only a theoretical results since creation of �oracle� mask requires a-priori

knowledge of mixture components energy in every time-frequency bin. The

EFMS based separation method shows better separation performance in all

measured parameters compared to the GMM based separation algorithm.

Figures 3.12 and 3.13 show spectrograms of speech and piano play signals

used in the mixture together with the signals recovered by the GMM based

algorithm and by the proposed algorithm. Smaller amounts of interfering signals

can be seen in speech and piano play for signals recovered by the proposed

method compared to the GMM based algorithm.

Informal listening to signals separated by the proposed algorithm reveals
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Figure 3.12: Spectrograms of the (a) clean , (b) GMM based algorithm re-
covered, (c) the proposed algorithm recovered speech signals and (d) residual
speech signal after applying the algorithm to clean speech signal.
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Figure 3.13: Spectrograms of the (a) clean, (b) GMM based algorithm recovered,
(c) the proposed algorithm recovered piano signals and (d) residual piano play
signal after applying the algorithm to clean piano signal.
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that the proposed method produces much smaller amount of artifacts and more

pleasant sound than the GMM based algorithm. The mixture separated using

oracle mask has perceptually perfect separation.

The proposed method fails detecting onsets of piano notes. The reason is

that piano strings are excited by a strike of a felt covered hammer. It results

in a strong non-harmonic component near the note onset. Only harmonic com-

ponents of piano play are detected by our algorithm and the rest of the signal

leaks into estimated speech component.

In order to �nd out which part of speech signal leaks to the piano channel, we

applied our algorithm to a clean speech signal instead of speech-piano mixture

(i.e. x (n) = s1 (n)). Ideal separation algorithm would estimate ŝ2 (n) = 0. We

examine the actual ŝ2 signal. Fig. 3.12(d) shows the spectrogram of ŝ2. The

leaking speech parts are harmonic in their nature and have constant pitch over

relatively long periods of time (0.5-1 sec). A certain amount of musical noise is

also present. On the other hand, applying the algorithm to a clean piano play

signal and examining ŝ1, 3.13(d) reveals that most of the leaking signal is the

hammer strikes as was observed earlier in the informal listening.

Finally we tuned λ12, λ21, λr parameters manually, to achieve the most per-

ceptually plausible separation results. We chose λ12 = 4, λ21 = 1, λr = 0.4.

The resulting objective measures SDR1 = −0.1, SIR1 = 18.6, SAR1 = 0.0,

SDR2 = 5.5, SIR2 = 21.5, SAR2 = 5.6. Although some measures show deteri-

orated performance, the separated speech is intelligible and contains very low

amount of audible interfering signal. Piano audible quality remains similar to

the previous experiment with slightly higher rate of interfering signal rejection.

Audio �les used for training and performance evaluation as well as separation

results can be found at http://sipl.technion.ac.il/~elitvin/EFMS/.
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3.6 Summary

We have presented and evaluated a novel technique for single-channel source

separation based on the energy of subband frequency modulating signal. The

subband frequency modulating signal is intimately connected to the subband

instantaneous frequency and phase of the analyzed signal. Signals we worked

with could be easily classi�ed just by visually inspecting the subband phase

behavior in a time-frequency localized region. This observation inspired us to

de�ne the EFMS analysis and the proposed separation algorithm.

An a-parametric probability distribution model of EFMS was learned during

the training stage. Such simple modeling technique was found appropriate be-

cause we had to model a single-dimensional variable and the amount of training

data, even from a several seconds of audio signal, is large. The classi�cation

of time-frequency bins was done using minimal Bayesian risk rule. We added

a rejection option to this rule in order to improve the perceptual quality. The

proposed method requires very simple and computationally e�cient training

compared to the GMM based algorithm. We con�rmed that the proposed al-

gorithm also produces superior results by objective performance measures and

informal listening tests.

EFMS is not the only local time-frequency property that can be used for

source separation. In Chapter 5 we experimentally study a possibility of using

higher order statistics of spectrum magnitude for time-frequency bin classi�ca-

tion.
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Chapter 4

Bark-Scaled WPD

4.1 Introduction

Traditionally, short time Fourier transform (STFT) is used in many audio and

speech processing applications. Bark-Scaled Wavelet Packet Decomposition

(BS-WPD) [31] is a time-frequency signal transformation with non uniform fre-

quency resolution. This transformation re�ects the critical bands structure of

the human auditory system. Mapping based complex wavelet transform (CWT)

[58] is based on bijective mapping of a real signal into a complex signal domain

followed by standard wavelet analysis performed on the complex signal. Among

others, CWT partially mitigates lack of shift invariance of wavelet analysis. Be-

naroya et al. [19] proposed and analyzed blind source separation using time

varying Wiener �lter in the STFT domain. First the GMM models for two

di�erent signal sources are trained using training samples. Then, the separation

is performed by maximizing maximum a posterior (MAP) criterion.

In this chapter we propose a source separation algorithm that follows Be-

naroya's STFT based algorithm, but operates on non uniform WPD �lter-bank.

We modify the BS-WPD analysis to equalize sampling rates of di�erent scale-

bands, which enables construction of instantaneous spectral shapes that are

used in training and separation stages of the separation algorithm. We also use

51
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CWT in order to achieve some level of shift invariance. The non-uniform fre-

quency resolution of the BS-WPD �lterbank, reduces the dimension of feature

vectors by allocating fewer vector elements to higher frequencies. This behavior

is similar to the critical bands structure of human auditory system. In a series

of experiments we validate our approach using various types of wavelet families

and show that the proposed approach is capable of performing the separation

task.

The remainder of this chapter is structured as follows. In Section 4.2 we

describe Bark Scaled WPD and the modi�cation designed to equalize sampling

frequencies in all sub-bands. Section 4.3 presents our mixing model and MAP

estimators for its components. Section 4.4 describes training and separation

stages of the algorithm. Section 4.5 presents our experimental results.

4.2 Bark-scaled wavelet packet decomposition

In this section we present the BS-WPD and introduce a modi�cation that has

some favorable properties for the frame-by-frame classi�cation used in our al-

gorithm.

Let E ⊂
{

(l, n) : 0 ≤ l < L, 0 ≤ n < 2l
}
be a set of terminal nodes of a WPD

tree. The center frequency of a terminal node (l, n) ∈ E is roughly given by

fl,n = 2−l
(
GC−1 (n) + 0.5

)
fs

where GC−1 (n) is the inverse Gray code of n and fs is a sampling frequency.

Critical band WPD (CB-WPD)[31] �lterbank structure is obtained by selecting

a terminal nodes set E in a way that positions center frequencies fl,n approxi-

mately 1 Bark apart. Another constraint that must be taken into consideration

is that a dyadic interval set
{
Il,n : Il,n = 2−ln, 2−l (n+ 1)

}
must form a disjoint

cover of [0, 1). Only in this case the set of wavelet packet family functions to be

able to span the signal space.

BS-WPD is de�ned in [31] as CB-WPD with two additional levels of expan-
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Figure 4.1: CSR-BS-WPD decomposition tree. Nodes having l > 6 are not
decimated. This way, sampling frequencies of signals in all terminal nodes will
be the same. Only few of the node labels are shown due to the space limitations.

sion. Due to higher frequency resolution BS-WPD performed better in the task

of speech enhancement (in our experimental setting, adding three additional

levels of decomposition proved even more bene�cial).

The source separation algorithm used in this chapter requires every time

instance to be described by a single feature vector holding the instantaneous

spectral information from all sub-bands. We de�ne a version of the BS-WPD

transform that has equal sampling frequency in each sub-band. Unfortunately,

terminal nodes of BS-WPD are located at various depths and each depth is

associated with di�erent sampling frequency. In order to align signals from all

sub-bands and equalize the sampling frequency we do not decimate the lowpass

and detail signal in nodes with l > 6. We call this transform Constant Sampling

Rate BS-WPD (CSR-BS-WPD). We note that by canceling decimation in lower

levels of the WPD tree we introduce a certain amount of redundancy into CSR-

BS-WPD representation. Fig. 4.1 shows CSR-BS-WPD decomposition tree.

The CSR-BS-WPD analysis produces only 168 sub-bands, compared to 513

sub-bands of STFT analysis with approximately the same frequency resolution

in low frequencies. We sacri�ce frequency resolution at higher frequency range,

in accordance with human auditory system which also has a coarser resolution

in high frequency range. Reducing the number of sub-bands results in smaller

dimension of data used in training and separation stages. Smaller data dimen-

sion has a potential to increase accuracy of the GMM estimation because of the
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reduced redundancy in feature vectors and to reduce computational burden.

Let x (n) be a time sequence and

x+ (n) = h+ (n) ∗ x (n) (4.1)

where h+ is a digital mapping �lter with an approximately zero magnitude

response for negative frequencies and approximately unit response for positive

frequencies. Suppression of signal negative frequencies (similar to Hilbert �lter)

maps an input signal x into a so called Softy-space (for details see Section A.3).

The image of x in Softy-space is denoted by x+. We denote the CSR-BS-WPD

transform of x+ (n) as Xl,n (m) where (l, n) are indices of terminal nodes and

m is time index. Since all terminal nodes have the same sampling rate we

can rearrange the elements of Xl,n (m) into a single column complex vector

X̄ (m) ∈ CM . The dimension of X̄ (m) is given by the number of sub-bands

M = 168.

The CSR-BS-WPD is a reversible transform. Given CSR-BS-WPD signal

X̄ (m) we can acquire a time domain signal x (n) �rst by inverting the WPD

and then taken the real part of x+ (n) (or �ltering x+ (n) with a digital �lter

g+ as de�ned in [32]).

4.3 Mixture components estimation

We assume mixing model as in (2.1). The Softy-space mapping (4.1) is linear:

x+ (n) = s+
1 (n) + s+

2 (n)

The CSR-BS-WPD expansion is also linear because WPD is linear:

X̄ (m) = S̄1 (m) + S̄2 (m)
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S̄1 (m) , S̄2 (m) , X̄ (m) ∈ CM

If we assume Gaussian model on s1, s2 then due to the linearity of Soft-

space mapping and the CSR-BS-WPD transform X̄, S̄1, S̄2 will have complex

Gaussian distribution and the reasoning in section (2.3) holds.

In order for equation (2.4) to hold, the covariance matrices of the random

vectors ought to be diagonal. In section 4.3 we justi�ed assuming stationarity

and approximate circularity of the vectors. In order to justify (2.4) in this case

we need to assume that the covariance matrices of S̄1, S̄2 are diagonal. The

diagonality of a covariance matrix means lack of correlation between samples

in di�erent frequency bands. We can interpret CSR-BS-WPD transform as a

�lterbank, and we can expect that as long as WPD �lters have good frequency

localization (i.e. energy leaking to neighboring bands is low) , the correlation

between di�erent frequency bands will be also low and the diagonal covariance

matrix assumption can be extended to the CSR-BS-WPD signals.

Like we mentioned in section 4.3 simple assumption of Gaussian distribution

prior does not hold for most real signals so here as well we assume GMM model.

Under the assumption of diagonal covariance matrices for S̄1, S̄2 the estimator

(2.5) takes the following form:

ˆ̄S1 (m) =

K∑

j,k=1

γj,k (m)

(
σ̄

(j)
1

)2

(
σ̄

(j)
1

)2

+
(
σ̄

(j)
2

)2 X̄ (m) (4.2)

and (2.6) takes the form:

ˆ̄S1 (m) = γ∗j,k (m)

(
σ̄

(j)
1

)2

(
σ̄

(j)
1

)2

+
(
σ̄

(j)
2

)2 X̄ (m) (4.3)

where (σ̄c)
2
are on diagonal elements of Σc and γ

∗ de�ned like in (2.6).
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4.4 Training and separation

Let L be a number of training signal time samples in CSR-BS-WPD domain.

During the training stage we use signal samples of both classes
{
S̄1 (m)

}L
m=1

,
{
S̄2 (m)

}L
m=1

to train two di�erent GMM models. Both Softy-space mapping and the WPD

are linear transformations, we conclude that expectation values of s, s+ and S̄

are zero, hence we can de�ne a simpli�ed zero mean GMM model that

Λc =

(
wc,
{

Σ(k)
c

}K
k=1

)
, wc ∈ RK ,Σc ∈ RM×M (4.4)

where K is the GMM model order. Following the reasoning in the previous

section, we assume Σ
(k)
c to be a diagonal covariance matrix.

We note that often, a signal in each frequency bin is assumed to have a

complex Gaussian distribution [23]. This assumption is not very accurate for

voiced parts of speech which is better modeled by a complex exponent with

linear phase and random initial phase. Usually, GMM model is trained on

spectral magnitude signal and expected value and variance of the signal are

being estimated during the training process. The estimated expected values

represent spectral shapes of training signal. In this work we train GMM model

using complex spectrum values. Expected value of complex signal is zero. We

estimate coe�cients on the covariance matrix diagonal. The output of the

training process is a group of spectral shapes (one for each GMM component)

described by the magnitude of values on the covariance matrix diagonal.

The training of the GMM models is performed using Expectation Maximiza-

tion (EM) algorithm [35] and bootstrapped using K-Means algorithm. Expec-

tation value of training data is assumed to be zero, it is is not updated during

the expectation step of the EM algorithm and constantly set to zero.

We note that the estimation of ˆ̄Sc (m) is performed for every time index m.

In the rest of this section we omit time index m for the clearness of notation. In

order to estimate signal sources ˆ̄Sc using (2.5) for every time instance, we �rst

estimate posterior probability γj,k:
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γj,k ∝ p
(
X̄|q1 = j, q2 = k

)
p (q1 = j) p (q2 = k) (4.5)

= g
(
X̄; Σ

(j)
1 + Σ

(k)
2

)
w

(j)
1 w

(k)
2

where g
(
X̄; Σ

)
is a zero mean multivariate Gaussian probability density func-

tion. Substituting (4.5) into (4.2) and using Λc estimated in the training process

we acquire estimators for ˆ̄S1 and
ˆ̄S2. The entire separation algorithm algorithm

is described in Algorithm 4.1.

The summary of the training and separation stages can be seen in Algorithm

4.1. The training stage is performed o�ine, given a database of signals from

two di�erent classes. For each signal class, a time-frequency representation of

signals is obtained using the CSR-BS-WPD transform 4.2. The GMM model of

spectral magnitude vectors for each time frame is trained using EM algorithm

[35]. Unlike classic EM implementation for GMM we do not learn mean value

of the distribution since it is assumed to be zero.

In the separation stage, the CSR-BS-WPD transform is applied to the mix-

ture. Then, the value of γ is calculated for all active GMM component com-

binations and estimates of both the sources are acquired in the time-frequency

domain using PM estimator (4.2) or MAP estimator (4.3). The separated com-

ponent signal estimators are recovered using inverse CSR-BS-WPD.

4.5 Experimental results

We compare the performance of our algorithm to the STFT based algorithm

[2]. We demonstrate the e�ectiveness of the proposed algorithm on synthetic

signals and on speech and piano music mixtures.
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Algorithm 4.1 CSR-BS-WPD and GMM based source separation algorithm

Training

1. Compute CSR-BS-WPD time frequency representation S̄1 (m) , S̄2 (m) of
training signals s1 (n) , s2 (n) as explained in Section 4.2.

2. Train Λ1,Λ2 GMM models using data vectors S̄1 (m) , S̄2 (m) and EM
algorithm.

Separation

1. Compute CSR-BS-WPD time frequency representation X̄ (m) of mixed
signal x (n) as explained in Section 4.2.

2. For all time indexes m

(a) For all pairs (j, k) ∈ {(j, k) |j ∈ {1, . . . ,K} , k ∈ {1, . . . ,K}}
i. Compute γj,k (m) using (4.5)

(b) Estimate ˆ̄S1,
ˆ̄S2 using (4.2) or (4.3)

3. Compute estimates of mixture components in time domain using as ex-
plained in Section 4.2.

4.5.1 Synthetic signals

First we evaluated the performance of the separation algorithm using synthetic

signals. Our goal is to verify the feasibility of the separation in the CSR-BS-

WPD domain. We constructed synthetic signals by dividing the entire signal

time span into 400ms segments and each segment is generated by

xc (n) =





∑2
i=1 cos

(
2π
fs
f

(c)
1,i n

)
with probability 1

2

∑2
i=1 cos

(
2π
fs
f

(c)
2,i n

)
with probability 1

2

(4.6)

where f
(1)
1,1 = 220Hz, f

(1)
1,2 = 440Hz, f

(2)
1,1 = 300Hz, f

(2)
1,2 = 600Hz. Two di�erent

signals were generated for training and evaluation. We used GMM with two

mixture components.

Table 4.1 shows the separation performance. High values of SIR indicate

high rejection of interfering signal and relatively high values of SDR indicate low

amount of distortion introduced by our separation algorithm. Both algorithms
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SDR1 SIR1 SAR1 SDR2 SIR2 SAR2

STFT 16 40 16 16 31 16

CSR-BS-WPD 20 35 20 22 40 22

Table 4.1: Separation performance measures for separation of synthetically gen-
erated signals for di�erent algorithms. The measures are shown in dB.

perform very well on these synthetic signals.

4.5.2 Real signals

We also evaluated the performance of the proposed algorithm on real signals. We

separated two audio source classes: speech and piano excerpts. We used training

sequence of 50 seconds for model training and 11 seconds for the performance

evaluation. Di�erent speech and piano excerpts were used for training and

performance evaluation. Speech signals were taken from TIMIT database and

included male speakers only. Piano excerpts were taken from Chopin's preludes.

All signals were sampled at 16 KHz. We equalized the energy of all signals before

training and before the signal were mixed.

We compared the separation performance for di�erent GMM model order

and di�erent wavelet families. Fig. 4.2 depicts signal to distortion ratio of

speech signal (SDR1). A higher value of SDR1 indicates a smaller degree of

speech distortion after the separation. For low orders of GMM, the CSR-BS-

WPD analysis based on the discrete Meyer (dmey) wavelet family outperforms

other tested wavelet families and STFT based algorithm. For high orders of

GMM, dmey based algorithm shows performance comparable to the STFT

based algorithm and slightly better performance than other wavelet families.

Although Fig. 4.2 depicts only the SDR1 measure, other performance measures

(SDRi,SIRi,SARi,LSDi) showed similar behavior. Fig. \ref{�g:all-families-

compare} shows the performance of di�erent wavelet families and the STFT

based algorithm for GMM model order of 10. The dmey wavelet family based

algorithm shows performance superior to STFT for all objective measures com-
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Figure 4.2: In�uence of the GMM model order on the signal to distortion ratio
(SDR1) of the speech signal. STFT based algorithm [2] is compared to CSR-
BS-WPD based algorithm.

pared. Other wavelet families, however show inferior separation performance to

the STFT based algorithm.

In additional experiments we noticed that when dmey based analysis is used,

the sparseness of music and speech signals in the CSR-BS-WPD domain is

highest compared to other wavelet families used in separation experiments. In

[31], dmey wavelet family is also used for speech enhancement and motivated by

the regularity of the wavelet �lter and its good frequency localization properties.

Informal listening tests indicate that the CSR-BS-WPD based separation

produces less �jumpy� and more pleasant signal reconstruction than the STFT

based version of the algorithm.

4.6 Summary

We have described how a Bark-scaled WPD can be adapted to the source sep-

aration task. Introduction of a di�erent subsampling scheme and approximate

shift invariance in the BS-WPD decomposition tree, enabled us to adapt a source
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Figure 4.3: Performance comparison of all wavelet families and the STFT based
algorithm for GMM order of 10.

separation algorithm that was originally designed to work in the uniformly sam-

pled STFT domain. We found several advantages of using the proposed analysis

together with a GMM based source separation algorithm. Coarse frequency res-

olution in high frequency range allowed us to reduce the computational burden.

The perceptual quality of the extracted signal components was also improved.

We found out that the Discrete Meyer wavelet based CSR-BS-WPD analysis

yields improved separation performance compared to STFT analysis and other

wavelet families tested. As a byproduct of our work we found out that the

sparseness of signal representation is highest when the Discrete Mayer wavelet

�lters (compared to several other tested wavelet families) are used and we be-

lieve it is the reason for the superior performance of the separation algorithm

based on this wavelet family.
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Chapter 5

Short Time Spectral Kurtosis

5.1 Introduction

High order statistics is frequently used for source separation in multichannel

case. In particular, kurtosis used as a measure of non-Gaussianity of the re-

covered mixture components. Spectral Kurtosis (SK) is a tool capable locating

non-Gaussian components including their location in the frequency domain. SK

was �rst introduced by Dwyer [59]. He de�ned it as a kurtosis value of real part

of the STFT �lterbank output. Antoni [60] introduced a di�erent formalization

of SK by means of Wold-Cramér decomposition which gave a theoretical ground

for the estimation of SK of non-stationary processes. He also showed practical

applications of his approach in the �eld of machine surveillance and diagnostics

[61, 62]. Another applications of spectral kurtosis include SNR estimation in

speech signals [63], denoising [64] and subterranean termite detection [65].

In Chapter 3 we used properties of subband FM signal in order to label each

time-frequency bin assignment to di�erent audio sources. We relied on the W-

DO property to justify binary masking in the STFT domain as a valid method

for source separation (see Section B). In this chapter we use the time localized

value of the kurtosis in di�erent subbands (short time spectral kurtosis) to label

time-frequency bins and create a binary mask.

63
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The remainder of this chapter is structured as follows. In Section 5.2 we

present the concept of spectral kurtosis. Then, Section 5.3 extends the idea of

spectral kurtosis to to non-stationary signals. In Section 5.4 we describe simple

source separation algorithm based on the spectral kurtosis analysis and experi-

mental study is described in Section 5.5. Section 5.6 concludes this chapter.

5.2 Spectral kurtosis

Let x (n) be a real, discrete time, random vector. Let Xk be its N points

Discrete Fourier Transform (DFT) de�ned as

Xk =

N−1∑

n=0

x (n) e−j
2π
N kn

Following [66], the spectral kurtosis is de�ned as

Kx (k) =
κ {Xk, X

∗
k , Xk, X

∗
k}

(κ {Xk, X∗k})
2 (5.1)

Using the circularity the de�nition can be rewritten as

Kx (k) =
E
{
|Xk|4

}

(
E
{
|Xk|2

})2 − 2 (5.2)

Gaussian processes

Let xWG (n) be white Gaussian vector. Its DFT is a complex Gaussian. Cu-

mulants with order greater than 3 is zero for Gaussian and complex Gaussian

random variable. By (5.1) the SK of xWG (n) is zero for all m.

Complex sine with random phase

Let xsine (n) = aej(2π
m0
N n+ϕ). When ϕ ∼ U (0, 2π), xsine (n) is a stationary

process. By (5.2) and noticing that E
{
|Xk|4

}
=
(
E
{
|Xk|2

})2

= (Na)
4
we
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conclude that Kxsine
(k) = −1.

5.2.1 Kurtosis of signal mixture

Assume mixing model (2.1) and that s1 (n) and s2 (n) are statistically indepen-

dent stationary processes. Let φA (k) , E
(
|Ak|2

)
and γ , φs1 (k) /φs2 (k) . It

is shown in [67] that

Kx (k) =

∣∣∣∣
φs1 (k)

φs1 (k) + φs2 (k)

∣∣∣∣
2

Ks1 (k) +

∣∣∣∣
φs2 (k)

φs1 (k) + φs2 (k)

∣∣∣∣
2

Ks2 (k)

=

∣∣∣∣
1

1 + 1/γ

∣∣∣∣
2

Ks1 (k) +

∣∣∣∣
1

1 + γ

∣∣∣∣
2

Ks2 (k) (5.3)

When γ � 1, Kx (k) ≈ Ks1 (k). Similarly, when γ � 1, Kx (k) ≈ Ks2 (k).

If two signals that we try to separate have W-DO property, then for almost

every time-frequency bin either γ � 1 or γ � 1. According to (5.3) the source

of the signal in each time-frequency bin can be determined.

5.2.2 Kurtosis estimation

Let {X (i)}LKi=1 ∈ RN a set of samples. If {X (i)} are i.i.d, Vrabie et al. propose

the following unbiased estimator of the SK [66]

K̂X =
LK

LK − 1




(LK + 1)
∑LK
i=1 |X (i)|4

(∑LK
i=1 |X (i)|2

)2 − 2




Antoni [60] proposed another estimator for the SK assuming Wold-Cramér

decomposition of non-stationary process. It is based on the STFT transform

and requires analyzed signal to be quasi-stationary at the scale of STFT analysis

windows. This requirement is common requirement in audio signal processing.

The estimator is de�ned using 〈.〉t time averaging operator (time averaging is
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done with the respect to t)

Ŝ2nX (k) ,
〈
|Xk (m)|2n

〉
m

(5.4)

where Xk (m) is de�ned in (3.11). The STFT based estimator of SK is de�ned

as:

K̂X (k) ,
Ŝ4X (k)

Ŝ2
2X (k)

− 2 (5.5)

The analysis of the statistical properties of this estimator can be found in [60].

The kurtosis estimator (5.5) estimates frequency localized kurtosis values.

For the purpose of source separation we also need to localize SK estimation in

time. In order to do so, we de�ne a time localized 2n-th order empirical spectral

moment of |Xk (m)| as

Ŝ2nX,k (m) ,
bLK/2c∑

i=−bLK/2c

wK (m+ i) |Xk (i)|2n (5.6)

where wK (m) is an averaging window with
∑
m wK (m) = 1. Equations (5.4)

and (5.6) are similar except (5.6) is also localized in time. Finally we de�ne

K̂X,k (m) ,
Ŝ4X,k (m)

Ŝ2
2X,k (m)

− 2 (5.7)

In the rest of this paper we refer to (5.7) as Short Time Spectrum Kurtosis

(STSK).

5.2.3 Physical interpretation

Equation (5.7) can be written as follows:
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K̂X (k) ,

〈
|Xk (m)|4

〉
m
−
〈
|Xk (m)|2

〉2

m〈
|Xk (m)|2

〉2

m

− 1

The expression can be interpreted as normalized empirical variance of signal

energy in di�erent bandpass channels (up to a subtracted constant −1) which

is as a sort of measure for time dispersion of |Xk|2 [60]. Similar interpretation

can be applied to STSK.

5.3 Short time spectral kurtosis of real audio sig-

nals

In following examples we use audio signals sampled at 16 KHz. The STFT anal-

ysis is performed using N = 1024, M = 128. The spectral moments estimator

average over time window of LK = 31 and wK is a square window:

wK (m) =





1/LK −bLK/2c ≤ m ≤ bLK/2c

0 otherwise

.

Figures 5.1,5.2,5.3 and 5.4 show spectrograms and STSK of speech, piano

play, fast piano play and speech piano mixture signals respectively. High values

of STSK can be observed in time-frequency regions where the power spectrum

has non-stationary behavior in time.

Piano play signal mostly composed of harmonic partials that are well local-

ized in frequency and maintain same statistical properties on a relatively long

segments in time. As such, they can be well described by a complex sinusoidal

model with a random phase. As we saw in Section 5.2, this model induces

kurtosis value of −1.

Speech signal can be roughly divided into three categories: voiced phonemes,
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(a) Spectrogram of speech signal
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(b) STSK of speech signal

Figure 5.1: Power spectrum and STSK analysis of speech

plosive and fricative phones. Fricative phonemes are well described by a colored

Gaussian noise model. A complex time signal in each frequency band of the

STFT has complex Gaussian distribution. As we saw in Section 5.2, this model

induces kurtosis value of 0. Plosive phonemes produce an energy peak in time

that resembles a sample from a heavy tail distribution, as such, results in high

values of kurtosis.

Voiced phonemes, like piano play, are harmonic signals. Unlike, piano play,

their fundamental frequency changes continuously and rapidly. Harmonic par-

tials rapidly enter to and exit from di�erent frequency bands. This produces a

sample set with a mix of high and low energy samples. It can be seen as samples

from a heavy tail distribution. Examination of STSK (Fig. 5.1) indeed shows

that measured values of STSK for speech are high.

The STSK of piano play signals is much lower then STSK of speech (Fig.

5.2,5.3). The piano play signal is composed mostly of harmonic sounds having a

constant fundamental frequency over a relatively long time periods. The onsets

of notes show themselves as a spikes of STSK values.

The STSK of speech and piano mixture (Fig. 5.4) has low values of STSK

in time-frequency regions that originate from the piano play and high values of

STSK in the regions originating from speech. This observation implies that it

should be possible to separate speech from piano play by binary masking the

interfering signal using STSK for binary time-frequency bin classi�cation.
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(a) Spectrogram of piano play (slow)
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(b) STSK of piano play (slow)

Figure 5.2: Power spectrum and STSK analysis of slow piano play
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(a) Spectrogram of piano play (fast)
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(b) STSK of piano play (fast)

Figure 5.3: Power spectrum and STSK analysis of fast piano play
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(a) Spectrogram of speech and piano mixture
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(b) STSK of speech and piano mixture

Figure 5.4: Power spectrum and STSK analysis of speech and piano play mixture
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5.4 Source separation using STSK

In the previous section we observed that the STSK values of speech signal are

generally higher than the STSK values of piano play. We also saw that pitch

tracks of the piano play has low values of SK. Using this intuition we de�ne the

following binary masks in the STFT domain.

M
(1)
k (m) =





1 K̂x (m, k) > δSK

0 otherwise

(5.8)

M
(2)
k (m) = 1−M1,k (m) (5.9)

where δSK is a threshold chosen based on experiments.

We reconstruct mixture components by masking the interfering signal time-

frequency bins and performing inverse short time Fourier transform A.4

ŝc (n) = ISTFT
(
M (c) ◦X

)
(5.10)

where ◦ denotes elementwise multiplication.

Algorithm 5.1 presents all steps of the STSK based source separation al-

gorithm. First, the STSK of the mixed signal is calculated. Then STSK is

estimated using (5.7). A simple thresholding (5.8), (5.9) is used to create bi-

nary masks. Threshold value δSK established from experiments. Finally, binary

masks are applied to the time-frequency mixture signal obtained in step 1 of the

algorithm and the separated components signal is recovered using the ISTFT

transform.

5.5 Experimental results

We used same test samples as in Section 3.5. The STFT analysis parameters

used for the SK based algorithm are shown in Table 5.1. The value of δSK was
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Algorithm 5.1 STSK based source separation algorithm

1. Find the time-frequency representationXk (m) of the mixture using STFT
A.3.

2. Estimate STSK K̂X (m, k) of the mixture using equation (5.7)

3. Create binary time-frequency masks Mk (m) using equations (5.8), (5.9)

4. Filter out the interfering signal and get a time domain estimate using
equation (5.10)

Sampling frequency 16KHz
STFT analysis window length 1024

STFT overlap (samples) 128
Short time SK estimation window length (samples/secs) 71 samples, (~0.5 sec)

δSK 1

Table 5.1: STFT analysis parameters

chosen experimentally.

Table 5.2 compares the performance of the proposed algorithm comparing

to a GMM based separation algorithm (see Section (2.3.3)). We show the per-

formance of the EFMS based separation algorithm explained in Chapter 3. All

performance measures show superior performance of the STSK based algorithm

over EFMS and GMM algorithm. The subjective tests indicated superior qual-

ity of the STSK over GMM algorithm and comparable or slightly better perfor-

mance of the STSK over EFMS algorithm.
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Oracle mask 18.9 42.6 18.9 0.73 17.9 47.2 18.0 0.8
GMM 2.4 9.3 3.8 2.9 2.6 7.9 4.8 2.5
STSK 7.7 19.5 8.0 2.8 8.2 21.3 8.4 2.3

EFMS 6.1 11.8 7.8 2.4 6.4 19.7 6.6 2.0

Table 5.2: EFMS based separation algorithm performance. All performance
measures show superior performance of the STSK based separation algorithm.
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5.6 Summary

We have de�ned a concept of short time spectral kurtosis (STSK). Recent work

on the Spectral Kurtosis focused mainly on the machine surveillance and diag-

nostics. In these publications estimation of the SK was done using large sets

of independent samples. In our work we were interested in the value of SK

localized in time.

The proposed estimation of the STSK is done on a much shorter time periods

when only several or at best tens samples are available. Windowing and overlaps

that are part of the STFT analysis, introduce inter-sample correlation and result

in estimation bias [60]. We de�ned an ad-hoc estimator of the STSK but we

did not study its statistical properties. Graphical plots of the STSK estimated

by the proposed estimator produced meaningful images: the harmonic tracks

are shown to have low values of the STSK while fricatives and noise had higher

values of STSK. We note that in the proposed algorithm, the bias of the STSK

estimator has little importance since only relative values of the STSK a�ect the

algorithm.

We presented a very simple source separation algorithm that uses STSK

values to classify time-frequency bins into one of two classes. We assume that

piano play has more harmonic components and hence lower values of the STSK

than in speech. The classi�cation between two classes is done by simply com-

paring the STSK to a threshold and the separated sources are extracted by

simple binary masking of the time-frequency bins followed by the ISTFT. Good

experimental results suggest that the STSK information provides meaningful

information about audio signals and may be a useful tool for audio signal pro-

cessing applications.



Chapter 6

Conclusion

6.1 Summary

In this thesis we addressed a problem of blind and semi-blind source separation

from a single sensor. We presented three novel algorithms for source separation.

The �rst two algorithms are the EFMS and the STSK based separation

algorithms. The separation is based on individual time-frequency bin classi-

�cation. Time-frequency mask is created for every mixture component and

time-frequency bins that belong to the interfering class are zeroed. Extracted

components are recovered using inverse time-frequency transform.

Similar single-channel source separation approaches found in the literature

rely on global time-frequency information such as CASA cues or spectral shapes

learned in the training stage. In our method we use only local information in

order to assign each time-frequency bin to one of the sources. We use information

from a single frequency band and time vicinity of few hundreds of millisecond

to make an assignment decision.

We do not deal with complicated spectral statistical models and use simple

a-parametric p.d.f. estimation using a normalized histogram, hence the training

procedure is signi�cantly simpli�ed. Our method is also insensitive to spectral

shape variations between di�erent source instances.

73
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The downside of using proposed time-frequency localized features is the abil-

ity to di�erentiate between a limited set of audio signals. For example, two

harmonic musical instruments might have di�erent timbre, but same amount of

frequency modulation. These signals are indistinguishable in the local view of

the time-frequency domain.

For a successful separation It is important that two signals do not overlap in

the STFT domain. Previously studied W-DO requirement is not strong enough

for the proposed method since it is necessary that the entire time vicinity used

to estimate EFMS or STSK would contain mostly a single signal energy.

It is interesting to note that both the EFMS and the STSK algorithms

produce similar separation results, both in the sense of objective measures,

similar perceptual quality and similar artifacts. The former algorithm relies

mostly on the phase information and the later on the fourth order statistics of

the amplitude. For the harmonic parts of the signal, high frequency modulation

implies that the carrier constantly exists and enters a subband. This directly

a�ects the subband amplitude and is re�ected through the STSK values.

The third algorithm is the CSR-BS-WPD based separation algorithm. It

is closely related to a GMM based source separation presented earlier in the

literature except for a psychoacousticaly motivated signal analysis frontend. It

reduces dimension of the signal space and computational complexity of similar

STFT �lterbank based algorithm. Due to the similarity of the overall separation

algorithm to the STFT �lterbank based algorithm, the performance and pitfalls

of both algorithms are similar. Only in some scenarios, when GMM order was

chosen to be low, the separation performance was improved.

An important observation that was made during the performed experiments

is that the discrete Meyer wavelet family showed superior performance com-

pared to other wavelet families. Besides, we also found correlation between the

performance of the separation algorithm to the sparsity of the representation

coe�cients which depends strongly on the wavelet family used.
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6.2 Future research

Several source separation approaches and related techniques studied in this the-

sis open a number of interesting topics for future study:

1. Use CSR-BS-WPD analysis instead of STFT analysis in the EFMS and the

STSK based separation algorithms presented in this work. The psycho-

acoustically motivated CSR-BS-WPD �lterbank (opposed to the STFT �l-

terbank used in our work) may improve the robustness of time-frequency

bin assignment done by EFMS and STSK algorithm. It could also ad-

dress the di�culty of selecting correct subband width for low and high

frequencies discussed in subsection 3.3.3.

2. In the proposed EFMS based separation algorithm, we use a low-pass �lter

to reduce the variance of the EFMS estimation. This results in smoothed

boundaries of signal onsets and o�sets and hence deteriorates separation

performance. Some sort of non-linear �ltering, such as bilateral �ltering,

frequently used in image processing, can be applied to reduce variance of

EFMS estimation without blurring onset and o�set regions.

3. The EFMS based algorithm uses the energy of the FM signal which gives

a crude description of the signal. Other FM signal analysis may address

spectral structure of frequency modulating signal or time varying statistics

and extend the range of possible applications of the subband frequency

modulating signal based analysis as well as improve the performance of

source separation.

4. We used a binary mask to reject interfering signal from the mixture. It

may be possible to use some sort of a soft mask, (having real values in the

0 to 1 range instead of a discrete set of 0 and 1). The value of the mask

may be determined using some probabilistic function. Use of soft mask

has a potential to improve perceptual quality of separated signals.

5. The EFMS and the STSK based algorithm use local time-frequency infor-
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mation for the source assignment of time-frequency bins. The information

from other spectral regions, such as spectral shape, is discarded. The

localized time-frequency approach may be combined with another source

separation algorithm, such as GMM based algorithm used in this work to

account for currently unused information.

6. It may be interesting to investigate applicability of subband frequency

modulating signal analysis to other signal processing applications, such

as speech enhancement or various audio classi�cation tasks. For exam-

ple, some preliminary experiments not reported in this work showed that

EFMS can be used very e�ciently as signal feature for di�erent signal

classes.

7. Little can be found in the literature on the topic of spectral kurtosis es-

timation. In our thesis we de�ne and perform the STSK estimation in

an ad-hoc manner. A rigorous approach to the STSK estimation such as

rigorous de�nition estimators and study of their statistical properties may

improve the performance of the proposed algorithms. It could also �nd

its use in other audio processing applications such as signal enhancement,

signal classi�cation, etc.

8. We notice that the separation performance of the CSR-BS-WPD based

separation algorithm depends on the sparsity of the time-frequency rep-

resentation. It may be possible to de�ne an optimization procedure that

would try to improve sparsity of the representation for some given signal

class by changing mother wavelet function. The resulting wavelet analy-

sis would have a perfect reconstruction properties on one hand and more

sparse signal representation on the other. We speculate that a source

separation algorithm based on this signal representation would have bet-

ter performance. The sparsity of signal representation is often a desired

property for many other applications as well.

9. Future work on the CSR-BS-WPD analysis may address various audio pro-
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cessing tasks traditionally performed in the STFT domain, which require

instantaneous spectral shapes and have some relations to critical bands in

human auditory system.
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Appendix A

Joint Time-Frequency

Analysis

A.1 Short time Fourier transform

Short time Fourier transform (STFT) and its inverse transform are well known

tools used for time-frequency signal analysis. It is especially useful for non

stationary signals analysis such as audio signals like speech or music.

We use the following de�nition of the continuous version of the STFT

Xω (t) =
1

2π

ˆ ∞
−∞

wc (τ − t)xc (τ) e−jωτdτ (A.1)

where wc (t) is an analysis window and xc (t) a continuous time signal.

Let x (n) = xc (nT ) be a discrete time domain signal where T is a sampling

period. In the discrete case, the STFT transform is de�ned by

Xk (m) =

∞∑

n=−∞
w (mM − n)x (n) e−j

2π
N kn (A.2)

where k and m are frequency and time indices respectively, w (n) is an analysis
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window and M is number of overlapping samples between consequent analysis

frames. In practical application, the support of the analysis window w (n) is

�nite. Let N be the support of w (n). In this case (A.2) reduces to

Xk (m) =

N−1∑

n=0

w (mM − n)x (n) e−j
2π
N kn (A.3)

The inverse STFT (ISTFT) transform is given by

x (n) =

∞∑

m=−∞

N−1∑

k=0

Xk (m) w̃ (mM − n) ej
2π
N k(n−mM) (A.4)

where w̃ (n) is a synthesis window. Substituting (A.2) into (A.4) gives the

completeness condition

∑

m

w (n−mM) w̃ (n−mM) =
1

N

which ensures perfect reconstruction. For a given analysis window w there might

be in�nitely many perfectly reconstructing synthesis windows. We use synthesis

window w̃ which is bi-orthogonal to w.

A.2 Discrete wavelet transform

Discrete Wavelet Transform (DWT) is a time-frequency signal analysis. Unlike

STFT transform that provides uniform time-frequency resolution at all frequen-

cies, DWT provides varying time-frequency resolution at di�erent frequencies:

low frequency regions are analyzed with �ne frequency resolution and course

time resolution while high frequency regions analyzed with course frequency

resolution and high time resolution [68].

DWT can be implemented as a series of half-band �lters. Input signal is

�ltered using a high pass half-band �lter h (n) and a low pass half-band �lter

g (n). The output of both �lters are decimated by 2. The output signal dj+1,k of
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Figure A.1: Discrete wavelet decomposition

�detail �lter� h are usually referred as �detail signal� and the output signal aj+1,k

of �approximation �lter� g is referred as �approximation signal�. The ��ltering

and decimation� procedure may be repeated several times. The detail signals

from all levels of the decomposition, together with the approximation signal of

the last level of the decomposition are the DWT coe�cients. The entire DWT

process is displayed in Fig. A.1. The number of times the half-band �lters are

applied (hence the depth of the decomposition tree) depends on the application

requirements.

More precisely, let j ∈ {1, . . . , J} and J be the number of DWT decomposi-

tion levels. The DWT transform is given by following recursive formulas:

dj+1,m =

∞∑

n=−∞
h (n− 2m) aj (n)

aj+1,m =

∞∑

n=−∞
g (n− 2m) aj (n)

Under some conditions on h and g the inverse DWT (IDWT) exists.

Wavelet Packet Decomposition (WPD) is di�erent from the DWT in the

sense that it allows to perform the ��ltering and decimation� procedure not

only on the approximation signals but also on the detail signal of each tree

level. The removal of this constraint imposed by the DWT makes it possible to

control the resolution of the WPD analysis at di�erent frequencies.
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A.3 Mapping based complex wavelet transform

In this section we describe disadvantages of the standard Discrete Wavelet

Transform (DWT) and present a Mapping Based Complex Wavelet Transform

(CWT), introduced in [58] that mitigates these disadvantages to some degree.

A major disadvantage of the DWT that reduces its usefulness in audio

signal processing applications is the lack of shift invariance. Let x (n) be a

time domain signal and Xl,n (m) = DWT {x (n)} its DWT transform. Let

x∆ (n) = x (n−∆) be a shifted version of the time signal. The DWT coe�-

cients of x∆ (n) change signi�cantly compared to Xl,n (m). The reason for this

behavior lies in the downsampling performed by the DWT on the dilated sig-

nals. A short survey of techniques used to mitigate lack of shift invariance may

be found in [58].

Let L2 (R→ C) denote a function space of square integrable complex-valued

functions on a real line and L2 (R→ R) its subspace comprised of real-valued

functions. Hardy-space H2 (R→ C) is de�ned by

H2 (R→ C) ,
{
f ∈ L2 (R→ C) : F (ω) = 0 for a.e. ω < 0

}

where F is a Fourier transform of f .

In [58], a function space L2 (R→ R) is shown to be isomorphic to Hardy-

space H2 (R→ C) under certain conditions. It is also shown therein, that the

mapping of a function in L2 (R→ R) into Hardy-space cannot be implemented

using a digital �lter. Softy-space is a practical approximation of a Hardy-space.

The mapping into Softy-space is done using a digital �lter h+. From now on,

we denote signals in Softy-space by superscript �+�.

Forward CWT transform is de�ned by a map of a time domain signal x (n)

into its Softy-space image x+ (n) followed by standard DWT transform. The

inverse CWT transform consists of Inverse Discrete Wavelet Transform (IDWT)

followed by the inverse mapping from the complex valued Softy-space back to

the real valued time signal.
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An algorithm presented in Chapter (4), bene�ts from approximate shift in-

variance property. As explained therein, we train the GMM model using the

wavelet transform coe�cients. Lack of shift invariance adds redundancy to the

signal space making it larger and the amount of training data required will grow

accordingly.
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Appendix B

Approximate W-DO

orthogonality

W-disjoint orthogonality (W-DO) was introduced and studied by Yilmaz and

Richard [34] for speech signal sources. It is not obvious that using binary mask in

the case of two speakers or speaker and music, in order to reject an interfering

source in the STFT domain should lead to a separation result of satisfying

quality. In this section we describe a concept of approximate W-DO and the

way it is used to justify binary mask usage for source separation.

Two continuous functions s1 (t), s2 (t) are called disjoint orthogonal if

s1 (t) s2 (t) = 0 ∀t (B.1)

Two continuous functions s1 (t), s2 (t) are called W-disjoint orthogonal if the

following condition hold for their STFT (A.1) mappings S1,ω (t), S2,ω (t)

S1,ω (t)S2,ω (t) = 0 ∀ω, t (B.2)

The �W� in the �W-DO� stands for the analysis window of the STFT transform.
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In equation (A.1) it is denoted by a small wc instead of W . For a special case

where wc (t) = δ (t), the W-DO condition (B.3) reduces to disjoint orthogonality

in time (B.1). For a special case of wc (t) ≡ 1 the STFT transform reduces to

a regular Fourier transform and W-DO condition (B.3) means that two signals

are disjoint in the frequency domain.

In a discrete signal case, a discrete STFT transform is used. In this case

very few speech or music coe�cients will actually be zero. However, due to

the sparsity of two signals in the STFT domain and their independence, only

a small amount of energy from both signals will reside in same time-frequency

bins. A relaxed version of (B.3) can be used

S1,ω (t)S2,ω (t) ≈ 0 ∀ω, t (B.3)

and some measures of the approximate W-DO can be de�ned based on the

analysis of energy in di�erent time-frequency bins.

Let Mω (t) be a time frequency mask. The preserved-signal ratio (PSRW)

de�nes the portion of a signal c ∈ {1, 2} that remains after applying a mask

Mω (t)

PSRW
M,c ,

∥∥∥Mω (t) Ŝc,ω (t)
∥∥∥

2

∥∥∥Ŝc,ω (t)
∥∥∥

2

and signal-to-interference ratio (SIRW) as

SIRW
M,c ,

∥∥∥Mω (t) Ŝc,ω (t)
∥∥∥

2

∥∥∥Mω (t) Ŝ3−c,ω (t)
∥∥∥

2

In the notations we use a super index W to avoid confusion with SIR measure
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Figure B.1: Two upper panes show spectrograms of sample speech and piano mu-
sic signals S1,k (m), S2,k (m) (the intensity map is logarithmic). Both signals are
normalized to have unit energy in time. The lower pane shows S1,k (m)S2,k (m)
(also on a logarithmic scale of gray scale intensity). We see that only a small
amount of energy resides at the same time-frequency bins, i.e. the property of
the approximate W-DO holds for these signals.
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de�ned in Section 2.4. The measure of W-DO is de�ned by

WDOM ,

∥∥∥Mω (t) Ŝc,ω (t)
∥∥∥

2

−
∥∥∥Mω (t) Ŝ3−c,ω (t)

∥∥∥
2

∥∥∥Ŝc,ω (t)
∥∥∥

2

= PSRW
M,c −

PSRW
M,c

SIRW
M,c

If signals are W-disjoint orthogonal and we choose a binary mask Mω (t) that

coincide with support of signal c. In this case The PSRW
M,c = 1 and SIRW

M,c =∞

(because theMω (t) and the support Ŝ3−c,ω (t) are disjoint) hence the WDOM =

1. On the other hand, if the support of both signals is the same, then PSRW
M,c =

1 and SIRW
M,c = 1 hence WDOM = 0.

Subjective listening tests conducted in [34] indicate that WDO have good

correlation with rating given by human listeners. For example, WDO values

that are greater then 0.8 coincide with perfect perceptional quality indicated

by human listeners. WDO values between 0.6 and 0.8 coincide with �minor

artifacts or interference� rating.
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