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Abstract

Adaptive beamforming techniques are widely used in many real-world applica-

tions such as wireless communications, radar, sonar, acoustics, and seismic sens-

ing. These techniques are effective in rejecting interference signals and noise while

recovering the desired signal. In Some of the applications, wideband adaptive

beamforming is requires due to the wideband nature of the employed signals.

One of the main approaches for implementing wideband adaptive beamform-

ing is the coherent approach. Methods based on the coherent approach involve a

linear pre-processor which focuses the signal subspaces at different frequencies to a

single frequency, followed by a narrowband adaptive beamformer such as the Min-

imum Variance Distortionless Response (MVDR) algorithm. The main benefits of

the coherent methods over that of non-coherent methods are low computational

complexity, the ability to combat the signal cancellation problem and improved

convergence capabilities.

In the literature, there are several methods to design focusing matrices for the

coherent processing. The methods differ from each other in various features, such

as the focused directions, optimality criteria, etc. In this thesis, we present and

1
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study a Bayesian Focusing Transformation (BFT) for coherent wideband array

processing, which is robust to uncertainties at the Direction Of Arrivals (DOAs).

The Bayesian focusing approach takes into account the Probability Density Func-

tions (PDFs) of the DOAs and minimizes the mean-square error of the transfor-

mation, thus, achieving improved focusing accuracy of the actual data over the

entire bandwidth.

We also treat the important issue of robust focused MVDR beamforming in

order to reduce the sensitivity of the focused MVDR beamformer to errors caused

by DOAs uncertainties, Sample Matrix Inversion (SMI) implementation errors

and focusing errors. We generalize the diagonal loading solution and develop a

robust MVDR beamformer for the coherent wideband case referred to as the Q-

loaded focused MVDR wideband beamformer. Numerical results and simulations

demonstrate the superior AG of the focused Q-loaded beamformer combined with

the BFT method over that of the other focusing methods.

Finally, we propose and study two robust methods for coherent focused wide-

band MVDR beamforming. The focusing procedure introduces a frequency de-

pendent focusing error which causes performance degradation, especially at high

Signal to Noise Ratio (SNR) values. The proposed robust methods aim at reducing

the sensitivity of the coherent MVDR to focusing errors. The first method is based

on modifying the beamformer optimization problem and generalizing it to bring

into account the focusing transformations and the second is based on modifying

the focusing scheme itself.
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Chapter 1

Introduction

1.1 Motivation and Goals

Adaptive beamforming techniques are used for sensors arrays to enhance the signal-

to-interference plus noise ratio in many applications such as wireless communica-

tions, radar, sonar, acoustics, and seismic sensing. These techniques are effective

in rejecting interference signals whose incident directions of arrival differ from that

of the desired signal [1]. The potential of adaptive beamforming was already recog-

nized since the early 1960’s for the narrowband case. Yet, in the last two decades,

the necessity for wideband adaptive beamforming increased with the development

of third and fourth generations of wireless communications for mobile systems as

well as ultra-wideband communication systems [2–5]. These systems support very

high data rate communications due to their wideband nature combined with their

space-time processing abilities.

Wideband adaptive beamforming techniques can be classified into two main

9
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categories. The first category consists of non-coherent wideband beamforming

methods which employ either time domain or frequency domain implementations.

The non-coherent time domain techniques utilize multi-tap spatial adaptive filters

whose coefficients are adjusted to suppress the interferences while preserving the

desired signal (e.g. [2], [6]). The non-coherent frequency domain techniques im-

plement a narrowband adaptive beamformer in each frequency bin [1]. All the

methods associated with the non-coherent category are computationally expen-

sive, have a slow convergence rate due to a large number of adaptive coefficients,

and are prone to signal cancellation problem in coherent multi-source scenarios.

The second category consists of coherent methods for wideband adaptive beam-

forming which incorporate a focusing procedure for signal subspace alignment,

originally proposed by Wang and Kaveh [7] for Direction of Arrivals (DOAs) esti-

mation applications. The focusing procedure involves a pre-processor implemented

as a linear transformation matrix which focuses the signal subspaces at different

frequencies to a single frequency, followed by a narrowband adaptive beamformer

such as the Minimum Variance Distortionless Response (MVDR) algorithm (see

Sec. 1.2.4) or a DOAs estimator such as the Multiple Signal Classification (MU-

SIC) algorithm (see Sec. 1.2.6). The main benefits of the coherent methods are low

computational complexity, the ability to combat the signal cancellation problem

and improved convergence properties. Although the preliminary works on coher-

ent array processing were aimed at DOAs estimation applications [7–9], following

works on coherent processing for wideband adaptive beamforming appeared in the

early 90’s [10–14].
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In the literature, there are two basic approaches to design focusing matrices.

The first approach utilizes schemes requiring a-priori knowledge of the DOAs of

the sources using them as focusing directions, e.g. [7,8]. In [9], a unitary focusing

transformation named as the Rotational Signal Subspace(RSS), is designed and

analyzed to provide focused data at a preliminary estimated DOAs. The advan-

tage of the unitary focusing transformation is that there is no focusing loss which

is a measure to the degradation in the Signal to Noise (SNR) due to the focusing

operation. This RSS focusing method was extended by Doron and Weiss in [15]

where a general class of focusing matrices were proposed, referred to as Signal

Subspace Transformation (SST) focusing matrices, designed to generate sufficient

statistics for maximum likelihood bearing estimation. The contribution of Hang

and Mao [16] is to design a class of robust focusing matrices called Unitary Con-

strained Array Manifold (UCAM) focusing, which reduces the sensitivity of the

RSS to variations of DOA estimates by focusing in all the DOAs lying around a

vicinity of the actual DOAs. All the above cited works, share the same characteris-

tic of requiring initial DOAs estimates, which introduce additional computational

burden and sensitivity to DOAs uncertainties, and will be referred to as the direc-

tional focusing approach.

The second approach consists of spatial interpolation methods which focus

all angular directions. Doron et.al [17] propose the Array Manifold Interpola-

tion (AMI) which does not require DOA estimates, yet, requires the array to

satisfy the spatial sampling condition. Other similar works that employ spatial

resampling can be found at [12, 18–21]. In [22] an interpolation based focusing
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approach called Wavefield Interpolated Narrowband Subspace (WINGS) method

is proposed which is developed using the wavefield modelling theory [23]. It pro-

vides a closed form expression to the transformation and to its focusing error.

Based on the WINGS, two robust extensions are developed aiming at controlling

the noise gain of the transformation. A DOA independent focusing method based

upon the idea of frequency-invariant beamspace processing was proposed in [19],

and referred to as Beamforming-Invariance Coherent Signal Subspace Method (BI-

CSSM). Kashavarz [20] propose a focusing method which does not require DOA

estimates is applied together with a frequency dependent weighting function which

is proportional to the power spectral density of the pulse. We refer to the inter-

polation based approach as the panoramic focusing approach. The directional

approach achieves relatively small focusing errors but is sensitive to DOAs un-

certainties, while the panoramic approach does not require any knowledge of the

DOAs, however it typically has higher error levels, since it attempts to focus all

directions.

There are also focusing methods which provide a compromise between the di-

rectional and panoramic approaches by perform the focusing in angular sectors. A

numerical method for focusing within an angular sector is proposed and studied

at [21]. Sellone [24] derive a unitary focusing approach which incorporates a de-

terministic weighting function. A numerical solution to the optimization problem

is derived and studied in the paper.

In addition to the presented studies dealing with the design of focusing transfor-

mations with desired properties such as unitary, there are papers on employing the
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existing focusing methods in order to improve and develop DF and beamforming

algorithms. Feng et.al [25] develop a new high resolution DF algorithm for wide-

band signals and test its performance with various focusing methods. Both [26]

and [27] present a robust DF algorithm for the coherent wideband case which take

into account array calibration errors and mutual coupling effects. Claudio [28,29]

present and study a steered wideband adaptive beamformer, optimized by Maxi-

mum Likelihood criterion in the light of a general reverberation model. It employs

a focusing transformation which focuses only in the desired source direction, thus

yielding a diagonal focusing transformation.

Most of the focusing methods in the academic literature belong to either the

directional approach requiring a-priori knowledge of the DOAs or the panoramic

approach where no a-priori knowledge is required. Methods which focus in sectors

employ a deterministic weighting function and provide a numerical solution. Our

first goal in to design a focusing procedure which is a compromise between the

directional focusing approach and the panoramic focusing approach by incorpo-

rating statistical information about the DOAs, thus, enjoying the benefits of both

approaches. To this end, we use a Bayesian formalism in which we take into ac-

count the uncertainty of the DOAs by modelling them as random variables with

a given prior statistics. We derive a closed-form solution to a Bayesian Focusing

Transformation (BFT) minimizing the Mean-Square Error (MSE) of the transfor-

mation, thus achieving improved focusing accuracy over the entire bandwidth.

The output of the focusing procedure is a vector with a narrowband array re-

sponse, thus, any narrowband adaptive beamforming algorithm may be applied,
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such as the well-known Capon beamformer [30] ,also referred to as the Minimum

Variance Distortionless Response (MVDR) beamformer. The theoretic perfor-

mance of the MVDR beamformer is better than that of the conventional beam-

former. Yet, it has a substantial performance degradation due to array calibration

errors, DOAs errors [4], and the SMI estimation errors [5]. In the focused MVDR

beamformer, the focusing error also comes into play and may deteriorate the per-

formance. One of the common methods to reduce the sensitivity of the MVDR

beamformer to array calibration errors is via diagonal loading of the sample co-

variance matrix [31]. Diagonal loading was originally proposed for the narrowband

case, and it was shown to effectively reduce the sensitivity of the MVDR. Our sec-

ond goal is to derive an extension of the diagonal loading solution for the coherent

wideband case, in order to increase the robustness against mismatch and focusing

errors, and improve the performance of the MVDR.

We tested the performance of the Bayesian approach combined with the robust

MVDR loading algorithm and compared to other focusing methods (to be discussed

at Sec 1.2). One of the prominent problems we saw in the simulation is the

sensitivity of the focused MVDR beamformer at high SNR values. Our third goal

is to investigate this sensitivity and show analytically that it is caused by the

focusing errors at the desired source direction. In order to reduce the sensitivity of

the coherent MVDR beamformer to focusing errors at the desired source direction,

we propose and study two robust methods for coherent focused wideband MVDR

beamforming. The first method modifies the MVDR algorithm to take into account

the various errors and the second is based on modifying the focusing transformation
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so that the focusing error is reduced in the direction of the desired source.

1.2 Background

Coherent wideband adaptive beamforming techniques, based on the signal sub-

space alignment [7, 9] concept, achieve an improved performance over that of the

non-coherent wideband adaptive beamformer [1, 2]. The non-coherent wideband

adaptive beamformer is implemented in the frequency domain as a narrowband

beamformer for each frequency bin. Fig.1.1 shows a general block diagram for

the non-coherent wideband adaptive beamformer. For each frequency bin, a nar-

rowband adaptive beamformer is applied to the frequency domain data vector

X(fj)= [x1(fj), .., xN(fj)]
H , j = 1, .., J . The outputs of all the narrowband beam-

formers, y(fj), j = 1, .., J , are collected and fed into an inverse FFT block yield-

ing the temporal beamformer output vector, yNon Coherent(n). The non-coherent

beamformer is computationally expensive, has a slow convergence rate due to a

large number of adaptive coefficients and is prone to signal cancellation problem

in coherent source scenarios.

Fig.1.2 presents a general block diagram for the focused wideband adaptive

beamformer. This approach involves a pre-processor implemented as a frequency

dependent linear transformation matrix T(wj) which focuses the signal subspaces

at different frequencies to a single frequency, followed by a single time domain

narrowband beamformer. The main benefits of the coherent approach are low

computational complexity, the ability to combat signal cancellation problem and
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Figure 1.1: Block diagram of the non-coherent wideband adaptive beamformer.

improved convergence properties. The focusing transformation, T(wj) should sat-

isfy the following

T(wj)Aθ(wj) ∼= Aθ(w0), (1.1)

where wj are the frequencies within the bandwidth of the signals and w0 is the

focused frequency, i.e. T(wj) focuses the signal subspaces Aθ(wj) at frequencies

{wj} onto the signal subspace Aθ(w0). The matrices Aθ(wj) and Aθ(w0) contain

the steering vectors of the sources in their columns at frequencies wj and w0,

respectively, where θ is the DOAs vector.

There are several approaches to design the focusing matrix T(wj) (see Sec.1.1).

In the following sections, we describe several representative focusing methods. We

use them during this work in order to compare their performance with that of the
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Figure 1.2: Block diagram of the coherent wideband adaptive beamformer.

innovative Bayesian focusing transformation which is proposed in Chapter 2.

1.2.1 Wang-Kaveh Focusing Transformation (WKFT)

In the pioneering work of [7], a focusing transformation which require a-priori

knowledge of the sources’ DOAs vector is derived. We name this focusing method

as Wang and Kaveh Focusing transformation (WKFT). WKFT attempts to find

a set of matrices T(wj), j = 1, ..J which satisfy the following

T(wj)Aθ(wj) ∼= Aθ(w0), j = 1, 2, .., J, (1.2)

Where Aθ(wj) is a matrix constructed from the steering vectors at the directions

specified by the vector θ. The desired transformation T(wj) is given by

TWKFT (wj)= [Aθ(w0)|Bθ̃(w0)] [Aθ(wj)|Bθ̃(wj)]
† (1.3)
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where † denotes the pseudo-inverse of [Aθ(wj)|Bθ̃(wj)]. Bθ̃(wj) and Bθ̃(w0) are

the direction matrices at frequencies wj and w0, respectively, with auxiliary angles

specified by the vector θ̃, aimed at reducing the high sensitivity to inaccurate

knowledge of the DOAs vector θ. WKFT achieves relatively low focusing errors

and superior performance when the DOAs vector is known perfectly, yet, it has a

high sensitivity to DOAs uncertainties. This sensitivity is somewhat reduced due

to the addtion of the auxiliary angles specified by the vector θ̃.

1.2.2 Rotational Signal Subspace Focusing Transforma-

tion(RSS)

In [9] a quantitive measure for the focusing loss is defined as the ratio of array

SNR after and before focusing operation. The authors point out the merit of

using unitary focusing matrices since they have no focusing loss. They propose

unitary transformations satisfying the following constraint minimization problem

min
T(wj)

‖Aθ(w0)−T(wj)Aθ(wj)‖F , j = 1, 2, ..J (1.4)

subject to

TH(wj)T(wj) = I, (1.5)

where ‖·‖F is the Frobenious matrix norm [32]. The solution to (1.4) is given by

TRSS(wj)= V(wj)U(wj)
H (1.6)
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where the columns of U(wj) and V(wj) are the left and right singular vectors of

Aθ(wj)Aθ(w0)
H . They named this focusing matrix the Rotational Signal Sub-

space (RSS) focusing matrix. Similarly to the WKFT, adding auxiliary angles is

recommended in order to reduce sensitivity to inaccurate knowledge of the DOAs

vector.

1.2.3 Wavefield Interpolated Narrowband Generated Sub-

space Focusing Transformation(WINGS)

Both WKFT and RSS focusing methods require preliminary estimates of the DOA

vector. In the literature, there exist several focusing methods based on spatial

interpolation (e.g. [12, 17–21]). These focusing methods have the advantage of

being data independent but at cost of higher focusing errors than those of the

directional focusing methods. One of these method, proposed Recently by Doron et

al. [22], is the Wavefield Interpolated Narrowband Generated Subspace (WINGS)

focusing method.

The WINGS focusing method [22] is based on the wavefield modelling formal-

ism [23] according to which, the output of almost any array x(w) of arbitrary geom-

etry can be written as a product of array geometry dependent part and wavefield

dependent part, i.e. x(w) = G(w)ψ(w) where G(w) is a sampling matrix which

is independent of the wavefield and the coefficient vector ψ(w) is independent of

the array. Using the wavefield modelling formalism, the steering vector can be
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expressed by terms of orthogonal decomposition

aθ(w) =
∑

n

gn(w)h∗n(θ), (1.7)

where gn(w) are the columns of the sampling matrix G(w) and {hn(θ)} is an

orthogonal basis set in L2(Γ), where Γ is the manifold of all the possible DOAs.

In 2-D, we use the Fourier basis, i.e. hn(θ) = 1√
2π

e−inθ. The WINGS focusing

transformation T(wj) minimizes εj, the L2 norm of the focusing error eθ(wj) over

all possible directions

ε2
j , 1

N

π∫

θ = −π

dθ ‖eθ(wj)‖2 . (1.8)

where

eθ(wj) = aθ(w0)−T(wj)aθ(wj) ∀θ. (1.9)

Using (1.7), the focusing error can be expressed as

eθ(wj) = [G(w0)−T(wj)G(wj)]bθ, (1.10)

where the vector bθ contains the basis functions {hn(θ)} as its elements. Thus, one

may consider (1.10) to be the orthogonal decomposition of the error vector eθ(wj).

We can apply Paraseval’s identity on 1.8 and derive the following Least-Square(LS)

minimization problem

ε2
j =

1

N
‖G(w0)−T(wj)G(wj)‖2

F . (1.11)
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The WINGS focusing matrix minimizing (1.11) is given by

T(wj) = G(w0)G
†(wj), (1.12)

where G†(wj) denotes the pseudo-inverse of G(wj).

1.2.4 The Minimum Variance Distortionless Response

(MVDR) beamformer

After the focusing procedure, one may applied any narrowband adaptive beam-

forming algorithm such as the well-known MVDR beamformer [30]. The MVDR

algorithm minimizes the array output power subject to a distortionless constraint

on the desired source direction. The narrowband MVDR weight vector is the

solution to the following minimization problem

min
wθ(w)

wθ(w)HRx(w)wθ(w), (1.13a)

subject to the distortionless constraint,

wH
θ (w)aθ(w) = 1, (1.13b)

where Rx(w) is the covariance matrix of the narrowband received vector x(w) at

frequency w and aθ(w) is the steering vector in frequency w and the direction θ.



22 CHAPTER 1. INTRODUCTION

The solution to the above minimization problem is (see e.g. [1])

wθ(w) =
R−1

x (w)aθ(w)

aH
θ (w)R−1

x (w)aθ(w)
. (1.14)

In (1.14) the inversion of the covariance matrix Rx(w) is required. Since Rx(w) is

unknown one may use the maximum likelihood estimate of Rx(w) from snapshots

of the data samples

R̂x(w) =
1

K

K∑

k=1

xk(w)xH
k (w). (1.15)

This method is known as the Sample Matrix Inversion (SMI) method.

The MVDR algorithm was originally proposed for the narrowband case, yet,

it can be extended to the wideband case. In the literature there are two meth-

ods to perform wideband array processing using the MVDR algorithm. The first

method employs a non-coherent processing as depicted at Fig. 1.1. The second

method is the coherent processing employs a focusing transformations as depicted

at Fig. 1.2. Let us first review the non-coherent wideband MVDR beamformer

and then describe the focused wideband MVDR beamformer.

Non-coherent MVDR-SMI adaptive beamformer

The non-coherent wideband MVDR - SMI method is implemented in the frequency

domain by applying a narrowband beamformer at each frequency bin (see e.g. [1]).

A DFT is first performed followed by the estimation of the narrowband sample
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covariance matrix at each frequency bin

R̂x(wj) =
1

K

K∑

k=1

xk(wj)x
H
k (wj). (1.16)

The narrowband MVDR - SMI adaptive weight vector is then computed at each

frequency bin as

ŵθ(wj) =
R̂−1

x (wj)aθ(wj)

aH
θ (wj)R̂−1

x (wj)aθ(wj)
. (1.17)

The adaptive weights (1.17) may now be used to perform the actual beamforming

at each frequency bin yielding the non-coherent adaptive beamformer output, in

the frequency domain.

Coherent MVDR-SMI focused adaptive beamformer

The MVDR-SMI focused adaptive beamformer may be simply implemented as a

narrowband adaptive beamformer operating on the temporal focused data vector

yk(n) where yk(n) =
J∑

l=1

T(wl)xk(wl)e
jwlnTs = Aθ(w0)sk(n) + ñk(n) (see Fig.1.2)

whose sample covariance matrix is estimated by

R̂f
x =

1

KJ

∑

k,n

yk(n)yH
k (n). (1.18)

The focused coherent adaptive beamformer MVDR weight vector is simply com-

puted in the time domain by

ŵf
θ =

(
R̂f

x

)−1

aθ(w0)

aH
θ (w0)

(
R̂f

x

)−1

aθ(w0)
, (1.19)
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where w0 is the focusing frequency and f stands for focused beamformer.

1.2.5 Robust MVDR Beamforming

The MVDR beamformer is known to have superior resolution and interference re-

jection capabilities, provided that the array steering vector corresponding to the

DOA of the desired signal is accurately known. In practice, it is often the case,

due to array calibration errors and inaccurate knowledge of the source direction,

that the performance of the MVDR beamformer may deteriorate below that of the

conventional beamformer [31]. Furthermore, the MVDR-SMI implementation is

sensitive to estimation errors in the sample covariance matrix [33]. In the coherent

wideband case, the focused MVDR beamformer will exhibit an additional sensi-

tivity to the focusing errors. Many robust schemes constraint the Euclidian norm

of the beamformer coefficient vector, thus decreasing the sensitivity to various

modelling errors.

Diagonal loading has been a popular approach to improve the robustness of the

MVDR beamformer [1, 33–35]. It is derived by imposing an additional quadratic

constraint either on the Euclidian norm of the weight vector itself or on its dif-

ference from the nominal weight vector. In its common formalism, the diagonal

loading solves the following minimization problem

min
wθ(w)

wH
θ (w)Rx(w)wθ(w), (1.20a)
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subject to the distortionless constraint,

wθ(w)Haθ(w) = 1, (1.20b)

and the quadratic constraint,

wθ(w)Hwθ(w) ≤ T0. (1.20c)

It can be shown that the solution to (1.24) is given by [1]

wθ(w) =
(Rx(w) + βI)−1 aθ(w)

aH
θ (w) (Rx(w) + βI)−1 aθ(w)

, (1.21)

where β is the Lagrange multiplier which is determined in such a way that the

quadratic constraint is satisfied.

Later, we generalize the diagonal loading solution to the focused wideband

MVDR beamformer.

1.2.6 The Multiple Signal Classification (MUSIC) Algo-

rithm

Focusing methods belonging to the directional approach such as WKFT and RSS,

require preliminary estimate of the DOAs vector. One of the widespread DOAs es-

timation algorithm is the Multiple Signal Classification (MUSIC) algorithm, Orig-

inally proposed by [36], which is a subspace based algorithm. The basic principle

of this algorithm is to use the orthogonality between the signal subspace and the
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noise subspace. The MUSIC algorithm was originally proposed for the narrowband

case, yet, it can be extended easily for the wideband case.

The input of the narrowband MUSIC algorithm is the narrowband covariance

matrix or an estimated version of it (1.16). The covariance matrix can be written

by terms of its eigenvalues and eigenvectors as

R̂x(wj) =
N∑

i=1

λiΦiΦ
H
i (1.22)

The P eigenvectors which correspond to the P largest eigenvalues spread the sig-

nal subspace which is identical to the space spread by the steering vectors. The

remaining eigenvectors are the noise subspace. We define the noise subspace as

UN =

[
ΦP+1

...ΦP+1
... · · · ...ΦN

]
(1.23)

The signal subspace and and the noise subspace are orthogonal subspaces. Thus,

the following is satisfied:

‖aθi
(wj)UN‖2 = 0, i = 1, 2, ..P (1.24)

The MUSIC algorithm define the function f(θ) = ‖aθ(wj)UN‖2 and choose the P

minima of f(θ) or equivalently the P maxima of 1
f(θ)

over −π ≤ θ ≤ π. For the

coherent wideband case we find the noise subspace UN , spread by the eigenvectors

of the focused covariance matrix (1.18).
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1.3 Organization

In Chapter 2, we formulate the problem of interest and define the optimal MMSE

BFT problem which is designed to handle DOA uncertainties. We derive a closed

form expression for the BFT as a weighted extension to the WINGS method. We

demonstrate the focusing error of the BFT and compare it to that of other focusing

methods. A time progressing algorithm is suggested which incorporates a direction

findings stage followed by the focused beamformer.

In Chapter 3 we derive the robust focused Q-loaded MVDR beamformer and

analyze its performance. A performance analysis of the robust Bayesian focused

MVDR beamformer is conducted and compared to that of focusing methods.

In Chapter 4 a numerical and simulative study for the single source case is

conducted using the WINGS focusing method. We choose to consider WINGS as

a test case since it is a panoramic focusing methods which introduces relatively

high focusing errors. We derive an analytic approximation to the degradation of

the AG and show analytically that this degradation occurs due to focusing error

in the desired source direction. In order to reduce this performance degradation,

two robust schemes are proposed.

We Conclude in Chapter 5 with a summary and discussion on future research

directions.
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Chapter 2

Bayesian Focusing

Transformations

2.1 Introduction

Wideband coherent adaptive beamforming techniques incorporate a focusing pro-

cedure for signal subspace alignment [7, 9, 11]. The focusing procedure involves

a pre-processor implemented as a linear transformation matrix which focuses the

signal subspaces at different frequencies to a single frequency, followed by a narrow-

band beamformer. There are two basic approaches to design focusing matrices.

The first approach utilizes schemes requiring a-priori knowledge of the sources’

DOAs using them as focusing directions e.g. [7, 9], and will be referred to as the

directional focusing approach. The second approach consists of spatial interpola-

tion methods which focus all angular directions [12, 18, 22] and will be referred to

as the panoramic focusing approach . The first approach achieves relatively small

29
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focusing errors but is sensitive to DOA uncertainties, while the later approach does

not require any knowledge of the DOAs, however it typically has higher error lev-

els, since it attempts to focus all directions. Furthermore, the spatial interpolation

process requires that the array satisfy the spatial sampling condition [23].

In this chapter, we propose a third approach, namely the Bayesian approach

for focusing transformation design. In the Bayesian approach we take into account

the uncertainty of the DOAs by modelling them as random variables with a given

prior statistics. We derive a Bayesian Focusing Transformation (BFT) minimizing

the Mean-Square Error (MSE) of the transformation, thus achieving improved

focusing accuracy over the entire bandwidth. The proposed Bayesian focusing

transformation is a compromise between the directional focusing approach, which

requires preliminary DOA estimates, and the spatial interpolation based panoramic

focusing approach, which does not require any apriori DOA knowledge. In fact,

BFT can be view as a generalization which includes the two approaches as special

cases. The close-form solution to the Bayesian focusing problem is based on an

extension of the WINGS focusing method.

This chapter is organized as follows: In Section 2.2 we formulate the problem

of interest. In Section 2.3 we define the optimal MMSE BFT problem which is

designed to handle DOA uncertainties. Next, in Section 2.4 we develop a weighted

extension to the WINGS method which is then used to get a closed form expression

for the BFT. In section 2.5 we present a simulation example for the case of DOA

uncertainties and compare the focusing error of the BFT to that of other focusing

methods discussed in the previous chapter. In Section 2.6, a time progressing
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algorithm is proposed which incorporates a Direction Finding (DF) stage operating

on the focused data followed by the Bayesian focused beamformer. Finally we

summarize this chapter in section 2.7.

2.2 Problem Formulation

Consider an arbitrary array of N sensors sampling a wavefield generated by P

statistically independent wideband sources, in the presence of additive noise. For

simplicity, we confine our discussion to the free and far field model. The signal

measured at the output of the nth sensor can be written as

xn(t) =
P∑

p=1

sp(t− τnp) + nn(t), n = 1, .., N, (2.1)

where {sp(t)}P
p=1 and {nn(t)}N

n=1 denote the radiated wideband signals and the

additive noise processes, respectively. The parameters {τnp} are the delays associ-

ated with the signal propagation time from the pth source to the nth sensor. Let

{γi}P
i=1 be the DOAs of the sources, γ ≡ θ in 2-D and γ ≡ (θ, ϕ) in 3-D where

θ is the azimuth angle and ϕ is the elevation angle. For simplicity, we restrict

ourselves to the 2-D case. Each T seconds of received data are divided into K

snapshots and transformed to the frequency domain yielding in matrix formalism

the following expression

xk(wj) = Aθ(wj)sk(wj) + nk(wj), j = 1, 2, ...J, k = 1, 2, ...K, (2.2)
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where xk(wj), sk(wj) and nk(wj) denote vectors whose elements are the discrete

Fourier coefficients of the measurements, of the unknown sources signals and of

the noise, respectively at the kth snapshot and frequency wj, J is the number of

frequency bins, and Aθ(wj) is the N × P direction matrix

Aθ(wj) ≡ [aθ1(wj), aθ2(wj), ..., aθP
(wj)]. (2.3)

The vector aθ(w), referred to as the array manifold vector, is the response of

the array to an incident plane wave at frequency w and DOA θ. For an array

comprised of identical omni-directional uncoupled sensors in free field, the array

manifold vector is

[aθ(w)]m = exp
{

ikrm · θ̂
}

, (2.4)

where θ̂ denotes the unit vector pointed towards the direction θ, and k = w/c

is the wave number associated with the frequency w. The vector rm marks the

coordinates of the mth sensor. We assume that the noise vectors nk(wj) are

independent samples of stationary, zero mean circular complex Gaussian random

process, with unknown covariance matrix σ2
n(wj)I. The signal vectors sk(wj) are

independent samples of stationary, zero mean circular complex Gaussian random

process with unknown covariance matrix Rs(wj) . The noise process is assumed

to be uncorrelated with the signal process. The wideband sources are assumed

to share a common bandwidth. Due to the broadband nature of the sources,

using coherent processing is advantageous as discussed in the previous section.

Let T(wj) denotes a transformation that maps the wideband array output from
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frequency wj to frequency w0, so that the signal subspaces are aligned across the

frequency bandwidth

T(wj)Aθ(wj) ∼= Aθ(w0), (2.5)

where wj are within the bandwidth of the desired signal and w0 is the focused

frequency, i.e. T(wj) focuses the signal subspaces Aθ(wj) at frequencies {wj}
onto the signal subspace Aθ(w0). Following [37], we may construct the focused

time-domain vector yk(n) as

yk(n) =
J∑

j=1

T(wj)xk(wj)e
iwjnTs ∼= Aθ(w0)s(n)+

∼
n(n), (2.6)

where s(n) is the temporal vector of wideband unknown signals within the focused

frequency band [w1 : wJ ], Ts is the sampling frequency and
∼
n(n) is the transformed

noise. We note that the temporal focused vector yk(n) has a narrowband array

manifold while preserving the wideband spectral content of the signals. This allows

the use of any narrowband adaptive beamformer matched to frequency w0, such

as the well known MVDR beamformer.

In this chapter we are interested in finding a focusing transformation T(wj)

which can handle DOA uncertainties while achieving the minimal mean-square fo-

cusing error at the true DOAs. To this end, we use the Bayesian approach in order

to develop the focusing transformation. Let us employ a statistical model where

the DOAs, {θi}P
i=1 are modelled as statistically independent random variables. We

can now define and solve the Bayesian focusing problem for wideband arrays.
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2.3 Bayesian Focusing Transformations (BFT)

In this section we consider the focusing problem with DOA uncertainties. We

use a Bayesian model in order to define the optimal Minimum Mean Square Er-

ror (MMSE) focusing transformation TBFT (wj) as the solution to the following

minimization problem

TBFT (wj) = arg min
T(wj)

Eθ

{‖Aθ(w0)−T(wj)Aθ(wj)‖2
F

}
, (2.7)

where w0 is the focusing frequency, ‖·‖F denotes the Frobenious norm, and Eθ {·}
denotes the expectation over the statistical probability density distribution of the

DOAs θ. Assuming {θi}P
i=1 are statistically independent random variables, it can

be shown that

Eθ

{‖Aθ(w0)−T(wj)Aθ(wj)‖2
F

}
(2.8)

=

∫ π

θ= −π

dθ ‖aθ(w0)−T(wj)aθ(wj)‖2
P∑

i=1

fθi
(θ) ,

where ‖·‖ is the Euclidian norm and fθi
(θ) denote the Probability Density Func-

tions (PDFs) of the DOAs.

Proof of (2.8): Let us define L(w) as the function to be minimized

L(w) = Eθ

{‖Aθ(w0)−T(w)Aθ(w)‖2
F

}

= Eθ

{
P∑

i=1

‖aθi(w0)−T(w)aθi(w)‖2

}
, (2.9)
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where ‖·‖ is the Euclidian norm. Assuming {θi}P
i=1 are statistically indepen-

dent, (2.9) becomes

L(w) =

∫
dθ1...dθP fθ1(θ1)...fθP (θP ) ·

P∑
i=1

‖aθi(w0)−T(w)aθi(w)‖2

=
P∑

i=1

P∏

k=1
k 6=i

∫
dθk fθk

(θk)
︸ ︷︷ ︸

=1

·

∫
dθi fθi

(θi) ‖aθi(w0)−T(w)aθi(w)‖2

=

∫
dθ ‖aθ(w0)−T(w)aθ(w)‖2

P∑
i=1

fθi
(θi) , (2.10)

which is exactly the form of the right hand side of (2.8). Defining

ρ2(θ) ,
P∑

i=1

fθi
(θ), (2.11)

and substituting (2.11) into the right-hand side of (2.8) yields the following integral

to be minimized

TBFT (wj) = arg min
T(wj)

∫ π

θ= −π

dθ ‖ρ(θ)(aθ(w0)−T(wj)aθ(wj))‖2 . (2.12)

Note that (2.12) is a generalized form which includes many focusing schemes as

private cases. It reduces to the panoramic focusing scheme e.g. WINGS [22] by

taking a uniform distribution i.e. ρ(θ) ≡ 1. Taking ρ(θ) =
∑

i δ(θ − θ̂i) yields the



36 CHAPTER 2. BAYESIAN FOCUSING TRANSFORMATIONS

directional focusing matrices originally proposed for wideband DOA estimation by

Hung and Kaveh [9] which focuses at discrete angles taking to be the preliminary

estimates of the DOAs
{

θ̂i

}P

i=1
. Note also that in (2.12) one may use either the

a-priori PDFs as fθi
(θ), or the a-posteriori PDFs. The first approach yields a

data independent transformation, while the second approach requires estimation

of the conditional PDFs from the data yielding a data dependent transformation.

In Section 2.6 a time progressing algorithm employing the a-posteriori PDFs is

proposed. In the following we solve (2.12) by deriving an accurate closed-form

solution using a weighted extension of the WINGS [22] focusing approach. It is

possible to solve (2.12) numerically, however, a closed form solution is preferable

since it is more accurate.

2.4 BFT as a Weighted Extension of the WINGS

In this section we develop a closed form expression for a weighted extension of

the WINGS focusing method, for the 2-D case, which incorporates an arbitrary

angular weighting function ρ(θ). Finally, we show that the weighted extension is

a closed form solution of (2.12).

Let us incorporate an arbitrary angular weighting function ρ(θ), in order to

enhance the LS fit of the array manifold within a pre-selected angular region or

to solve the Bayesian focusing problem (2.12). Let ε̃j be the weighted L2 norm of
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the focusing error eθ(wj) (1.9)

ε̃2
j =

1

N

∫

Γ

dθ ‖ρ(θ)eθ(wj)‖2 =
1

N

∫

Γ

dθ ‖ρ(θ)(aθ(w0)−T(wj)aθ(wj))‖2 , (2.13)

where Γ = {−π, π}. In order to find the transformation minimizing (2.13) let us

find C(w), the orthogonal decomposition of the product ρ(θ)aθ(w)

[C(w)]mn ≡
∫ π

θ= −π

dθρ(θ) [(aθ(w)]
m

hn(θ). (2.14)

where {hn(θ)} is an orthogonal basis set in L2(Γ), where Γ is the manifold of all

the possible DOAs. In 2-D, we use the Fourier basis, i.e. hn(θ) = 1√
2π

e−inθ (for

more details see Sec.1.2.3 and [23] ).

Let ρ(θ) =
∑

n ρnhn(θ) be the orthogonal decomposition of the angular weight-

ing function ρ(θ), then substituting it into (2.14) and based on the wavefield mod-

elling theory presented at Section 1.2, we may write

[C(w)]mn =

∫ π

θ= −π

dθ
∑

p

ρphp(θ)
∑

l

Gml(w)h∗l (θ)hn(θ)

=
∑

p,l

ρpGml(w)

∫ π

θ= −π

dθhn(θ)hp(θ)h
∗
l (θ). (2.15)

In the 2-D case the basis functions hn(θ) are the Fourier functions and therefore

∫ π

θ= −π

dθhn(θ)hp(θ)h
∗
l (θ) =

1√
2π

δn+p−l, (2.16)
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which yields,

[C(w)]mn =
1√
2π

∑
p

ρpGm,n+p(w). (2.17)

We now insert into (2.13) the orthogonal decomposition ρ(θ)aθ(w) = C(w)bθ and

get the following minimization integral

ε̃2
j =

1

N

∫ π

θ= −π

dθ ‖[C(w0)−T(wj)C(wj)]bθ‖2 . (2.18)

Using Parseval’s identity we get

ε̃2
j =

1

N
‖[C(w0)−T(wj)C(wj)]‖2

F . (2.19)

Thus, the weighted WINGS transformation minimizing ε̃j is given by the LS so-

lution of (2.19)

T(wj) = C(w0)C
†(wj). (2.20)

Since (2.13) has exactly the same form as (2.12), we get the closed form expression

for the MMSE optimal BFT

TBFT (wj) = C(w0, ρ(θ))C†(wj, ρ(θ)), (2.21)

where ρ(θ) is given by (2.11).

In the following section we numerically evaluate the focusing error of the BFT,

and compare it to that of the WINGS, WKFT, and RSS methods which were

reviewed in Section 1.2.
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2.5 Numerical Study of the Focusing Error in

the Presence of DOA Uncertainties

In this section, we conduct a numerical study of the focusing errors of the pre-

sented focusing methods in the presence of DOAs uncertainties. We compare the

performance of four focusing transformations: The BFT representing the Bayesian

focusing approach, WINGS representing the panoramic focusing approach, the

WKFT [7] and the unitary transformation RSS [9] representing the directional

focusing approach, which focuses a discrete set of preliminary DOA estimates. In

the following example, we take two circular complex Gaussian wideband acoustic

sources propagating towards a linear array of N=20 sensors in velocity of 1500

m/sec. The simulation results were obtained by averaging over 100 independent

Monte-Carlo runs. We simulate the actual DOA errors as Gaussian random vari-

ables with a standard deviation on the order of a half of the 3dB beamwidth, and

mean value of θ = [70◦, 105◦] where 90◦ is the broadside direction. The desired

signal is the one arriving from 105◦. The Signal to Interference Ratio (SIR) is set

at a fixed value of −20dB. The bandwidth of the sources is 600Hz taken around

fc = 1500Hz and the spectrum is taken to be flat in the relevant bandwidth. The

sampling frequency is 4800Hz. The focusing frequency is f0 = 1500Hz. The ob-

servation time T is taken as 10 seconds and divided into K = 46 snapshots. Each

snapshot of data is transformed to the frequency domain using a Fast Fourier

Transform(FFT) of 1024 bins yielding J = 129 frequency bins in the relevant

bandwidth. The spacing between two adjacent sensors is d = λmin

2
, where λmin
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corresponds to the highest frequency of the bandwidth. For the BFT, we take the

weighting function ρ2(θ) (2.11), to be a sum of Gaussian densities centered around

the assumed DOAs

ρ2(θ) =
1√
2πσ2

1

exp(−(θ − θ1)
2

2σ2
1

) +
1√
2πσ2

2

exp(−(θ − θ2)
2

2σ2
2

) (2.22)

Where θ1 and θ2 are the assumed DOAs of the sources and the standard deviations

σ1 = 1.27 and σ2 = 1.25 which are approximately on the order of a quarter of the

3dB beamwidth of the array at θ1 and θ2, respectively. In the WKFT and RSS

methods we add 2 auxiliary directions for each assumed DOA in order to increase

the robustness to DOAs uncertainties. The auxiliary directions were added at a

quarter of the 3dB beamwidth from the assumed DOAs.

Fig.2.1 shows the focusing transformation error ‖eθ(wj)‖2 (1.9) versus fre-

quency averaged over 100 Monte-Carlo runs and summed over all the true source

directions, for the BFT, WINGS, WKFT and RSS methods. It can be seen that

the BFT method has the lowest focusing error along the entire bandwidth. Both

WKFT and RSS focusing methods introduce a high focusing error since they re-

quire preliminary DOAs estimates. In the WINGS method, we see that large

errors occur at frequencies below the focusing frequency. This is expected since

WINGS is an interpolation based focusing method, in which focusing is equivalent

to spatial interpolation [18] of the array. Interpolating from a low frequency to

a higher one, is equivalent to extrapolating the array beyond its physical length,

thus, yielding high focusing errors. One can reduce the WINGS transformation

error by focusing to the lowest frequency of the bandwidth. However, this will
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Figure 2.1: Focusing transformation error for BFT, WINGS, WKFT and RSS
matrices versus frequency for the case of two sources and DOA uncertainties

reduce the effective aperture of the focused array, thus reducing the spatial resolu-

tion of the array. In the literature there are several papers dealing with the issue

of choosing the optimal focusing frequency (e.g. [38,39]). However, optimizing the

focusing frequency is beyond the scope of this work.

Fig.2.2 shows the error versus angle due to focusing from frequency f = 1350Hz

to frequency f0 for the BFT, WINGS WKFT and RSS methods and DOAs error

of approximately 3 degrees for each source. The true DOAs are marked on the

same plot by the diamonds. It can be seen that the WINGS method has a roughly

equi-ripple focusing error for all the directions. This is expected because WINGS

is an interpolated based panoramic focusing method which does not depends on

the DOAs. BFT, RSS and WKFT have a high focusing error in directions which
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Figure 2.2: Error versus angle due to focusing from f = 1350Hz to f0 for BFT,
WINGS, WKFT and RSS for the case of two sources and DOA uncertainties.

are distant from the assumed DOAs, and a low focusing error in directions which

are close to the assumed DOAs. It can be seen that BFT is significantly more

robust to DOA uncertainties since it has a low focusing error over a wide range of

angles.

Fig.2.3 shows the focusing error as a function of the sensor index in the desired

source direction averaged over the entire bandwidth, for the BFT, WINGS, RSS

and WKFT focusing methods, for a DOA error of approximately 3 degrees. We

can see that BFT has the smallest focusing error along the sensors while WKFT

and RSS has the largest errors. It can be seen that the error at the edges of the

array for the BFT and WINGS methods is significantly larger than the error in

the center of the array. This can be explained due to the fact that both methods
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Figure 2.3: Average Focusing error in the desired source direction for BFT,
WINGS, WKFT and RSS versus sensors for the case of two sources and DOA
uncertainties

are based on interpolation which require to extrapolating the array beyond its

physical length, thus, yielding high focusing errors at the edges of the array.

The numerical results show that the BFT introduces a relatively lower focusing

error than that of the other focusing methods, thus, it provides more robust and

accurate focusing operation. The focusing error of the WINGS is significantly high

at low frequencies because it is an interpolation based method, however, it is not

sensitive to DOAs uncertainties. In both WKFT and RSS focusing methods, the

focusing error is expected to reduce as the uncertainties in the DOAs decrease.

In fig. 2.4 the focusing error of WKFT and RSS methods is presented for the

case of perfect knowledge of the DOAs. It can be seen that the error was reduces
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Figure 2.4: Focusing transformation error for WKFT and RSS versus frequency
for the case of two sources and perfect knowledge of the DOAs

significantly, especially in the WKFT focusing method. In the RSS, the focusing

error is also reduced, however, still non negligible because of the unitary constraint.

This implies that RSS is less suitable to coherent beamforming processing than

the WKFT method. In the following, we will see that the performance of the RSS

is good for DF applications when employing subspace based DF algorithms.

2.6 Time Progressing Algorithm

In this section we present a time progressing algorithm which is based on the

proposed Bayesian focusing approach. The BFT assumes that the PDFs of the

DOAs are available. However, in practice we need to estimate the a-posteriori
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PDFs of the DOAs. Under the assumption of a Gaussian model for the DOAs, we

have to estimate the first two moments of each DOA. The conditional mean of θi is

approximated by θ̂i DF which is the estimate of the DF algorithm such as MUSIC.

The standard deviation is taken to be a quarter of the 3dB beamwidth of the array.

A block diagram of the proposed algorithm is given in figure 2.5. Each T seconds of

data are divided into K snapshots, on which, a Bayesian focusing transformation

is applied and yields the focused vector. The design of the focusing transformation

uses the estimated aposteriori PDFs from the previous T seconds, while in the first

T seconds, the algorithm uses ρ(θ) ≡ 1. The focused temporal vectors {yk}K
k=1are

used as inputs to the focused MVDR beamformer and for updating the estimation

of the conditional PDFs.

Note that for the WKFT and RSS focusing methods, a similar algorithm can be

applied, at each time step the DOAs vector will be estimated by the DF algorithm

from the focused data and will be used as input to the focusing stage in the next

time step.

Figure 2.5: Block diagram of the Bayesian focused MVDR beamformer time pro-
gressing algorithm.
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Figure 2.6: DOAs estimation by the MUSIC algorithm for the various focusing
methods. (a)WKFT, (b)RSS, (c)WINGS, (d)BFT

In Fig. 2.6, the output of the MUSIC algorithm is presented for all the focusing

methods. In each of the true DOAs there is a peak in the MUSIC spectrum. We

can see that the WKFT and RSS methods produce narrower and stronger peaks

than the WINGS and BFT. The relatively accurate DOAs estimations of the RSS

focusing method in spite of its high focusing error is surprising. The reason for that

is because RSS focusing method preserves the signal subspace before and after the

focusing operation [15]. The MUSIC algorithm is a subspace based algorithm and

hence does not influenced by the focusing error. Therefore, the RSS is a focusing

method which suitable for subspace based DF algorithms such as MUSIC and less

suitable to beamforming applications. So, in subsequent chapters we concentrate

only in WINGS, WKFT and BFT focusing methods.
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2.7 Summary

We have proposed and investigated a Bayesian approach for focusing transforma-

tion design, which takes into account the statistical uncertainties in the DOAs

during the focusing process. The proposed Bayesian focusing approach is a com-

promise between the directional focusing approaches which require preliminary

DOA estimates, and the panoramic focusing approaches which are based on spa-

tial interpolation not requiring any DOA estimates. We showed that the solution

to the Bayesian focusing problem is equivalent to finding the weighted WINGS

focusing transformation and supply a closed form expression for the BFT trans-

formation. The solution to the Bayesian focusing problem yields an optimal MMSE

focusing transformation and consequently an improved focused beamformer with

better AG, as will be shown in next chapters.

Simulation results have illustrated the very low focusing error of the proposed

BFT method for the multi-source case in the presence of DOA uncertainties com-

pared to that of the WINGS, RSS and WKFT focusing methods.

A time progressing algorithm was proposed which consists of two stages, the

first performs DF on the focused vector and the second stage is the focused beam-

former algorithm. The DF stage is required for the BFT, RSS, and WKFT focusing

methods.

In the next chapter we propose a robust version of the focused MVDR beam-

former and conduct a numerical study of the performance of the various focusing

methods under DOAs uncertainties scenarios.
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Chapter 3

Robust Adaptive Focused MVDR

Beamformer and Performance

Analysis

3.1 Introduction

In the previous chapter we derive a Bayesian focusing transformation which is an

optimal MMSE transformation for the case of DOAs uncertainties. The focusing

transformation operates on the received wideband data vector yielding a focused

data vector yk(n) (2.6). On yk(n), there can be applied any narrowband adaptive

beamforming algorithm such as the well-known Capon beamformer [30] ,also re-

ferred to as the Minimum Variance Distortionless Response (MVDR) beamformer.

The MVDR has a better resolution capability and an improved interference rejec-

tion capabilities than that of the conventional beamformer, provided that the array

49
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response to the Signal of Interest (SOI) is perfectly known. However, in practice,

there are some inaccuracies due to array calibration errors, DOA errors [31], and

also the sample covariance matrix estimation errors have a significant affect [33].

In the focused MVDR beamformer, the focusing error also comes into play and

may deteriorate the performance. In order to reduce the various sensitivities of

the MVDR beamformer, a robust beamforming scheme must be used.

In this chapter, we derive and employ an extension of the diagonal loading

method for the coherent wideband case. We refer to this solution as the Q-loading

solution in which we add a scaled matrix Q to the covariance matrix before inver-

sion, where the matrix Q depends on the focusing transformations. Via numerical

simulations, we find this solution to yield a significant improvement in the perfor-

mance and robustness against mismatch and focusing errors.

In order to conduct a comparative performance study of the various focusing

methods on a robust beamformer scheme, we develop an analytic expression for

the Array Gain (AG) of the robust focused MVDR beamformer. We use the

analytic expression and numerical Monte-Carlo simulations in order to investigate

the influence of the focusing error of the BFT on the performance of the focused

beamformer and compare it to that of the other focusing methods.

This chapter is organized as follows: In Section 3.2 we derive the robust fo-

cused Q-loaded MVDR beamformer. In Section 3.3 The analytic AG of the focused

Q-loaded MVDR beamformer is derived. In Section 3.4 we present some simula-

tion examples of our robust BFT focused MVDR beamformer and compare its

performance to other focusing methods. Finally, we summarize this chapter in
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Section 3.5.

3.2 Robust MVDR Focused Beamformer by Q-

Loading

In this section we treat the issue of robust wideband focused MVDR beamformers,

i.e. reducing the sensitivity to inaccurate knowledge of the array steering vector

in the direction of the desired source, such as gain, phase calibration errors, source

direction errors, and sample covariance matrix estimation errors.

The MVDR beamformer is known to have superior resolution and interference

rejection capabilities, provided that the array steering vector corresponding to the

SOI is accurately known. In practice, it is often the case, due to array calibration

errors and inaccurate knowledge of the source direction, that the performance of

the MVDR beamformer may deteriorate below that of the conventional beamform-

ers [31]. Furthermore, the MVDR-SMI implementation is sensitive to estimation

errors in the sample covariance matrix [33]. In the coherent wideband case, the

focused MVDR beamformer will exhibit an additional sensitivity to the focusing

errors. Many robust schemes constraint the Euclidian norm of the beamformer

coefficient vector, thus decreasing the sensitivity to various modelling errors.

Diagonal loading has been a popular approach to improve the robustness of the

MVDR beamformer [1, 33–35]. It is derived by imposing an additional quadratic

constraint either on the Euclidian norm of the weight vector itself or on its differ-

ence from the nominal weight vector (for more details see Section 1.2.5).
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Many of the robust schemes statistically model the various inaccuracies as ran-

dom spatially uncorrelated additive noise at the input of the adaptive beamformer.

Under this assumption the noise power at the narrowband beamformer output is

nout = σ2
n(w) ‖wθ(w)‖2 (3.1)

where σ2
n(w) in the input noise power and wθ(w) in the MVDR weight vector.

Thus, limiting the norm of wθ(w), is equivalent to limiting the white noise gain.

In the case of the focused beamformer, the output noise power is given by

σ2
nout

= σ2
n(wf

θ )H

(
1

J

J∑

l=1

T(wl)T
H(wl)

)
wf

θ , (3.2)

where we assumed the noise spectrum to be frequency independent, i.e. σ2
n(w) =

σ2
n,∀w. Thus, limiting the white noise gain yields the following quadratic con-

straint

(wf
θ )HQwf

θ ≤ T0, (3.3)

where we define

Q , 1

J

J∑

l=1

T(wl)T
H(wl) (3.4)

and T0 is a design parameter. The robust focused MVDR beamformer optimization

problem can be written as

min
wf

θ

(wf
θ )HRf

xw
f
θ , (3.5a)
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subject to the distortionless constraint,

(wf
θ )Haθ(w0) = 1, (3.5b)

and the quadratic constraint,

(wf
θ )HQwf

θ ≤ T0. (3.5c)

It can be shown that the solution to (3.5) is given by (see Appendix A.1)

wf,QL
θ =

(
Rf

x + βQ
)−1

aθ(w0)

aH
θ (w0)

(
Rf

x + βQ
)−1

aθ(w0)
, (3.6)

where β is the Lagrange multiplier which is determined in such a way that the

quadratic constraint is satisfied. Note that in (3.6) the loading term βQ is not a

diagonal matrix as in the narrowband case. Thus, for the focused MVDR case we

use the notation Q-loading.

In order to find β analytically, one has to solve a set of secular equations

( [32],ch.12). Instead of solving them directly, it can be shown that the quadratic

norm wHQw is a monotonic decreasing function of β (see Appendix A.2 ). Thus,

we can find β iteratively starting from β = 0 and increasing it until the quadratic

constraint is satisfied.

The lower bound for T0 can be calculated by taking β to the infinity which

yields

T0 min = lim
β→∞

wHQw =
1

aH
θ (w0)Q−1aθ(w0)

(3.7)
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In this case the beamformer becomes independent of the covariance matrix Rf
x as

in the conventional beamformer. For the case of unitary focusing transformation,

Q is reduced to the unit matrix and the lower bound for T0 reduces to the white

noise gain of the conventional beamformer. In the following section, we derive an

analytic expression for the AG of the focused Q-loaded MVDR beamformer and

compare it to the simulative AG based on Monte-Carlo runs of the SMI imple-

mentation. We compare the performance of various focusing methods and study

their dependence on the accuracy of the focusing transformation.

3.3 Analytic AG

In this section, we derive an analytic expression for the AG of the Q-loaded MVDR

focused beamformer as a function of the focusing transformations. The focusing

process introduces a frequency dependent transformation error which affects the

performance of the MVDR focused beamformer. The analytic expression will

be used to evaluate the performance of the focused beamformer for the various

focusing methods. The expression developed here is the asymptotic limit to the

performance since it involves the asymptotic covariance matrix of the data and not

an estimated sample version of it. The covariance matrix of the received focused

data vector yk(n) (2.6) is given by

Rf
x = Eyk(n)yH

k (n)

= E

J∑

j,l=1

T(wj)xk(wj)e
iwjnTs(T(wl)xk(wl)e

iwlnTs)H , (3.8)
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assuming different frequencies to be statistically independent, (3.8) becomes

Rf
x =

J∑
j=1

T(wj)E
{
xk(wj)x

H
k (wj)

}
TH(wj) ,

J∑
j=1

T(wj)Rx(wj)T
H(wj). (3.9)

For simplicity, we assume uncorrelated sources. Taking s1(t) to be the desired

signal propagating from θ1. Let Ps1 , Pi, Pn to be the power of the desired signal,

the interferences signals, and the noise, respectively

Ps1 =
J∑

j=1

σ2
s1

(wj)

Pi =
P∑

p=2

J∑
j=1

σ2
sp

(wj) (3.10)

Pn =
J∑

j=1

σ2
n(wj).

Let us define

af
θ (wj) = T(wj)aθ(wj), (3.11)

to be the focused steering vector in direction θ and frequency wj.

Let also Ps1 out, Pi out, Pn out denote the output power of the desired signal, the

interferences, and the noise, respectively, then one can see that

Ps1 out =
J∑

j=1

σ2
s1

(wj)
∣∣∣(wf,QL

θ1
)Haf

θ1
(wj)

∣∣∣
2

, (3.12)
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Pi out =
P∑

p=2

J∑
j=1

σ2
sp

(wj)
∣∣∣(wf,QL

θ1
)Haf

θp
(wj)

∣∣∣
2

, (3.13)

Pn out = (wf,QL
θ1

)H

(
J∑

j=1

T(wj)Rn(wj)T
H(wj)

)
wf,QL

θ1
, (3.14)

where Rn(wj) is the noise covariance matrix. Assume θ1 is known, wf,QL
θ1

is

the Q-loaded focused MVDR weight vector

wf,QL
θ1

=
(Rf

x + βQ)−1aθ1(w0)

aH
θ1

(w0)(R
f
x + βQ)−1aθ1(w0)

, (3.15)

Defining the SINRin, SINRout to be the Signal to Interference plus Noise

Ratio(SINR) at the input and output of the beamformer, respectively

SINRin =
Ps1

Pi + Pn

SINRout =
Ps1 out

Pi out + Pn out

, (3.16)

then, the AG is the ratio between SINRout and SINRin. Substituting (3.15)

into (3.12)- (3.14), yields

AG =

aH
θ1

(w0)(R̃
f
x)
−1

(
J∑

j=1

σ2
s1

(wj)a
f
θ1

(wj)(a
f
θ1

(wj))
H

)
(R̃f

x)
−1aθ1(w0)

aH
θ1

(w0)(R̃
f
x)−1

(
J∑

j=1

[
P∑

p=2

σ2
sp

(wj)a
f
θp

(wj)(a
f
θp

(wj))H + Rf
n(wj)

])
(R̃f

x)−1aθ1(w0) · SINRin

(3.17)
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where:

SINRin =

J∑
j=1

σ2
s1

(wj)

P∑
p=2

J∑
j=1

σ2
sp

(wj) +
J∑

j=1

σ2
n(wj)

, (3.18)

R̃f
x = Rf

x + βQ, (3.19)

and

Rf
n(wj) = T(wj)Rn(wj)T

H(wj), (3.20)

is the focused noise covariance matrix.

In order to calculate Rf
x using (3.9), Rx(wj) should be evaluated. In the case

of uncorrelated sources and spatially uncorrelated noise (i.e. Rn(wj) = σ2
n(wj)I,

we get

Rx(wj) =
P∑

p=1

σ2
sp

(wj)aθp(w0)a
H
θp

(w0) + σ2
n(wj)I (3.21)

In the following sections, we conduct a numerical performance analysis based

on the asymptotic expression (3.17). We will first demonstrate the performance in

the presence of DOA uncertainties in order to illustrate the advantage of the BFT

over other focusing approaches. Later, we conduct a numerical and analytic study

of the sensitivity to focusing transformation errors at high SNR values.
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3.4 Numerical Study for the Case of DOAs Un-

certainties

In this section we evaluate the performance of the Q-loaded SMI-MVDR beam-

former for three of the focusing methods discussed in the previous chapter: BFT,

WINGS and WKFT. For Q-loading, we set T0 = 0.25 which is five times the norm

of the conventional beamformer. All the rest of the simulation parameters are

identical to those of Section 2.5. In Fig.3.1(a) and Fig.3.1(b) we plot the asymp-

totic and the simulative AG versus SNR for BFT, WINGS and WKFT methods

for the coherent MVDR beamformer with and without Q-loading, respectively.

The superior performance of the BFT over that of the WINGS and WKFT in

both analytic and simulative curves, is expected due to its low focusing error. The

performance difference is especially large in the analytic AG curves and increases

with SNR, while the simulative curves exhibits a smaller yet still significant perfor-

mance difference. The significant difference between the analytic and simulative

AG especially in the BFT method is due to the fact that in the analytic calculation

we use the asymptotic focused covariance matrix (3.9) while in the simulation we

use the SMI estimation version of it (1.18) computed by averaging over K = 46

snapshots. In Fig.3.2 the AG of the BFT focused beamformer without Q-loading

is plotted for various values of K. The analytic AG (3.17) which is considered

to be the asymptotic AG is also plotted and we can see that as K increases, the

simulative curves approach the analytic curve.

Finally, comparing Fig.3.1(a) and Fig.3.1(b) we see that a significant improve-
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ment of the AG is achieved by appropriate Q-loading of the covariance matrix. We

see that the Q-loading effectively reduces the sensitivity of the MVDR beamformer

to the focusing errors of the different methods as well as to the SMI estimation

errors and DOAs uncertainties. In Fig.3.3 the AG versus ISR is plotted for SNR

value of 40dB. The BFT exhibits superior performance for all SIR values.

Let us now examine a single source example. In Fig.3.4(a) and Fig.3.4(b) we

plot the asymptotic and the simulative AG versus SNR for BFT, WINGS and

WKFT methods for the case of one source and DOA uncertainty for the MVDR

focused beamformer with and without Q-loading, respectively. First, we note the

significant improvement in the AG achieved by the Q-loading. Without Q-loading

the AG decreases to values below −40dB, while with Q-loading we observe a slight

decrease in the AG for mid range SNR values. However, as the SNR increases the

Q-loading term become significant and the AG converges to a steady value , which

depends on the focusing errors. The comparison of the performance of the different

focussing methods for the single source case given in Fig.3.4 shows a significant

advantage of the BFT over that of WINGS, while WKFT exhibits relatively good

performance. We see that in this case WKFT has an advantage over the BFT in

the simulative curve. While in the analytic curve, BFT achieves a good AG over

the entire range of the SNR values while WKFT achieves the best AG at low SNR

values. From both Fig.3.4(a) and Fig.3.4(b) it can be seen that WKFT achieves an

AG about 1dB higher then that of the BFT in the region of the low SNR values.

The reason for this is that in both BFT and WINGS methods, the beamwidth

is wider than the beamwidth in the WKFT method as can be seen in Fig.3.5(a)
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where the beampatterns of all the methods are plotted for the single source case

and for low SNR value of −10dB. In order to understand this phenomena, we

examine in Fig.3.5(b) the corresponding magnitudes of the adaptive coefficients

vector. In BFT and WINGS which are considered to be an interpolation based

approaches, it can be seen that the ”effective” array is reduced to only 16 sensors

while the physical array was of 20 sensors. Since the single source AG is roughly

10 log10 N where N is the number of sensors, we get a difference of approximately

1dB in the AG.

The results presented in this section demonstrated the superiority of the BFT

over the WINGS and WKFT focusing methods in multi-source scenarios in the

presence of DOA uncertainties. We also demonstrated the efficiency of the Q-

loading procedure introduced in section 3.2 in improving the robustness of the

focused MVDR beamformer to focusing errors and to the SMI implementation

errors.

3.5 Summary

In this chapter, we first treated the important issue of reducing the beamformers’

sensitivity to focusing errors, and to other modelling errors such as gain and phase

calibration errors, source direction errors, and covariance matrix estimation er-

rors. We derived the Q-loaded wideband focused SMI-MVDR beamformer, which

is a practical robust MVDR version for the focused beamformer. The Q-loaded

focused MVDR beamformer employs a generalized transformation-dependent load-

ing of the sample covariance matrix, thus taking into account the focusing process
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in the robust version. This yields superior robustness compared to that of the

popular diagonal loading method. We note that the Q-loaded MVDR beamformer

is a transformation-dependent process, which may be applied after any arbitrary

focusing scheme for robust focused beamforming.

To evaluate the performance of the proposed BFT method and other focusing

methods we derived an analytic expression of the asymptotic AG for the SMI-

implementation of the focused Q-loaded MVDR beamformer. Simulation results

have illustrated the superiority of the proposed BFT method for the multi-source

case in DOA uncertainties conditions compared to that of the WINGS and WKFT

focusing methods. This is attributable to the low focusing error of the BFT across

the entire bandwidth, which yields more accurate focused data. In the single

source case, WKFT exhibits relatively good performance because of its narrower

beamwidth compared to other focusing methods. The significant improvement in

the performance and robustness of the focused Q-loaded MVDR beamformer with

respect to that of the un-loaded MVDR was also demonstrated.

An eminent point arising from both Fig.3.1(b) and Fig.3.4(b) is the degradation

in the analytic performance of WINGS and WKFT methods as the SNR increased.

In the following chapter, we investigate this degradation and show analytically

that it occurs due to the focusing error in the desired source direction. In order

to reduce this sensitivity, we propose and study two robust methods for coherent

focused wideband MVDR beamforming.
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Figure 3.1: Array gain versus SNR for BFT, WINGS and WKFT for the case of
two sources and DOA uncertainties. (a) With Q-loading, (b) Without Q-loading
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Figure 3.2: AG versus SNR of BFT for various values of the number of the snap-
shots K for the case of two sources with DOA uncertainties and without Q-loading.
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Figure 3.3: Array gain versus ISR for SNR = −10dB. Two sources and DOA
uncertainties and using Q-loading.
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Figure 3.4: Array gain versus SNR for BFT, WINGS and WKFT for the case of
one source and DOA uncertainty. (a) With Q-loading, (b)Without Q-loading
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Figure 3.5: (a) Beampattern versus angle for the various methods for the one source
case and SNR = −10dB , (b)Absolute value of the MVDR coefficients vector
versus sensors for the various methods for the one source case and SNR = −10dB



Chapter 4

Reducing the Sensitivity of the

Focused Wideband MVDR

Beamformer to the

Transformation Accuracy

4.1 Introduction

In the previous chapter, we investigated the performance of the focused MVDR

beamformer in the presence of DOA uncertainties. We evaluated the performance

of the BFT method which was presented in chapter 2 and compared it to that of

the panoramic focusing WINGS method and of the WKFT method which require

preliminary DOAs estimates. The results indicated a high sensitivity of the focused

67
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MVDR to focusing errors in high SNR values for the various focusing methods.

The AG degradation is especially large for the WINGS method which has relatively

large focusing errors.

In this Chapter, we investigate this sensitivity and show analytically that it is

caused due to focusing errors in the desired source direction. We will concentrate

on a single source case whose DOA is assumed to be known perfectly.

In order to reduce the sensitivity of the coherent MVDR to focusing errors,

we propose and study two robust methods for coherent focused wideband MVDR

beamforming. The first method is based on modifying the MVDR beamformer by

implementing a robust General-Rank (GR) beamforming scheme and the second

is based on modifying the focusing transformation so that the focusing error is

reduced in the direction of the desired source. A numerical study demonstrates

a significant performance improvement of the proposed robust schemes when ap-

plied. Throughout this chapter, we examine the WINGS [22] focusing method

in order to demonstrate the performance degradation due to focusing error and

the improvement achieved by the robust proposed methods. We study WINGS

method because it is a panoramic focusing method and hence, is not influenced

by DOA uncertainties, so we can analyze the sensitivity to focusing error more

simply.

This chapter is organized as follows: in Section 4.2, we conduct a numerical

and simulative study for the single source case using the WINGS focusing method.

In Section 4.3, we derive an analytic approximation to the degradation of the AG

as a function of the focusing errors and the SNR. We show analytically that this
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degradation occurs due to focusing error in the desired source direction. We also

show that the AG deteriorates as the reciprocal of the squared SNR. In order to

overcome the sensitivity to focusing errors we propose in Section 4.4 two robust

schemes for wideband focused beamforming. In Section 4.5, we conduct a perfor-

mance analysis demonstrating the efficacy of the proposed methods. Finally, we

summarize this chapter in Section 4.6.

4.2 Sensitivity to Focusing Error

The results of Section 3.4 show a considerable sensitivity of the wideband focused

MVDR to focusing errors for high SNR values. To investigate this sensitivity, we

will analyze the single source case whose DOA is assumed to be known perfectly.

We consider the WINGS method as a test case since it is a panoramic focusing

method which is not influenced by the DOAs uncertainties.

Let us examine the AG for the single source case in the presence of additive

white noise and perfect knowledge of its DOA. The simulation parameters are

identical to those of Section 2.5. Fig. 4.1 shows the asymptotic and the simulative

AG versus SNR for the coherent focused WINGS MVDR beamformer. Also shown

is the performance when a loading term was added to the covariance matrix before

inversion. This operation limits the norm of the beamformer coefficients vector

yielding a robust beamformer (for more details see Chapter 3). We can see that

the loading term improves the performance especially in high SNR values. Yet, in

both cases we can see a significant decrease in the AG as the SNR increases. The

performance of WINGS followed by the unloaded MVDR is severely degraded in
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Figure 4.1: AG versus SNR, for the case of a single source and perfect knowledge
of its DOA. With and without loading.

high SNR values. The fact that the degradation also occurs in the single source

case and also in the analytic curve implies that the performance is very sensitive to

a focusing error in the desired source direction, and less sensitive to focusing errors

in the interferences DOAs. In the following section, we investigate this degradation

and show analytically that it occurs due to the focusing error in the desired source

direction.

4.3 Sensitivity to Focusing Error for the case of

a Single Frequency

In this section, we derive an analytic approximate expression for the AG in the

single frequency case. We attempt to provide some insight into the performance
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degradation by analytically studying the case of a single frequency focusing trans-

formation from wj to w0. From the results of the previous section we saw that

without loading, the degradation is very severe, thus, the following analysis treats

the unloaded MVDR case. We statistically model the focusing errors and show

analytically how the AG decreases as the SNR increases in the presence of focusing

error. The following analysis is based on modelling the focusing errors as small

random independent perturbations of the amplitudes and the phases of the ele-

ments of the focused steering vector. A similar model has been used in [40], in

order to analyze the sensitivity of the MVDR to amplitude and phase errors of the

sensors. We now may write the mth element of the focused steering vector from

frequency wj to w0 as

[T(wj)aθ(w0)]m = aθ,m(w0)(1 + ∆am(wj) + j∆φm(wj)) , aθ,m(w0)(1 + ∆gm(wj)),

(4.1)

where aθ,m(w0) = expj(ψm(w0)) is the ideal focused steering vector, and ∆gm(wj)

represents a zero-mean complex gain error of the mth sensor. We assume that

the random gain errors are independent from sensor to sensor and have the same

variance given by

σ2
g(wj) , E

[|∆gm(wj)|2
]
, m = 1, .., N (4.2)

The focused data vector at frequency wj is given by

xf (wj) = s(wj)a
f
θ (w0, wj) + T(wj)n(wj). (4.3)
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where s(wj) in the desired signal component at frequency wj. n(wj) is the additive

noise at frequency wj which is assumed to be a zero-mean white Gaussian process

with variance σ2
n. For the sake of simplicity we assume T(wj) to be unitary, then

the focused covariance matrix Rf
x(wj, w0) can be expressed as

Rf
x(wj, w0) = σ2

s(wj)a
f
θ (w0, wj)(a

f
θ (w0, wj))

H + σ2
n(wj)I (4.4)

where σ2
s(wj) in the power of the desired signal at wj. The weight vector of the

focused MVDR beamformer is given by

wf
θ =

(Rf
x(wj, w0))

−1aθ(w0)

aH
θ (w0)(R

f
x(wj, w0))

−1aθ(w0)
(4.5)

It can be shown that the output AG of the focused MVDR beamformer is (See

appendix A.3)

AG =
N + σ2

g

(1 + (N − 1)σ2
gξ)

2 + (N − 1)(N + σ2
g)σ

2
gξ

2

ξÀ1−→ α
1

ξ2
(4.6)

where ξ in the input SNR. Equation (4.6) indicates that the output AG is inversely

proportional to ξ2 for ξ À 1. In order to examine the quality and validity of the sta-

tistical approximation, Fig.4.2(a) compares the analytic (3.17) and approximated

(4.6) AG received by BFT and WINGS methods for the case of a single frequency

f = 1710Hz which has been focused to a lower frequency f0 = 1500Hz. The case

of a single frequency f = 1240Hz which has been focused to a higher frequency

f0 = 1500Hz is depicted at Fig.4.3(a). Figs. 4.2(b),4.2(c) and 4.3(b),4.3(c) plot
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the corresponding focusing errors versus sensor index. We can see from Fig.4.2(a)

that for focusing a high frequency onto a lower one, we get a relatively good fit

of the analytic (3.17) and the approximated (4.6) AG, especially in the WINGS

method. The AG begin decreasing at a rate of 1/ξ2 from ξ ≈ 20dB for the BFT

and from ξ ≈ −10dB for the WINGS. The relatively small and roughly uniform

errors in Figs 4.2(b) and 4.2(c) and the good fit of (3.17) and (4.6) justify the

statistical approximation in this case. In Fig.4.3(a) we see a significant difference

between the analytic and approximated AG when focusing a low frequency onto a

higher one. This is because of the highly non uniform distribution of the focusing

error across the array at both BFT and WINGS as illustrated in figs 4.3(b) and

4.3(c). In this case the statistical model assumptions are not valid and the ap-

proximated AG (4.6) may not be used. However we note that also in this case we

observe a rate decay of 1/ξ2 in the WINGS as predicted by (4.6). So (4.6) provides

some insight for the degradation of the AG in high SNR values in the presence of

a focusing error, especially when focusing from high frequency to a lower one.

In the next section we propose two methods to reduce the sensitivity to focusing

errors in high SNR values.

4.4 Robust MVDR Focused Beamformers for

Coherent Wideband Array Processing

In this section we propose and examine two methods designed to combat the

problem of sensitivity of the focused MVDR at high SNR values.
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Figure 4.2: (a) The analytic AG (3.17) for BFT (solid) and WINGS (dashed), and
the approximated AG (4.6) for BFT (stars) and WINGS (circles) for the case of a
single frequency fj = 1710Hz transformed to the focusing frequency f0 = 1500Hz.
(b) Transformation error vs. sensor index - BFT. (c) Transformation error vs.
sensor index - WINGS.

4.4.1 General-Rank Focused MVDR (GR-MVDR)

Let us examine more closely the structure of the signal component in the focused

covariance matrix Rf
x (3.8). Inserting Rx(wj) = σ2

s(wj)aθd
(wj)a

H
θd

(wj) + Rn(wj)

into (3.8) we get

Rf
x = Rf

s +
J∑

j=1

T(wj)Rn(wj)T
H(wj) (4.7)
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Figure 4.3: (a) The analytic AG (3.17) for BFT (solid), and for WINGS (dashed),
the approximated AG (4.6) for BFT (stars) and for WINGS (circles) for case of a
single frequency fj = 1240Hz transformed to the focusing frequency of f0 = 1500Hz
. (b) Transformation error vs. sensor index - BFT. (c) Transformation error vs.
sensor index - WINGS.

where Rf
s is the signal component of the focused covariance matrix

Rf
s =

J∑
j=1

σ2
s(wj)T(wj)aθd

(wj)a
H
θd

(wj)T
H(wj). (4.8)

From the above structure we see that the rank of the signal component covariance

is larger than one. Therefore, we should use the general rank MVDR beamformer

e.g. [41]. For the case where the source spectrum σ2
s(wj) is known, we may find the

Minimum Variance solution for the weight vector by maintaining a distortionless
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array response to the signal covariance

min
w

wH(w0)R
f
xw(w0) subject to wH(w0)R

f
sw(w0)= 1. (4.9)

Following [41], the solution of (4.9) is given by

wf
GR−MVDR = P {

(Rf
x)
−1Rf

s

}
, (4.10)

where P {·} denotes the principal eigenvector of a matrix.

Robust GR-MVDR for the focused wideband MVDR

In [41] a robust version handling the uncertainties in the knowledge of Rf
x is also

derived, based on the concept of the narrowband diagonal loading. We now extend

the robust narrowband version of [41] to the focused wideband case. We are

interested in limiting the white noise gain of the beamformer. In case of the

focused beamformer, the output noise power is given by

σ2
nout

= σ2
n(wf

θ )H

(
1

J

J∑

l=1

T(wl)T
H(wl)

)
wf

θ , (4.11)

where we assume that the noise spectrum is frequency independent, i.e. σ2
n(w) =

σ2
n,∀w. Thus, limiting the white noise gain yields the following additional

quadratic constraint

(wf
θ )HQwf

θ ≤T0, (4.12)
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where Q , 1
J

J∑
l=1

T(wl)T
H(wl) and T0 is a design parameter. Solving (4.9) with the

additional constraint (4.12), by using the lagrange multipliers method, we get

(Rf
x + βQ)−1Rsw

f
θ =

1

λ
wf

θ . (4.13)

The solution to (4.13) is given by the robust Q-loaded form of the GR-MVDR

wf
GR−MVDR−QL = P {

(Rf
x + βQ)−1Rf

s

}
, (4.14)

where β is the loading factor. Note that the GR focused MVDR requires a-priori

knowledge of the spectral shape of the source σ2
s(wj). In practice the spectral

density should be estimated. Following [41] we use a robust version combating a

small signal spectrum mismatch

wf
ROBUST−GR−MVDR = P {

(Rf
x + βQ)−1(Rf

s − εI)
}

, (4.15)

where ε is the norm of the error in Rf
s . Since the robust version is required for high

SNR values, reasonably accurate PSD estimation of the source spectrum should

be possible.

4.4.2 Enhanced Focusing (EF)

This method attempts to reduce the focusing error directly, and will be presented

for WINGS focusing. WINGS has a relatively large focusing error due to the

panoramic focusing requirement. Adding an additional error component in the



78 CHAPTER 4. REDUCING SENSITIVITY TO FOCUSING ERRORS

desired source direction to the LS minimization term (1.12) of the WINGS enables

us to reduce the error in the source direction. In this case, the minimization term

of the WINGS (1.8) becomes:

ε2
j =

1

N

∥∥∥[
∼
G(w0)−T(wj)

∼
G(wj)]

∥∥∥
2

F
, (4.16)

where
∼
G(w) = [aθd

(w) , G(w)] (4.17)

and θd is the desired source direction. This solution achieves better performance

as shown in the next section. Yet, it requires an accurate estimation of the desired

source direction which is a drawback. In order to increase the robustness to DOA

uncertainties, we add 4 auxiliary directions at −2,−1, 1, 2 degrees relative to the

assumed desired source direction. In this case, (4.17) becomes

∼
G(w) = [aθd−2(w), aθd−1(w), aθd

(w), ..., aθd+2(w), G(w)] . (4.18)

Fig. 4.4 illustrates the benefit of adding the auxiliary directions. We can see that

WINGS-EF with the auxiliary directions as in (4.18) is robust to direction errors

of approximately 2 degrees.
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Figure 4.4: Focusing error versus angle for the various robust methods. Also
presented the non-robust WINGS for comparison. The diamond marks the true
source direction.

4.5 Performance Analysis of the Robust Focused

MVDR

In this section, the performance of the proposed robust focused MVDR schemes,

is numerically studied for the single source case. The simulation parameters are

identical to those in Section 2.5. The signal spectrum which is required for the

GR-MVDR is assumed to be flat in accordance with the simulation. There is an

error at the desired source direction of 1.5 degrees.
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Figure 4.5: AG versus SNR of the various solutions for robust focused WINGS
Q-loaded MVDR. Single source case with DOA error of 1.5 degrees.

4.5.1 Sensitivity to Source DOA

Fig.4.5 shows the analytic and simulative AG versus SNR of the focused WINGS-

MVDR robust and non robust methods with a loading term. One can see that both

robust schemes improve the performance of the focused WINGS MVDR, bringing

the AG closer towards the ideal values. Both methods exhibit robustness to the

DOA error.

4.5.2 Sensitivity to Source Spectrum

In this section we examine the sensitivity of the focused GR-MVDR to errors in

the spectral shape of the source. Note that we assume a flat signal spectrum

in accordance with the above example in which, white Gaussian sources were
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Figure 4.6: Array gain of the GR-MVDR solution for AR source spectrum with a
known DOA. A maximal deviation of 3.5dB.

simulated. Figs. 4.6 and 4.7 demonstrate the performance of the focused GR-

MVDR method when the source is shaped by an Auto-Regressive filter of a single

pole whose spectrum is plotted at Fig. 4.8. In Figs. 4.6 and 4.7 we examine,

respectively, 3.5dB and 1dB maximal spectral deviation between the actual and

the assumed spectrum. From these examples we see that the robust extension

of the focused GR-MVDR method (4.15) can handle a spectral deviation smaller

than 1dB. In practice, for a larger deviation, spectrum estimation of the desired

source should be used.
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Figure 4.7: Array gain of the GR-MVDR solution for AR source spectrum with a
known DOA. A maximal deviation of 1dB. The legend is like in fig. 4.6.
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Figure 4.8: Spectrum of the Auto-Regressive signal. 1dB maximal deviation
(dashed) and 3.5dB maximal deviation (solid).
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4.6 Summary

We investigated the sensitivity of the focused MVDR beamformer to focusing er-

rors in high SNR values and show analytically that the output AG of the focused

MVDR is inversely proportional to the squared SNR. In order to reduce this sen-

sitivity, we proposed and investigated two robust methods for wideband focused

beamforming. The proposed methods aim at reducing the sensitivity of the beam-

former’s performance to focusing error, especially at high SNR scenarios. This

sensitivity is more significant in interpolation based focusing methods which do not

require preliminary estimates of the DOAs but have higher focusing errors. This

independence of the focusing procedure on the preliminary DOAs estimates is a de-

sirable property, therefore, designing robust MVDR beamformers for interpolation

based focusing schemes is of importance. The first robust method is based on mod-

ifying the MVDR beamformer using the General-Rank (GR) approach, and the

second is based on modifying the focusing scheme itself. We examine the proposed

methods by applying them to the WINGS focusing transformation. The results

indicate that both EF and GR-MVDR focusing methods can improve the perfor-

mance of the WINGS significantly, especially at high SNR values. The GR-MVDR

requires a spectral source estimation and the EF method requires an estimation

of the desired signal DOA. However, the GR-MVDR method is computationally

advantageous over the EF method, since spectral estimation is considerably less

complex than data dependent calculation of the focusing transformations.
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Chapter 5

Conclusion

5.1 Summary

In this work, we have proposed and investigated a Bayesian approach for focusing

transformation design, which takes into account the statistical uncertainties in the

DOAs during the focusing process. The focusing transformation block serves as

a preprocessor stage of the wideband adaptive beamformer aiming at transform-

ing the steering vectors of the array onto a fixed steering vector matched to a

specific frequency, thus, allowing the use of a narrowband adaptive beamforming

algorithm. The proposed Bayesian focusing approach is a compromise between

the directional focusing approach which requires preliminary DOA estimates, and

the panoramic focusing approach which is based on spatial interpolation and does

not require any DOA estimates. A close form solution to the BFT is derived us-

ing a weighted extension of the WINGS focusing approach. The solution to the

Bayesian focusing problem yields an optimal MMSE focusing transformation and
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consequently an improved focused beamformer with better AG.

The proposed BFT approach requires the conditional PDFs of the DOAs to

be available. In practice, they are not known perfectly and should be estimated

from the received data. In order to estimate them, we proposed a time progressing

algorithm which consists of two stages, the first performs DF on the focused vector

and the second stage is the focused beamformer algorithm.

Adaptive beamformers such as the MVDR have a high sensitivity to focusing

errors, and to other modelling errors such as gain and phase calibration errors,

source direction errors, and covariance matrix estimation errors. This sensitiv-

ity can be reduced in the narrowband case by employing the diagonal loading

procedure. In this work we derived the Q-loaded wideband focused SMI-MVDR

beamformer, which is a generalization of the diagonal loading scheme suitable to

the focused wideband beamformer.

The Q-loaded focused MVDR beamformer employs a generalized

transformation-dependent loading of the sample covariance matrix, thus taking

into account the focusing process in the robust version. This yields superior

robustness to the focused beamformer, compared to that of the popular diagonal

loading method.

We evaluated the performance of the proposed BFT method and other focus-

ing methods by conducting simulations and comparing their results to the analytic

expression of the AG which was derived earlier. The results illustrate the superi-

ority of the proposed BFT method for the multi-source case in DOA uncertainties

conditions compared to that of the WINGS and WKFT focusing methods. This
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is attributed to the low focusing error of the BFT across the entire bandwidth,

which yields more accurate focused data. The significant improvement in the per-

formance and robustness of the focused Q-loaded MVDR beamformer with respect

to that of the un-loaded MVDR was also demonstrated.

The simulation results demonstrate a consistent degradation in the perfor-

mance of WINGS and WKFT methods as the SNR increased. We investigate this

degradation and show analytically that it occurs due to the focusing error in the

desired source direction. There is a rate decay of 1/ξ2 where ξ is the input SNR.

In order to reduce this sensitivity, we proposed and studied two robust methods

for coherent focused wideband MVDR beamforming. The proposed methods aim

at reducing the sensitivity of the beamformer’s performance to focusing error, es-

pecially at high SNR scenarios. This sensitivity is more significant in interpolation

based focusing methods which do not require preliminary estimates of the DOAs

but have higher focusing errors. The first robust method is based on modifying

the MVDR beamformer applying the General-Rank (GR) approach, and the sec-

ond is based on modifying the focusing scheme itself. We examined the proposed

methods by applying them to the WINGS focusing transformation.

5.2 Future Research

The methods we have proposed in this work open several interesting directions for

future study:

1. In this work we assumed that the sources propagate at a free medium. This
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assumption is lenient since the impulse response of the channel is not taken

into account. One of the effects of a typical channel is the multipath effect

which causes reflected versions of the signal to be received by the array. This

leads to a singular source covariance matrix due to perfect coherence between

the signal and its reflections, and as a consequence, to the signal cancellation

problem, which is a serious drawback in adaptive beamformers. In [28] a

steered wideband adaptive beamformer optimized by a maximum likelihood

criterion is presented and discussed in the light of a very general reverberation

model. Yet, the proposed channel model is fairly simplistic. Note that

the focusing procedure decorrelates the covariance matrix of the received

vector [13], thus removing the singularity due to the correlated signals. In

light of the above, an analytic and simulative study of the BFT in more

realistic reverberant multipath environment is of considerable interest.

2. The BFT focusing procedure requires apriori knowledge of the PDFs of the

DOAs or an estimated version of them. We modelled them as gaussian ran-

dom variables where we estimated their mean using a DF algorithm and

assumed their variance to be a fixed value equal to a quarter of the 3dB

beamwidth. A possible improvement would be to take the CRB of the es-

timations produced by the DF algorithm to be the variance of the gaussian

PDFs. This allows us to take into account other parameters which supposed

to influence the PDF, such as SNR. A different approach would be to model

the DOAs using a Markov chain. The motivation is to model not only the

DOAs themselves but also the connection between DOAs estimates produced
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at different times.

3. The BFT was developed using a weighted extension of the WINGS method

[22]. It is designed to provide a focusing method which is robust to DOAs

uncertainties. In practice, there are other array calibration errors which

should be taken into account. We take care of them by employing the Q-

loaded MVDR beamformer. In [22] two robust extensions to the WINGS

method are presented aiming at increasing the robustness to the noise gain

of the transformation which can be caused also because of array calibration

errors. Employing this robust extensions also to the BFT will yields a focus-

ing method which is robust to both DOA uncertainties and array calibration

errors.

4. In Section 2.5 it was demonstrated that WINGS introduces high errors at

frequencies below the focusing frequency. This is expected since WINGS is

an interpolation based focusing method, in which focusing is equivalent to

spatial interpolation [18] of the array. Interpolating from a low frequency

to a higher one, is equivalent to extrapolating the array beyond its physical

length, thus, yielding high focusing errors. One can reduce the WINGS

transformation error by focusing to the lowest frequency of the bandwidth.

However, this will reduce the effective aperture of the focused array, thus

reducing the spatial resolution of the array. In the literature there are several

papers dealing with the issue of choosing the optimal focusing frequency

(e.g. [38, 39]). It is expected that optimization of the focusing frequency for

the BFT as well as for other focusing transformations will also can improve
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its performance.

5. BFT is a non-unitary focusing method. In the literature the benefits of

a unitary focusing transformation is demonstrated [9]. In [24] a unitary

focusing transformation which employing a weighting function is derived.

Combining both the Bayesian approach and the unitary approach of [24] is

expected to yield a considerably more robust focusing method.

6. In Chapter 3 we demonstrate the performance degradation in low SNR values

in interpolation based approaches (see Fig.3.5(b)). This degradation is sig-

nificant especially in the single source case where the adaptive beamformer

is reduced to the conventional beamformer, since the array beamwidth is

widened. It is of interest to further investigate this degradation and to find

techniques to reduce it when using interpolation based methods.

7. In Chapter 4 we proposed and investigated two robust methods aiming to

handle the sensitivity in high SNR values due to focusing error in the desired

source direction. This study can be extended to other focusing methods such

as the unitary focusing transformation proposed in [24].

8. In this work, the issue of computational complexity of the BFT was not con-

sidered and compared to other focusing methods. It is desirable to evaluate

this complexity and to search for techniques to reduce it.



Appendix A

A.1 Derivation of (3.6)

Using the method of Lagrange multipliers to solve (3.5a)-(3.5c), the function to be

minimize is

F = (wf
θ )HRf

xw
f
θ + β

[
(wf

θ )HQwf
θ−T0

]
(A.1)

+ λ
[
aH

θ (w0)w
f
θ − 1

]
+

[
(wf

θ )Haθ(w0)− 1
]
λH .

Taking the gradient with respect to wf
θ and setting the result to zero gives

(wf
θ )HRf

x + β(wf
θ )HQ+λaH

θ (w0) =0, (A.2)

or

(wf
θ )H = −λaH

θ (w0)
[
βQ + Rf

x

]−1
. (A.3)

Solving for λ by substituting (A.3) into (3.5b) yields (3.6). Note that the above

derivation is an extension of the well known diagonal loading solution which is
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used for the narrowband case.

A.2 Proof that wHQw is a monotonically de-

creasing function of β

Let us define

ãθ(w0) = Q− 1
2aθ(w0) (A.4)

R̄f
x = Q− 1

2Rf
xQ

− 1
2 ,

substituting (A.4) into (3.6), we get

wf
θ =

Q− 1
2

(
R̄f

x + βI
)−1

ãθ(w0)

ãH
θ (w0)

(
R̄f

x + βI
)−1

ãθ(w0)
. (A.5)

Now, calculating (wf
θ )HQwf

θ we get

(wf
θ )HQwf

θ =

∥∥∥
(
R̄f

x + βI
)−1

ãθ(w0)
∥∥∥

2

(
ãH

θ (w0)
(
R̄f

x + βI
)−1

ãθ(w0)

)2 = h(β). (A.6)

h(β) has the form of the diagonal loading constraint for which there is a well-

known proof that it is a monotonically decreasing function of β, see e.g [1] p.589.
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A.3 Derivation of (4.6)

Defining:

G =




1 + ∆g1(wj) 0 · · 0

0 1 + ∆g2(wj) · · 0

· · · · ·
· · · · ·
0 0 · · 1 + ∆gN(wj)




(A.7)

The covariance matrix for the case of a single source with a single frequency

wj is

R = σ2
d(wj)ãθ(wj)ã

H
θ (wj) + σ2

n(wj)I, (A.8)

where ãθ(wj) = Gaθ(wj). Using Woodbury’s Identity [32], the inverse of (A.8)

R−1 = σ−2
n

(1 + ξãH
θ (wj)ãθ(wj))I− ξãθ(wj)ã

H
θ (wj)

1 + ξãH
θ (wj)ãθ(wj)

, (A.9)

where ξ , σ2
d(wj)

σ2
n(wj)

. The SINR in the beamformer output is

SINR =
wH(wj)ãθ(wj)ã

H
θ (wj)w(wj)

wH(wj)w(wj)
, (A.10)

where w(wj) is the MVDR beamformer coefficient vector.

It can be shown that E{ãH
θ (wj)ãθ(wj)} N>>1→ N(1 + σ2

g(wj)) where

σ2
g(wj) , E

[|∆gm(wj)|2
]
, m = 1, .., N. (A.11)
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Substituting the last result and the MVDR coefficient vector expression into

(A.10) yields (4.6).
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� משמשות במגוו� אפליקציות ברחבי העול מסתגלטכניקות עיצוב אלומה 

 . טכניקות אלו משמשותעודר, סונאר, אקוסטיקה ודא, רכגו�: תקשורת אלחוטית

 לדיכוי אותות חוסמי� במקביל, רצויהאות ה השגת שבח עיבוד מרחבי עבורל

 של האות הרצוי. מזהשונה הואשר מגיעי� מכיוו�  ,המהווי� הפרעות לאות הרצוי

י� כבר משנות השישי� קי מסתגלותשיטות עיצוב אלומה אמצעות בעיבוד מרחבי 

 עבור המקרה הצר סרט, אול� בשני העשורי� האחרוני� גבר באופ� משמעותי

סרט ע� התפתחות מערכות דור שלישי  יעיצוב אלומה רחבבאלגוריתמי  הצור 

ורביעי של תקשורת אלחוטית כמו ג� מערכות תקשורת רחבות סרט. במערכות אלו 

רחבי לצור  השגת קצבי תקשורת נעשה שימוש באותות רחבי סרט ובעיבוד מ

  .יותר גבוהי�

עיקריות. י קטגוריות תנית� לחלק את השיטות לעיצוב אלומה רחב סרט לש

שיטות  ה� הלא קוהרנטי אשר כוללת הקטגוריה הראשונה הינה קטגורית העיבוד

בתחו� התדר.  שיטות לא קוהרנטיות בתחו� הזמ� עושות ה� שיטות ובתחו� הזמ� 

שיטות לא קוהרנטיות בתחו� התדר  , ואילומרחביי� מסתגלי�� שימוש במשווני

החסרונות  . בנפרד אלומה צר סרט עבור כל תדר ותדר עיצוב אלגורית�מממשות 

העיקריי� של השיטות הלא קוהרנטיות הינ� סיבוכיות חישוב גבוהה עקב מספר 

ית , התכנסות איטמסתגליחסית גדול של מקדמי� שנדרש לשער  ולעדכ� באופ� 

, כגו� לפתרו� האופטימאלי ובעיות של פגיעה באות הרצוי בסביבות קורלטיביות

  . סביבות רברברציות ורב נתיב

רחב סרט הינה  מסתגלהקטגוריה השנייה של שיטות לעיצוב אלומה 

עושות שימוש  זו שיטות השייכות לקטגוריה  הקוהרנטי. ת העיבודקטגורי

אשר  שה� התמרות ליניאריות, )Focusing Transformations(התמרות מיקוד ב

מתוא� לתדר הלתת מרחב יחיד  של האותתלויי התדר מרחב האת תתי ממקדות 

תכולה  ע� האות הממוקד היו אותכתוצאה מפעולת המיקוד, המיקוד. 

לבצע עליו עיצוב נית�  כיווניות צרת סרט ולכ� בעלסרט אבל  תרחבספקטראלית 

 Minimum Variance –לגורית� ה א באמצעות למשל, ,אלומה צר סרט

Distortionless Response (MVDR) היתרונות העיקריי� של השיטות .

סיבוכיות חישוב יחסית נמוכה, קוהרנטיות הינ� "אלהקוהרנטיות על פני ה

ע� בעיית  יותר התכנסות מהירה יותר לפתרו� האופטימאלי והתמודדות טובה

  .  בסביבות קורלטיביות ביטול אות רצוי



מיקוד ה התמרות על מנת לתכנ� את שתי גישות עיקריותבספרות קיימות 

הגישה הראשונה הינה גישה כיוונית אשר בה נדרש לדעת קוהרנטי. העיבוד ה עבור

ופעולת המיקוד מבוצעת בכיווני� אלו. הגישה  ,את כיווני ההגעה של המקורות

ית ואשר בה פעולת השנייה הינה גישה פנוראמית המבוססת על אינטרפולציה מרחב

המיקוד מבוצעת עבור כל הכיווני� האפשריי�. הגישה הכיוונית רגישה לאי וודאות 

בידיעת כיווני ההגעה האמיתיי� של המקורות אול� בעלת שגיאת מיקוד נמוכה 

יחסית אול� גבוהה הגישה הפנוראמית  הינה בעלת שגיאת מיקוד  לעומתה,  יחסית.

  לא רגישה לאי וודאות בכיווני�. 

עיצוב ל לתכנו� התמרות המיקוד גישה בייסיאנית פיתחנו ובחנו זובעבודה   

 Bayesian Focusing Transformations  "ת והנקרא אלומה קוהרנטי רחב סרט

(BFT).  הגישה הבייסיאנית מכלילה את שתי הגישות הקודמות ומנצלת את

ביחד ע�  חסינות גדולה יותר לשגיאות כיוו� השגת מאפשרתכ� ולה� היתרונות של

את הפילוגי�  הגישה הבייסיאנית לוקחת בחשבו� מיקוד.הת ושגיא הקטנת

ממזערת את שגיאת המיקוד הריבועית וההיסתברותיי� של כיווני ההגעה 

  . של האותות על פני כל רוחב הסרט התמרת המיקוד  של הממוצעת

קוהרנטי מבוסס  האלומה המעצב לרובסטית  הרחבהפיתחנו בנוס&, 

MVDR  לשגיאות  הממוקדהרגישות של מעצב האלומה הקטנת אשר מטרתה

 שגיאות הגבר ופאזה, הנגרמות כתוצאה מאי וודאות בכיווני ההגעה של המקורות,

את פתרו� הכללנו מיקוד. השגיאות בפרט שגיאות שערו  של מטריצת הקווריאנס, ו

 "ה על מנת להגביל את הרעש במוצא  במקור שפותח Diagonal Loading –ה 

MVDR  ל  אותו והתאמנוסרט הצר– MVDR האלגורית� רחב הסרט הממוקד .

   . Q-Loaded Focused MVDR  נקראשהתקבל 

 Q-Loaded Focused MVDR "בשילוב ע�  ה   BFT –ה  התמרות ביצועי 

  התמרות מיקוד ידועות:מספר ביצועי שוו לווהנבדקו 

 WKFT( Wang and Kaveh Focusing Transformation) התמרת  •

ממקדת ה  Kaveh –ו   Wangהשיטה המקורית שהוצעה ע"י הינה   –

 המקורות.  � המשוערכי� שלבכיווני

שיטת הינה  – RSS(Rotational Signal Subspace) "התמרת ה •

. היתרו�  Kaveh –ו  Hungשהוצעה ע"י  מיקוד כיוונית יוניטרית

כתוצאה מפעולת  SNR " מרה יוניטרית הינו שאי� פגיעה בבהת

 המיקוד. 



 (Wavefield Interpolated Narrowband Subspace) "התמרת ה  •

WINGS –  שהוצעה ע"י  שיטת מיקוד פנוראמיתהינהDoron  ו" 

Nevet . 

קרלו וחישובי� נומריי� מדגימות שיפור משמעותי "ת מונטהיתוצאות סימולצי 

על פני יתר  BFTמבוסס   Focused Q-Loaded MVDR"של ה  בהגבר המער 

 .בתרחישי� של מספר מקורות ואי וודאות בכיווני ההגעה שלה� ,ההתמרות

 BFT –ה  של התמרת השיפור בביצועי� הינו כתוצאה משגיאת מיקוד נמוכה יותר 

שגיאת המיקוד . בהתמרות האחרות שנבדקו, האחרות שנבדקו התמרותבהשוואה ל

ה� כתוצאה מאי הוודאות בכיווני ההגעה המשפיעה מאד על  ,ה גבוהה יחסיתהיית

וה� כתוצאה משגיאה גבוהה בשיטות הפנוראמיות עקב הניסיו�  , השיטות הכיווניות

, התוצאות הראו שיפור משמעותי יתר על כ� תחו� רחב של כיווני�.  על פני למקד 

  .  Q-Loading  "כאשר נעשה שימוש ב  

בביצועי כל  ירידה ינהשהודגמה בסימולציות ה יינת נוספתתופעה מענ

כאשר נעשה  יותר קטנה אמנ� ירידה זו הינה  גבוהי�.  SNRהשיטות בערכי 

חקרנו  . מהווה בעיה משמעותית בביצועי�אול� עדיי�  Q-loading –שימוש ב 

� נגרמת בעיקר כתוצאה משגיאות מיקוד בכיווהיא והראנו אנליטית כי  זורגישות 

. על מנת SNR "הפו  לריבוע ה  יחסיושהביצועי� יורדי� באופ� , האות הרצוי

של עיצוב האלומה  לשיפור החסינות שתי שיטות בחנו זו, הרגישות הלהקטי� את 

של  האילו' השיטה הראשונה מבוססת על שינוי .גבוהי�  SNRהקוהרנטי בערכי

      המיקודכ  שתתחשב בשגיאת  MVDR – בעיית האופטימיזציה של ה

(General-Rank MVDR)תכנו� , והשיטה השנייה מבוססת על הוספת אילוצי� ב

תוצאות  .על מנת להקטי� את השגיאה בכיוו� האות הרצוי התמרות המיקוד

 הראו שיפור ניכר בביצועי עיצוב האלומה הקוהרנטי ג�  וסימולטיביותנומריות 

      .  הגבוה  SNR –עבור תחו� ה 

  


