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Abstract

Adaptive beamforming techniques are widely used in many real-world applica-
tions such as wireless communications, radar, sonar, acoustics, and seismic sens-
ing. These techniques are effective in rejecting interference signals and noise while
recovering the desired signal. In Some of the applications, wideband adaptive

beamforming is requires due to the wideband nature of the employed signals.

One of the main approaches for implementing wideband adaptive beamform-
ing is the coherent approach. Methods based on the coherent approach involve a
linear pre-processor which focuses the signal subspaces at different frequencies to a
single frequency, followed by a narrowband adaptive beamformer such as the Min-
imum Variance Distortionless Response (MVDR) algorithm. The main benefits of
the coherent methods over that of non-coherent methods are low computational
complexity, the ability to combat the signal cancellation problem and improved
convergence capabilities.

In the literature, there are several methods to design focusing matrices for the
coherent processing. The methods differ from each other in various features, such

as the focused directions, optimality criteria, etc. In this thesis, we present and
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study a Bayesian Focusing Transformation (BFT) for coherent wideband array
processing, which is robust to uncertainties at the Direction Of Arrivals (DOAs).
The Bayesian focusing approach takes into account the Probability Density Func-
tions (PDFs) of the DOAs and minimizes the mean-square error of the transfor-
mation, thus, achieving improved focusing accuracy of the actual data over the
entire bandwidth.

We also treat the important issue of robust focused MVDR beamforming in
order to reduce the sensitivity of the focused MVDR beamformer to errors caused
by DOAs uncertainties, Sample Matrix Inversion (SMI) implementation errors
and focusing errors. We generalize the diagonal loading solution and develop a
robust MVDR beamformer for the coherent wideband case referred to as the Q-
loaded focused MVDR wideband beamformer. Numerical results and simulations
demonstrate the superior AG of the focused Q-loaded beamformer combined with
the BFT method over that of the other focusing methods.

Finally, we propose and study two robust methods for coherent focused wide-
band MVDR beamforming. The focusing procedure introduces a frequency de-
pendent focusing error which causes performance degradation, especially at high
Signal to Noise Ratio (SNR) values. The proposed robust methods aim at reducing
the sensitivity of the coherent MVDR to focusing errors. The first method is based
on modifying the beamformer optimization problem and generalizing it to bring
into account the focusing transformations and the second is based on modifying

the focusing scheme itself.
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Chapter 1

Introduction

1.1 Motivation and Goals

Adaptive beamforming techniques are used for sensors arrays to enhance the signal-
to-interference plus noise ratio in many applications such as wireless communica-
tions, radar, sonar, acoustics, and seismic sensing. These techniques are effective
in rejecting interference signals whose incident directions of arrival differ from that
of the desired signal [1]. The potential of adaptive beamforming was already recog-
nized since the early 1960’s for the narrowband case. Yet, in the last two decades,
the necessity for wideband adaptive beamforming increased with the development
of third and fourth generations of wireless communications for mobile systems as
well as ultra-wideband communication systems [2-5]. These systems support very
high data rate communications due to their wideband nature combined with their
space-time processing abilities.

Wideband adaptive beamforming techniques can be classified into two main
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categories. The first category consists of non-coherent wideband beamforming
methods which employ either time domain or frequency domain implementations.
The non-coherent time domain techniques utilize multi-tap spatial adaptive filters
whose coefficients are adjusted to suppress the interferences while preserving the
desired signal (e.g. [2], [6]). The non-coherent frequency domain techniques im-
plement a narrowband adaptive beamformer in each frequency bin [1]. All the
methods associated with the non-coherent category are computationally expen-
sive, have a slow convergence rate due to a large number of adaptive coefficients,

and are prone to signal cancellation problem in coherent multi-source scenarios.

The second category consists of coherent methods for wideband adaptive beam-
forming which incorporate a focusing procedure for signal subspace alignment,
originally proposed by Wang and Kaveh [7] for Direction of Arrivals (DOAs) esti-
mation applications. The focusing procedure involves a pre-processor implemented
as a linear transformation matrix which focuses the signal subspaces at different
frequencies to a single frequency, followed by a narrowband adaptive beamformer
such as the Minimum Variance Distortionless Response (MVDR) algorithm (see
Sec. 1.2.4) or a DOAs estimator such as the Multiple Signal Classification (MU-
SIC) algorithm (see Sec. 1.2.6). The main benefits of the coherent methods are low
computational complexity, the ability to combat the signal cancellation problem
and improved convergence properties. Although the preliminary works on coher-
ent array processing were aimed at DOAs estimation applications [7-9], following
works on coherent processing for wideband adaptive beamforming appeared in the

early 90’s [10-14].
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In the literature, there are two basic approaches to design focusing matrices.
The first approach utilizes schemes requiring a-priori knowledge of the DOAs of
the sources using them as focusing directions, e.g. [7,8]. In [9], a unitary focusing
transformation named as the Rotational Signal Subspace(RSS), is designed and
analyzed to provide focused data at a preliminary estimated DOAs. The advan-
tage of the unitary focusing transformation is that there is no focusing loss which
is a measure to the degradation in the Signal to Noise (SNR) due to the focusing
operation. This RSS focusing method was extended by Doron and Weiss in [15]
where a general class of focusing matrices were proposed, referred to as Signal
Subspace Transformation (SST) focusing matrices, designed to generate sufficient
statistics for maximum likelihood bearing estimation. The contribution of Hang
and Mao [16] is to design a class of robust focusing matrices called Unitary Con-
strained Array Manifold (UCAM) focusing, which reduces the sensitivity of the
RSS to variations of DOA estimates by focusing in all the DOAs lying around a
vicinity of the actual DOAs. All the above cited works, share the same characteris-
tic of requiring initial DOAs estimates, which introduce additional computational
burden and sensitivity to DOAs uncertainties, and will be referred to as the direc-

tional focusing approach.

The second approach consists of spatial interpolation methods which focus
all angular directions. Doron et.al [17] propose the Array Manifold Interpola-
tion (AMI) which does not require DOA estimates, yet, requires the array to
satisfy the spatial sampling condition. Other similar works that employ spatial

resampling can be found at [12,18-21]. In [22] an interpolation based focusing
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approach called Wavefield Interpolated Narrowband Subspace (WINGS) method
is proposed which is developed using the wavefield modelling theory [23]. Tt pro-
vides a closed form expression to the transformation and to its focusing error.
Based on the WINGS, two robust extensions are developed aiming at controlling
the noise gain of the transformation. A DOA independent focusing method based
upon the idea of frequency-invariant beamspace processing was proposed in [19],
and referred to as Beamforming-Invariance Coherent Signal Subspace Method (BI-
CSSM). Kashavarz [20] propose a focusing method which does not require DOA
estimates is applied together with a frequency dependent weighting function which
is proportional to the power spectral density of the pulse. We refer to the inter-
polation based approach as the panoramic focusing approach. The directional
approach achieves relatively small focusing errors but is sensitive to DOAs un-
certainties, while the panoramic approach does not require any knowledge of the
DOAs, however it typically has higher error levels, since it attempts to focus all

directions.

There are also focusing methods which provide a compromise between the di-
rectional and panoramic approaches by perform the focusing in angular sectors. A
numerical method for focusing within an angular sector is proposed and studied
at [21]. Sellone [24] derive a unitary focusing approach which incorporates a de-
terministic weighting function. A numerical solution to the optimization problem

is derived and studied in the paper.

In addition to the presented studies dealing with the design of focusing transfor-

mations with desired properties such as unitary, there are papers on employing the
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existing focusing methods in order to improve and develop DF and beamforming
algorithms. Feng et.al [25] develop a new high resolution DF algorithm for wide-
band signals and test its performance with various focusing methods. Both [26]
and [27] present a robust DF algorithm for the coherent wideband case which take
into account array calibration errors and mutual coupling effects. Claudio [28,29]
present and study a steered wideband adaptive beamformer, optimized by Maxi-
mum Likelihood criterion in the light of a general reverberation model. It employs
a focusing transformation which focuses only in the desired source direction, thus

yielding a diagonal focusing transformation.

Most of the focusing methods in the academic literature belong to either the
directional approach requiring a-priori knowledge of the DOAs or the panoramic
approach where no a-priori knowledge is required. Methods which focus in sectors
employ a deterministic weighting function and provide a numerical solution. Our
first goal in to design a focusing procedure which is a compromise between the
directional focusing approach and the panoramic focusing approach by incorpo-
rating statistical information about the DOAs, thus, enjoying the benefits of both
approaches. To this end, we use a Bayesian formalism in which we take into ac-
count the uncertainty of the DOAs by modelling them as random variables with
a given prior statistics. We derive a closed-form solution to a Bayesian Focusing
Transformation (BFT) minimizing the Mean-Square Error (MSE) of the transfor-

mation, thus achieving improved focusing accuracy over the entire bandwidth.

The output of the focusing procedure is a vector with a narrowband array re-

sponse, thus, any narrowband adaptive beamforming algorithm may be applied,
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such as the well-known Capon beamformer [30] ,also referred to as the Minimum
Variance Distortionless Response (MVDR) beamformer. The theoretic perfor-
mance of the MVDR beamformer is better than that of the conventional beam-
former. Yet, it has a substantial performance degradation due to array calibration
errors, DOAs errors [4], and the SMI estimation errors [5]. In the focused MVDR
beamformer, the focusing error also comes into play and may deteriorate the per-
formance. One of the common methods to reduce the sensitivity of the MVDR
beamformer to array calibration errors is via diagonal loading of the sample co-
variance matrix [31]. Diagonal loading was originally proposed for the narrowband
case, and it was shown to effectively reduce the sensitivity of the MVDR. Our sec-
ond goal is to derive an extension of the diagonal loading solution for the coherent
wideband case, in order to increase the robustness against mismatch and focusing

errors, and improve the performance of the MVDR.

We tested the performance of the Bayesian approach combined with the robust
MVDR loading algorithm and compared to other focusing methods (to be discussed
at Sec 1.2). One of the prominent problems we saw in the simulation is the
sensitivity of the focused MVDR beamformer at high SNR values. Our third goal
is to investigate this sensitivity and show analytically that it is caused by the
focusing errors at the desired source direction. In order to reduce the sensitivity of
the coherent MVDR beamformer to focusing errors at the desired source direction,
we propose and study two robust methods for coherent focused wideband MVDR
beamforming. The first method modifies the MVDR algorithm to take into account

the various errors and the second is based on modifying the focusing transformation
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so that the focusing error is reduced in the direction of the desired source.

1.2 Background

Coherent wideband adaptive beamforming techniques, based on the signal sub-
space alignment [7,9] concept, achieve an improved performance over that of the
non-coherent wideband adaptive beamformer [1,2]. The non-coherent wideband
adaptive beamformer is implemented in the frequency domain as a narrowband
beamformer for each frequency bin. Fig.1.1 shows a general block diagram for
the non-coherent wideband adaptive beamformer. For each frequency bin, a nar-
rowband adaptive beamformer is applied to the frequency domain data vector
X(f)=[z1(f;), -, an(f;)]", 7 =1,..,J. The outputs of all the narrowband beam-
formers, y(f;), j=1,..,J, are collected and fed into an inverse FFT block yield-
ing the temporal beamformer output vector, Ynon_conerent(n). The non-coherent
beamformer is computationally expensive, has a slow convergence rate due to a
large number of adaptive coefficients and is prone to signal cancellation problem

in coherent source scenarios.

Fig.1.2 presents a general block diagram for the focused wideband adaptive
beamformer. This approach involves a pre-processor implemented as a frequency
dependent linear transformation matrix T(w,;) which focuses the signal subspaces
at different frequencies to a single frequency, followed by a single time domain
narrowband beamformer. The main benefits of the coherent approach are low

computational complexity, the ability to combat signal cancellation problem and
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Figure 1.1: Block diagram of the non-coherent wideband adaptive beamformer.

improved convergence properties. The focusing transformation, T'(w,) should sat-

isfy the following
T (w;)Ag(w;) = Ag(wy), (1.1)

where w; are the frequencies within the bandwidth of the signals and wy is the
focused frequency, i.e. T(w;) focuses the signal subspaces Ag(w;) at frequencies
{w,;} onto the signal subspace Ag(wy). The matrices Ag(w;) and Ag(wy) contain
the steering vectors of the sources in their columns at frequencies w; and wy,
respectively, where @ is the DOAs vector.

There are several approaches to design the focusing matrix T (w,) (see Sec.1.1).
In the following sections, we describe several representative focusing methods. We

use them during this work in order to compare their performance with that of the
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Figure 1.2: Block diagram of the coherent wideband adaptive beamformer.

innovative Bayesian focusing transformation which is proposed in Chapter 2.

1.2.1 Wang-Kaveh Focusing Transformation (WKFT)

In the pioneering work of [7], a focusing transformation which require a-priori
knowledge of the sources” DOAs vector is derived. We name this focusing method
as Wang and Kaveh Focusing transformation (WKFT). WKFT attempts to find

a set of matrices T(w;), j = 1,..J which satisfy the following
T(wj)Ag(w;) = Ag(wo),j =1,2,...J, (1.2)

Where Ag(w;) is a matrix constructed from the steering vectors at the directions

specified by the vector 6. The desired transformation T(w;) is given by

Ty xpr(w;)=[Ag(wo)|Ba(wo)] [As(w;)|Bg(w;)]' (1.3)
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where 1 denotes the pseudo-inverse of [Ag(w;)|Bg(w;)]. Bg(w;) and Bg(wy) are
the direction matrices at frequencies w; and wy, respectively, with auxiliary angles
specified by the vector 0, aimed at reducing the high sensitivity to inaccurate
knowledge of the DOAs vector 8. WKFT achieves relatively low focusing errors
and superior performance when the DOAs vector is known perfectly, yet, it has a
high sensitivity to DOAs uncertainties. This sensitivity is somewhat reduced due

to the addtion of the auxiliary angles specified by the vector 6.

1.2.2 Rotational Signal Subspace Focusing Transforma-

tion(RSS)

In [9] a quantitive measure for the focusing loss is defined as the ratio of array
SNR after and before focusing operation. The authors point out the merit of
using unitary focusing matrices since they have no focusing loss. They propose

unitary transformations satisfying the following constraint minimization problem

min [ Ag(w0) = Tw;) Ag(w) = 1,2,..] (14)

subject to

T (w))T(w;) =1, (1.5)

where ||-|| is the Frobenious matrix norm [32]. The solution to (1.4) is given by

Trss(w;)= V(w;)U(w;)"” (1.6)
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where the columns of U(w;) and V(w;) are the left and right singular vectors of
Ag(w;)Ag(wp). They named this focusing matrix the Rotational Signal Sub-
space (RSS) focusing matrix. Similarly to the WKFT, adding auxiliary angles is
recommended in order to reduce sensitivity to inaccurate knowledge of the DOAs

vector.

1.2.3 Wavefield Interpolated Narrowband Generated Sub-

space Focusing Transformation(WINGS)

Both WKFT and RSS focusing methods require preliminary estimates of the DOA
vector. In the literature, there exist several focusing methods based on spatial
interpolation (e.g. [12,17-21]). These focusing methods have the advantage of
being data independent but at cost of higher focusing errors than those of the
directional focusing methods. One of these method, proposed Recently by Doron et
al. [22], is the Wavefield Interpolated Narrowband Generated Subspace (WINGS)

focusing method.

The WINGS focusing method [22] is based on the wavefield modelling formal-
ism [23] according to which, the output of almost any array x(w) of arbitrary geom-
etry can be written as a product of array geometry dependent part and wavefield
dependent part, i.e. x(w) = G(w)y(w) where G(w) is a sampling matrix which
is independent of the wavefield and the coefficient vector ¢)(w) is independent of

the array. Using the wavefield modelling formalism, the steering vector can be
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expressed by terms of orthogonal decomposition

ag(w) = ) _ga(w)h(0), (1.7)

where g, (w) are the columns of the sampling matrix G(w) and {h,(f)} is an
orthogonal basis set in Ly(I"), where I' is the manifold of all the possible DOAs.
In 2-D, we use the Fourier basis, i.e. h,(f) = \/%e*ine. The WINGS focusing
transformation T'(w;) minimizes €;, the L, norm of the focusing error eg(w;) over

all possible directions

1 ™
22 [ dllesupl (18)
0 = —

where

eg(w;) = ag(wo) — T(w;)ay(w;) V0. (1.9)

Using (1.7), the focusing error can be expressed as
eg(w;) = [G(wo) — T(w;)G(w;)] by, (1.10)

where the vector by contains the basis functions {h,(0)} as its elements. Thus, one
may consider (1.10) to be the orthogonal decomposition of the error vector eg(w;).
We can apply Paraseval’s identity on 1.8 and derive the following Least-Square(LS)

minimization problem

&7 = ~ G (wo) — T (wy) G (w;)ly (1.11)
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The WINGS focusing matrix minimizing (1.11) is given by
T(w;) = G(wy) G (w)), (1.12)

where G'(w;) denotes the pseudo-inverse of G(wy).

1.2.4 The Minimum Variance Distortionless Response

(MVDR) beamformer

After the focusing procedure, one may applied any narrowband adaptive beam-
forming algorithm such as the well-known MVDR beamformer [30]. The MVDR
algorithm minimizes the array output power subject to a distortionless constraint
on the desired source direction. The narrowband MVDR weight vector is the
solution to the following minimization problem

min wy(w) 7 Ry (w)wy(w), (1.13a)

wo(w)
subject to the distortionless constraint,

wil (w)ag(w) = 1, (1.13b)

where Ry (w) is the covariance matrix of the narrowband received vector x(w) at

frequency w and ap(w) is the steering vector in frequency w and the direction .
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The solution to the above minimization problem is (see e.g. [1])

Ry
Mol) = )Ry (w)ay(w) 1y

In (1.14) the inversion of the covariance matrix Ry (w) is required. Since Ry (w) is
unknown one may use the maximum likelihood estimate of Ry(w) from snapshots

of the data samples

K

- 1

Ry (w) = K;xk(w)xf (w). (1.15)
This method is known as the Sample Matrix Inversion (SMI) method.

The MVDR algorithm was originally proposed for the narrowband case, yet,
it can be extended to the wideband case. In the literature there are two meth-
ods to perform wideband array processing using the MVDR algorithm. The first
method employs a non-coherent processing as depicted at Fig. 1.1. The second
method is the coherent processing employs a focusing transformations as depicted
at Fig. 1.2. Let us first review the non-coherent wideband MVDR, beamformer

and then describe the focused wideband MVDR beamformer.

Non-coherent MVDR-SMI adaptive beamformer

The non-coherent wideband MVDR - SMI method is implemented in the frequency
domain by applying a narrowband beamformer at each frequency bin (see e.g. [1]).

A DFT is first performed followed by the estimation of the narrowband sample
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covariance matrix at each frequency bin

Ra(ury) = o > (gl (). (1.16)

The narrowband MVDR - SMI adaptive weight vector is then computed at each

frequency bin as
R (w;y)ag(w;)

aff (w) Ry (wy)ag(w;)

A

Wo(w;) =

(1.17)

The adaptive weights (1.17) may now be used to perform the actual beamforming
at each frequency bin yielding the non-coherent adaptive beamformer output, in

the frequency domain.

Coherent MVDR-SMI focused adaptive beamformer

The MVDR-SMI focused adaptive beamformer may be simply implemented as a

narrowband adaptive beamformer operating on the temporal focused data vector
J .

yr(n) where yi(n) = ST (w)x,(w)e?" s = Ag(wo)sk(n) + ny(n) (see Fig.1.2)
=1

1=
whose sample covariance matrix is estimated by

RS = K%Zyk(n)y,f(n) (1.18)

The focused coherent adaptive beamformer MVDR weight vector is simply com-

puted in the time domain by

= : (1.19)
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where wy is the focusing frequency and f stands for focused beamformer.

1.2.5 Robust MVDR Beamforming

The MVDR beamformer is known to have superior resolution and interference re-
jection capabilities, provided that the array steering vector corresponding to the
DOA of the desired signal is accurately known. In practice, it is often the case,
due to array calibration errors and inaccurate knowledge of the source direction,
that the performance of the MVDR beamformer may deteriorate below that of the
conventional beamformer [31]. Furthermore, the MVDR-SMI implementation is
sensitive to estimation errors in the sample covariance matrix [33]. In the coherent
wideband case, the focused MVDR beamformer will exhibit an additional sensi-
tivity to the focusing errors. Many robust schemes constraint the Euclidian norm
of the beamformer coefficient vector, thus decreasing the sensitivity to various

modelling errors.

Diagonal loading has been a popular approach to improve the robustness of the
MVDR beamformer [1,33-35]. It is derived by imposing an additional quadratic
constraint either on the Euclidian norm of the weight vector itself or on its dif-
ference from the nominal weight vector. In its common formalism, the diagonal
loading solves the following minimization problem

min w5 (w) Ry (w)we(w), (1.20a)

wo(w)
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subject to the distortionless constraint,

wy(w)Pag(w) =1, (1.20b)
and the quadratic constraint,

wo(w)¥wy(w) < Tp. (1.20c)

It can be shown that the solution to (1.24) is given by [1]

(Ra(w) + A1) " ay(w)
(w) (Rx(w) + BI) " ag(w)

wo(w) = — , (1.21)

Ay

where (3 is the Lagrange multiplier which is determined in such a way that the
quadratic constraint is satisfied.

Later, we generalize the diagonal loading solution to the focused wideband

MVDR beamformer.

1.2.6 The Multiple Signal Classification (MUSIC) Algo-

rithm

Focusing methods belonging to the directional approach such as WKFT and RSS,
require preliminary estimate of the DOAs vector. One of the widespread DOAs es-
timation algorithm is the Multiple Signal Classification (MUSIC) algorithm, Orig-
inally proposed by [36], which is a subspace based algorithm. The basic principle

of this algorithm is to use the orthogonality between the signal subspace and the
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noise subspace. The MUSIC algorithm was originally proposed for the narrowband

case, yet, it can be extended easily for the wideband case.

The input of the narrowband MUSIC algorithm is the narrowband covariance
matrix or an estimated version of it (1.16). The covariance matrix can be written

by terms of its eigenvalues and eigenvectors as
N
i=1

The P eigenvectors which correspond to the P largest eigenvalues spread the sig-
nal subspace which is identical to the space spread by the steering vectors. The

remaining eigenvectors are the noise subspace. We define the noise subspace as
UN - @P+1E¢P+1E"'E@N (123)

The signal subspace and and the noise subspace are orthogonal subspaces. Thus,

the following is satisfied:
lag, (w;)Un||> =0, i=1,2,..P (1.24)

The MUSIC algorithm define the function f(#) = |lag(w;)Ux||* and choose the P

minima of f(f) or equivalently the P maxima of ﬁ over — < 0 < 7. For the

coherent wideband case we find the noise subspace Uy, spread by the eigenvectors

of the focused covariance matrix (1.18).
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1.3 Organization

In Chapter 2, we formulate the problem of interest and define the optimal MMSE
BFT problem which is designed to handle DOA uncertainties. We derive a closed
form expression for the BFT as a weighted extension to the WINGS method. We
demonstrate the focusing error of the BF'T and compare it to that of other focusing
methods. A time progressing algorithm is suggested which incorporates a direction
findings stage followed by the focused beamformer.

In Chapter 3 we derive the robust focused Q-loaded MVDR, beamformer and
analyze its performance. A performance analysis of the robust Bayesian focused
MVDR beamformer is conducted and compared to that of focusing methods.

In Chapter 4 a numerical and simulative study for the single source case is
conducted using the WINGS focusing method. We choose to consider WINGS as
a test case since it is a panoramic focusing methods which introduces relatively
high focusing errors. We derive an analytic approximation to the degradation of
the AG and show analytically that this degradation occurs due to focusing error
in the desired source direction. In order to reduce this performance degradation,
two robust schemes are proposed.

We Conclude in Chapter 5 with a summary and discussion on future research

directions.
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Chapter 2

Bayesian Focusing

Transformations

2.1 Introduction

Wideband coherent adaptive beamforming techniques incorporate a focusing pro-
cedure for signal subspace alignment [7,9,11]. The focusing procedure involves
a pre-processor implemented as a linear transformation matrix which focuses the
signal subspaces at different frequencies to a single frequency, followed by a narrow-
band beamformer. There are two basic approaches to design focusing matrices.
The first approach utilizes schemes requiring a-priori knowledge of the sources’
DOAs using them as focusing directions e.g. [7,9], and will be referred to as the
directional focusing approach. The second approach consists of spatial interpola-
tion methods which focus all angular directions [12,18,22] and will be referred to

as the panoramic focusing approach . The first approach achieves relatively small

29
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focusing errors but is sensitive to DOA uncertainties, while the later approach does
not require any knowledge of the DOAs, however it typically has higher error lev-
els, since it attempts to focus all directions. Furthermore, the spatial interpolation

process requires that the array satisfy the spatial sampling condition [23].

In this chapter, we propose a third approach, namely the Bayesian approach
for focusing transformation design. In the Bayesian approach we take into account
the uncertainty of the DOAs by modelling them as random variables with a given
prior statistics. We derive a Bayesian Focusing Transformation (BFT) minimizing
the Mean-Square Error (MSE) of the transformation, thus achieving improved
focusing accuracy over the entire bandwidth. The proposed Bayesian focusing
transformation is a compromise between the directional focusing approach, which
requires preliminary DOA estimates, and the spatial interpolation based panoramic
focusing approach, which does not require any apriori DOA knowledge. In fact,
BFT can be view as a generalization which includes the two approaches as special
cases. The close-form solution to the Bayesian focusing problem is based on an

extension of the WINGS focusing method.

This chapter is organized as follows: In Section 2.2 we formulate the problem
of interest. In Section 2.3 we define the optimal MMSE BFT problem which is
designed to handle DOA uncertainties. Next, in Section 2.4 we develop a weighted
extension to the WINGS method which is then used to get a closed form expression
for the BFT. In section 2.5 we present a simulation example for the case of DOA
uncertainties and compare the focusing error of the BF'T to that of other focusing

methods discussed in the previous chapter. In Section 2.6, a time progressing



2.2. PROBLEM FORMULATION 31

algorithm is proposed which incorporates a Direction Finding (DF) stage operating
on the focused data followed by the Bayesian focused beamformer. Finally we

summarize this chapter in section 2.7.

2.2 Problem Formulation

Consider an arbitrary array of N sensors sampling a wavefield generated by P
statistically independent wideband sources, in the presence of additive noise. For
simplicity, we confine our discussion to the free and far field model. The signal

measured at the output of the nth sensor can be written as

Ta(t) =Y syt = Top) + 10 (t), n =1, N, (2.1)

p=1
where {sp(t)};;l and {n,(t)}._, denote the radiated wideband signals and the
additive noise processes, respectively. The parameters {7,,} are the delays associ-
ated with the signal propagation time from the pth source to the nth sensor. Let
{%}f_ll be the DOAs of the sources, v = 6 in 2-D and v = (0, ¢) in 3-D where
f is the azimuth angle and ¢ is the elevation angle. For simplicity, we restrict
ourselves to the 2-D case. Each T seconds of received data are divided into K
snapshots and transformed to the frequency domain yielding in matrix formalism

the following expression

Xk(wj) = Ag(UJj)Sk(wj) + nk(wj), j = 1,2, J, k= 1,2, K, (22)
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where x;(w;), si(w;) and ng(w;) denote vectors whose elements are the discrete
Fourier coefficients of the measurements, of the unknown sources signals and of
the noise, respectively at the kth snapshot and frequency wj, J is the number of

frequency bins, and Ag(w;) is the N x P direction matrix

Ae(wj) = [ael (wj)7 ag, (wj)7 s aep(wj)]‘ (23)

The vector ag(w), referred to as the array manifold vector, is the response of
the array to an incident plane wave at frequency w and DOA 6. For an array
comprised of identical omni-directional uncoupled sensors in free field, the array

manifold vector is

lag(w)],, = exp {z’krm : é} , (2.4)

where 8 denotes the unit vector pointed towards the direction 6, and k = w/e
is the wave number associated with the frequency w. The vector r,, marks the
coordinates of the mth sensor. We assume that the noise vectors ng(w;) are
independent samples of stationary, zero mean circular complex Gaussian random
process, with unknown covariance matrix o2(w;)I. The signal vectors si(w;) are
independent samples of stationary, zero mean circular complex Gaussian random
process with unknown covariance matrix R,(w;) . The noise process is assumed
to be uncorrelated with the signal process. The wideband sources are assumed
to share a common bandwidth. Due to the broadband nature of the sources,
using coherent processing is advantageous as discussed in the previous section.

Let T(w;) denotes a transformation that maps the wideband array output from
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frequency w; to frequency wy, so that the signal subspaces are aligned across the
frequency bandwidth
T(wj)AO(wj) = Ag(w0)7 (25)

where w; are within the bandwidth of the desired signal and wy is the focused
frequency, i.e. T(w;) focuses the signal subspaces Ag(w;) at frequencies {w,}
onto the signal subspace Ag(wyp). Following [37], we may construct the focused

time-domain vector yx(n) as

yr(n) =D T(w;)x, (wy)e™ ™™ 2 Ag(uwo)s(n)+n(n), (2.6)

j=1
where s(n) is the temporal vector of wideband unknown signals within the focused
frequency band [w; : wy], T is the sampling frequency and n(n) is the transformed
noise. We note that the temporal focused vector yi(n) has a narrowband array
manifold while preserving the wideband spectral content of the signals. This allows
the use of any narrowband adaptive beamformer matched to frequency wy, such

as the well known MVDR beamformer.

In this chapter we are interested in finding a focusing transformation T(w;)
which can handle DOA uncertainties while achieving the minimal mean-square fo-
cusing error at the true DOAs. To this end, we use the Bayesian approach in order
to develop the focusing transformation. Let us employ a statistical model where
the DOAs, {Hi}fil are modelled as statistically independent random variables. We

can now define and solve the Bayesian focusing problem for wideband arrays.
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2.3 Bayesian Focusing Transformations (BFT)

In this section we consider the focusing problem with DOA uncertainties. We
use a Bayesian model in order to define the optimal Minimum Mean Square Er-
ror (MMSE) focusing transformation T pprp(w;) as the solution to the following

minimization problem

Tprr(w;) = al[rg(m)inEe {[[Ao(wo) = T(w)) Ag(w;)ll}} (2.7)

where wy is the focusing frequency, ||-||» denotes the Frobenious norm, and Fg {-}
denotes the expectation over the statistical probability density distribution of the
DOAs 0. Assuming {91-}:;1 are statistically independent random variables, it can

be shown that

Eo {[|Ag(wo) — T(w;) Ag(w))7} (2.8)

— [ dblantun) — T, )ay(w) PS4 0).

0= —m

where ||-|| is the Euclidian norm and fy,(#) denote the Probability Density Func-
tions (PDFs) of the DOAs.

Proof of (2.8): Let us define £(w) as the function to be minimized

L(w) = Eg {||Ag(wy) — T(w)Ag(w)ll7}

= Ee {Z (o) — T<w>agi<w>||2} , (2.9)
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where ||-|| is the Euclidian norm. Assuming {02-}:;1 are statistically indepen-

dent, (2.9) becomes

L(w) = /d91 AdOp fo,01)--for(op) -

Z i (w0) — T (w)ay, (w)||”

S [t g0

i=1k= 1\—,_/
k#i

/ d; fo,(0:) lagi (o) — T(w)ay, (w)]’

= /d9 lag(wo) — T(w)ao(w)IIQZfei(@) ) (2.10)

which is exactly the form of the right hand side of (2.8). Defining

P

PO0) £ fo(0), (2.11)
i=1
and substituting (2.11) into the right-hand side of (2.8) yields the following integral

to be minimized

T per(w;) = arg min / " a0 p(0)(ap(uwo) — T(wy)agw))|?.  (212)
T (w;) )

= —7

Note that (2.12) is a generalized form which includes many focusing schemes as
private cases. It reduces to the panoramic focusing scheme e.g. WINGS [22] by
taking a uniform distribution i.e. p(d) = 1. Taking p(d) = 32, 6(8 — ;) yields the
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directional focusing matrices originally proposed for wideband DOA estimation by
Hung and Kaveh [9] which focuses at discrete angles taking to be the preliminary

N\ P
estimates of the DOAs {91} . Note also that in (2.12) one may use either the

i=1
a-priori PDFs as fy,(6), or the a-posteriori PDFs. The first approach yields a
data independent transformation, while the second approach requires estimation
of the conditional PDFs from the data yielding a data dependent transformation.
In Section 2.6 a time progressing algorithm employing the a-posteriori PDFs is
proposed. In the following we solve (2.12) by deriving an accurate closed-form
solution using a weighted extension of the WINGS [22] focusing approach. It is

possible to solve (2.12) numerically, however, a closed form solution is preferable

since it 1s more accurate.

2.4 BFT as a Weighted Extension of the WINGS

In this section we develop a closed form expression for a weighted extension of
the WINGS focusing method, for the 2-D case, which incorporates an arbitrary
angular weighting function p(#). Finally, we show that the weighted extension is

a closed form solution of (2.12).

Let us incorporate an arbitrary angular weighting function p(f), in order to
enhance the LS fit of the array manifold within a pre-selected angular region or

to solve the Bayesian focusing problem (2.12). Let &; be the weighted L, norm of
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the focusing error eg(w;) (1.9)
&= /deup Jeow))I* = /deup J(ay(w0) — T(wpas(uw))’, (2.1

where I' = {—m,7}. In order to find the transformation minimizing (2.13) let us

find C(w), the orthogonal decomposition of the product p(6)ag(w)

C@l = [ d99(0) (@yfw)], ha(6) (2.14)
0= —m
where {h,(0)} is an orthogonal basis set in Ly(I"), where I' is the manifold of all
the possible DOAs. In 2-D, we use the Fourier basis, i.e. h,(f) = #e_me (for
more details see Sec.1.2.3 and [23] ).

Let p(0) = >, pnhn(6) be the orthogonal decomposition of the angular weight-
ing function p(#), then substituting it into (2.14) and based on the wavefield mod-

elling theory presented at Section 1.2, we may write

Clw)],, = / dezpp 0)S" Gt ()1 () (0)

=pr i / dOh,,(0)h, (8)R:(6). (2.15)

0= —m

In the 2-D case the basis functions h, () are the Fourier functions and therefore

1

== ,—27T6n+p—l7 (216>
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which yields,

(O = 5= iG] 2.17)

We now insert into (2.13) the orthogonal decomposition p(#)ag(w) = C(w)b, and

get the following minimization integral
. I 2
=y | d8lIC) - Tw)Cluy)lb . (2.18)
9= —
Using Parseval’s identity we get

1 2
 1C(wo) = T(w;)Clw))] |l (2.19)

~2

Thus, the weighted WINGS transformation minimizing €; is given by the LS so-
lution of (2.19)
T(w;) = Cwo)C' (wy). (2.20)

Since (2.13) has exactly the same form as (2.12), we get the closed form expression

for the MMSE optimal BFT
TBFT(wj) - C(w(b p(8>>CT<w37 10(9))7 (221)
where p(#) is given by (2.11).

In the following section we numerically evaluate the focusing error of the BF'T,
and compare it to that of the WINGS, WKFT, and RSS methods which were

reviewed in Section 1.2.
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2.5 Numerical Study of the Focusing Error in

the Presence of DOA Uncertainties

In this section, we conduct a numerical study of the focusing errors of the pre-
sented focusing methods in the presence of DOAs uncertainties. We compare the
performance of four focusing transformations: The BFT representing the Bayesian
focusing approach, WINGS representing the panoramic focusing approach, the
WKEFT [7] and the unitary transformation RSS [9] representing the directional
focusing approach, which focuses a discrete set of preliminary DOA estimates. In
the following example, we take two circular complex Gaussian wideband acoustic
sources propagating towards a linear array of N=20 sensors in velocity of 1500
m/sec. The simulation results were obtained by averaging over 100 independent
Monte-Carlo runs. We simulate the actual DOA errors as Gaussian random vari-
ables with a standard deviation on the order of a half of the 3dB beamwidth, and
mean value of @ = [70°,105°] where 90° is the broadside direction. The desired
signal is the one arriving from 105°. The Signal to Interference Ratio (SIR) is set
at a fixed value of —20dB. The bandwidth of the sources is 600Hz taken around
f. = 1500Hz and the spectrum is taken to be flat in the relevant bandwidth. The
sampling frequency is 4800Hz. The focusing frequency is f; = 1500Hz. The ob-
servation time 7' is taken as 10 seconds and divided into K = 46 snapshots. Each
snapshot of data is transformed to the frequency domain using a Fast Fourier

Transform(FFT) of 1024 bins yielding J = 129 frequency bins in the relevant

bandwidth. The spacing between two adjacent sensors is d = Afgi“, where Apin
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corresponds to the highest frequency of the bandwidth. For the BE'T, we take the
weighting function p?(#) (2.11), to be a sum of Gaussian densities centered around

the assumed DOAs

1 (0 —0,) 1 (0 — 6,)?

- o 2
210 207 2102 20

) (2.22)

Where 6; and 6, are the assumed DOAs of the sources and the standard deviations
o1 = 1.27 and 05 = 1.25 which are approximately on the order of a quarter of the
3dB beamwidth of the array at 6; and 6,, respectively. In the WKFT and RSS
methods we add 2 auxiliary directions for each assumed DOA in order to increase
the robustness to DOAs uncertainties. The auxiliary directions were added at a

quarter of the 3dB beamwidth from the assumed DOAs.

Fig.2.1 shows the focusing transformation error |leg(w;)||” (1.9) versus fre-
quency averaged over 100 Monte-Carlo runs and summed over all the true source
directions, for the BFT, WINGS, WKFT and RSS methods. It can be seen that
the BF'T method has the lowest focusing error along the entire bandwidth. Both
WKFT and RSS focusing methods introduce a high focusing error since they re-
quire preliminary DOAs estimates. In the WINGS method, we see that large
errors occur at frequencies below the focusing frequency. This is expected since
WINGS is an interpolation based focusing method, in which focusing is equivalent
to spatial interpolation [18] of the array. Interpolating from a low frequency to
a higher one, is equivalent to extrapolating the array beyond its physical length,
thus, yielding high focusing errors. One can reduce the WINGS transformation

error by focusing to the lowest frequency of the bandwidth. However, this will
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Figure 2.1: Focusing transformation error for BFT, WINGS, WKFT and RSS
matrices versus frequency for the case of two sources and DOA uncertainties

reduce the effective aperture of the focused array, thus reducing the spatial resolu-
tion of the array. In the literature there are several papers dealing with the issue
of choosing the optimal focusing frequency (e.g. [38,39]). However, optimizing the

focusing frequency is beyond the scope of this work.

Fig.2.2 shows the error versus angle due to focusing from frequency f = 1350Hz
to frequency fo for the BET, WINGS WKFT and RSS methods and DOAs error
of approximately 3 degrees for each source. The true DOAs are marked on the
same plot by the diamonds. It can be seen that the WINGS method has a roughly
equi-ripple focusing error for all the directions. This is expected because WINGS

is an interpolated based panoramic focusing method which does not depends on

the DOAs. BFT, RSS and WKFT have a high focusing error in directions which
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Figure 2.2: Error versus angle due to focusing from f = 1350Hz to f, for BF'T,
WINGS, WKFT and RSS for the case of two sources and DOA uncertainties.

are distant from the assumed DOAs, and a low focusing error in directions which
are close to the assumed DOAs. It can be seen that BFT is significantly more
robust to DOA uncertainties since it has a low focusing error over a wide range of

angles.

Fig.2.3 shows the focusing error as a function of the sensor index in the desired
source direction averaged over the entire bandwidth, for the BFT, WINGS, RSS
and WKFT focusing methods, for a DOA error of approximately 3 degrees. We
can see that BFT has the smallest focusing error along the sensors while WKFT
and RSS has the largest errors. It can be seen that the error at the edges of the
array for the BFT and WINGS methods is significantly larger than the error in

the center of the array. This can be explained due to the fact that both methods
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Figure 2.3: Average Focusing error in the desired source direction for BFT,
WINGS, WKFT and RSS versus sensors for the case of two sources and DOA
uncertainties

are based on interpolation which require to extrapolating the array beyond its

physical length, thus, yielding high focusing errors at the edges of the array.

The numerical results show that the BF'T introduces a relatively lower focusing
error than that of the other focusing methods, thus, it provides more robust and
accurate focusing operation. The focusing error of the WINGS is significantly high
at low frequencies because it is an interpolation based method, however, it is not
sensitive to DOAs uncertainties. In both WKFT and RSS focusing methods, the
focusing error is expected to reduce as the uncertainties in the DOAs decrease.
In fig. 2.4 the focusing error of WKFT and RSS methods is presented for the

case of perfect knowledge of the DOAs. It can be seen that the error was reduces
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Figure 2.4: Focusing transformation error for WKFT and RSS versus frequency
for the case of two sources and perfect knowledge of the DOAs

significantly, especially in the WKFT focusing method. In the RSS, the focusing
error is also reduced, however, still non negligible because of the unitary constraint.
This implies that RSS is less suitable to coherent beamforming processing than
the WKFT method. In the following, we will see that the performance of the RSS

is good for DF applications when employing subspace based DF algorithms.

2.6 Time Progressing Algorithm

In this section we present a time progressing algorithm which is based on the
proposed Bayesian focusing approach. The BFT assumes that the PDFs of the

DOAs are available. However, in practice we need to estimate the a-posteriori
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PDF's of the DOAs. Under the assumption of a Gaussian model for the DOAs, we
have to estimate the first two moments of each DOA. The conditional mean of 6; is
approximated by QALD r which is the estimate of the DF algorithm such as MUSIC.
The standard deviation is taken to be a quarter of the 3dB beamwidth of the array.
A block diagram of the proposed algorithm is given in figure 2.5. Each T seconds of
data are divided into K snapshots, on which, a Bayesian focusing transformation
is applied and yields the focused vector. The design of the focusing transformation
uses the estimated aposteriori PDF's from the previous 7" seconds, while in the first
T seconds, the algorithm uses p() = 1. The focused temporal vectors {yk}leare
used as inputs to the focused MVDR beamformer and for updating the estimation
of the conditional PDFs.

Note that for the WKFT and RSS focusing methods, a similar algorithm can be
applied, at each time step the DOAs vector will be estimated by the DF algorithm

from the focused data and will be used as input to the focusing stage in the next

time step.
= . TILI
PO=I e | SOM) 1 o
r(©0) S 1yy)
1 1 {ei_uﬁ'}; T
( p(0) LoF |
x(n) Bayesian Focusing {y?}szl Focused MVDR 5,(n)
T(f;, p()) *| beamformer [~

Figure 2.5: Block diagram of the Bayesian focused MVDR beamformer time pro-
gressing algorithm.
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Figure 2.6: DOAs estimation by the MUSIC algorithm for the various focusing
methods. (a)WKFT, (b)RSS, (c)WINGS, (d)BFT

In Fig. 2.6, the output of the MUSIC algorithm is presented for all the focusing
methods. In each of the true DOAs there is a peak in the MUSIC spectrum. We
can see that the WKFT and RSS methods produce narrower and stronger peaks
than the WINGS and BFT. The relatively accurate DOAs estimations of the RSS
focusing method in spite of its high focusing error is surprising. The reason for that
is because RSS focusing method preserves the signal subspace before and after the
focusing operation [15]. The MUSIC algorithm is a subspace based algorithm and
hence does not influenced by the focusing error. Therefore, the RSS is a focusing
method which suitable for subspace based DF algorithms such as MUSIC and less
suitable to beamforming applications. So, in subsequent chapters we concentrate

only in WINGS, WKFT and BFT focusing methods.
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2.7 Summary

We have proposed and investigated a Bayesian approach for focusing transforma-
tion design, which takes into account the statistical uncertainties in the DOAs
during the focusing process. The proposed Bayesian focusing approach is a com-
promise between the directional focusing approaches which require preliminary
DOA estimates, and the panoramic focusing approaches which are based on spa-
tial interpolation not requiring any DOA estimates. We showed that the solution
to the Bayesian focusing problem is equivalent to finding the weighted WINGS
focusing transformation and supply a closed form expression for the BFT trans-
formation. The solution to the Bayesian focusing problem yields an optimal MMSE
focusing transformation and consequently an improved focused beamformer with
better AG, as will be shown in next chapters.

Simulation results have illustrated the very low focusing error of the proposed
BFT method for the multi-source case in the presence of DOA uncertainties com-
pared to that of the WINGS, RSS and WKF'T focusing methods.

A time progressing algorithm was proposed which consists of two stages, the
first performs DF on the focused vector and the second stage is the focused beam-
former algorithm. The DF stage is required for the BFT, RSS, and WKF'T focusing
methods.

In the next chapter we propose a robust version of the focused MVDR beam-
former and conduct a numerical study of the performance of the various focusing

methods under DOAs uncertainties scenarios.
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Chapter 3

Robust Adaptive Focused MVDR
Beamformer and Performance

Analysis

3.1 Introduction

In the previous chapter we derive a Bayesian focusing transformation which is an
optimal MMSE transformation for the case of DOAs uncertainties. The focusing
transformation operates on the received wideband data vector yielding a focused
data vector yx(n) (2.6). On yg(n), there can be applied any narrowband adaptive
beamforming algorithm such as the well-known Capon beamformer [30] ,also re-
ferred to as the Minimum Variance Distortionless Response (MVDR) beamformer.
The MVDR has a better resolution capability and an improved interference rejec-

tion capabilities than that of the conventional beamformer, provided that the array
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response to the Signal of Interest (SOI) is perfectly known. However, in practice,
there are some inaccuracies due to array calibration errors, DOA errors [31], and
also the sample covariance matrix estimation errors have a significant affect [33].
In the focused MVDR beamformer, the focusing error also comes into play and
may deteriorate the performance. In order to reduce the various sensitivities of

the MVDR beamformer, a robust beamforming scheme must be used.

In this chapter, we derive and employ an extension of the diagonal loading
method for the coherent wideband case. We refer to this solution as the Q-loading
solution in which we add a scaled matrix () to the covariance matrix before inver-
sion, where the matrix Q depends on the focusing transformations. Via numerical
simulations, we find this solution to yield a significant improvement in the perfor-

mance and robustness against mismatch and focusing errors.

In order to conduct a comparative performance study of the various focusing
methods on a robust beamformer scheme, we develop an analytic expression for
the Array Gain (AG) of the robust focused MVDR beamformer. We use the
analytic expression and numerical Monte-Carlo simulations in order to investigate
the influence of the focusing error of the BFT on the performance of the focused

beamformer and compare it to that of the other focusing methods.

This chapter is organized as follows: In Section 3.2 we derive the robust fo-
cused Q-loaded MVDR beamformer. In Section 3.3 The analytic AG of the focused
Q-loaded MVDR beamformer is derived. In Section 3.4 we present some simula-
tion examples of our robust BFT focused MVDR beamformer and compare its

performance to other focusing methods. Finally, we summarize this chapter in
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Section 3.5.

3.2 Robust MVDR Focused Beamformer by Q-

Loading

In this section we treat the issue of robust wideband focused MVDR beamformers,
i.e. reducing the sensitivity to inaccurate knowledge of the array steering vector
in the direction of the desired source, such as gain, phase calibration errors, source
direction errors, and sample covariance matrix estimation errors.

The MVDR beamformer is known to have superior resolution and interference
rejection capabilities, provided that the array steering vector corresponding to the
SOI is accurately known. In practice, it is often the case, due to array calibration
errors and inaccurate knowledge of the source direction, that the performance of
the MVDR beamformer may deteriorate below that of the conventional beamform-
ers [31]. Furthermore, the MVDR-SMI implementation is sensitive to estimation
errors in the sample covariance matrix [33]. In the coherent wideband case, the
focused MVDR beamformer will exhibit an additional sensitivity to the focusing
errors. Many robust schemes constraint the Euclidian norm of the beamformer
coefficient vector, thus decreasing the sensitivity to various modelling errors.

Diagonal loading has been a popular approach to improve the robustness of the
MVDR beamformer [1,33-35]. It is derived by imposing an additional quadratic
constraint either on the Euclidian norm of the weight vector itself or on its differ-

ence from the nominal weight vector (for more details see Section 1.2.5).
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Many of the robust schemes statistically model the various inaccuracies as ran-
dom spatially uncorrelated additive noise at the input of the adaptive beamformer.

Under this assumption the noise power at the narrowband beamformer output is
Nout = 0 (w) [[Wa(w)]* (3.1)

where ¢2(w) in the input noise power and wy(w) in the MVDR weight vector.

Thus, limiting the norm of wy(w), is equivalent to limiting the white noise gain.

In the case of the focused beamformer, the output noise power is given by

o2, = oh(wi)" GZT(wz)TH(wl)) Wi, (3:2)

where we assumed the noise spectrum to be frequency independent, i.e. o2(w) =

02 Vw. Thus, limiting the white noise gain yields the following quadratic con-

straint
(W) Qw) < T, (3.3)
where we define
J
al H
Q _jlle(wlyr (w;) (3.4)

and T is a design parameter. The robust focused MVDR beamformer optimization

problem can be written as

min(w} ) RIw}, (3.5a)
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subject to the distortionless constraint,

(wi)Hag(wy) = 1, (3.5Db)

and the quadratic constraint,
(whHIQw) < Tp. (3.5¢)

It can be shown that the solution to (3.5) is given by (see Appendix A.1)

wier —  (BL+5Q) agluy)
afl (wy) (R +0Q)  ay(uw)

, (3.6)

where (3 is the Lagrange multiplier which is determined in such a way that the
quadratic constraint is satisfied. Note that in (3.6) the loading term 3Q is not a
diagonal matrix as in the narrowband case. Thus, for the focused MVDR case we

use the notation Q-loading.

In order to find g analytically, one has to solve a set of secular equations
( [32],ch.12). Instead of solving them directly, it can be shown that the quadratic
norm wQw is a monotonic decreasing function of 3 (see Appendix A.2 ). Thus,
we can find [ iteratively starting from 3 = 0 and increasing it until the quadratic

constraint is satisfied.

The lower bound for Ty can be calculated by taking 3 to the infinity which

yields

1
Ty min = lim woQw =

o0 ag! (wo)Qtag(wy) (3.7)
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In this case the beamformer becomes independent of the covariance matrix R/ as
in the conventional beamformer. For the case of unitary focusing transformation,
Q is reduced to the unit matrix and the lower bound for Tj reduces to the white
noise gain of the conventional beamformer. In the following section, we derive an
analytic expression for the AG of the focused Q-loaded MVDR beamformer and
compare it to the simulative AG based on Monte-Carlo runs of the SMI imple-
mentation. We compare the performance of various focusing methods and study

their dependence on the accuracy of the focusing transformation.

3.3 Analytic AG

In this section, we derive an analytic expression for the AG of the Q-loaded MVDR
focused beamformer as a function of the focusing transformations. The focusing
process introduces a frequency dependent transformation error which affects the
performance of the MVDR focused beamformer. The analytic expression will
be used to evaluate the performance of the focused beamformer for the various
focusing methods. The expression developed here is the asymptotic limit to the
performance since it involves the asymptotic covariance matrix of the data and not
an estimated sample version of it. The covariance matrix of the received focused

data vector yx(n) (2.6) is given by

R! = Ey,(n)yf (n)
J
= By T (w; ) (w;)e™ ™™ (T (wy ) (w7 1, (3.8)

ji=1
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assuming different frequencies to be statistically independent, (3.8) becomes
J J

RS =) T(wy)E {xi(w;)xi/ (w;) } T (w;) £ Y T (wy)Ra(wy) T (wy).  (3.9)

J=1 J=1

For simplicity, we assume uncorrelated sources. Taking s;(t) to be the desired
signal propagating from 6;. Let Py, P;, P, to be the power of the desired signal,

the interferences signals, and the noise, respectively

J
Psl = Zagl (w]>
7j=1

P J
Pi=) Y o.(w) (3.10)

p=2j=1

J
P, =Y on(w;).
=1

Let us define
ay (w;) = T(w;)a,(wy), (3.11)
to be the focused steering vector in direction ¢ and frequency w;.

Let also Py, outs P out, Pr_ouwt denote the output power of the desired signal, the

interferences, and the noise, respectively, then one can see that

2
(wo "), (wy)| (3.12)

J
Py, out = Z‘Ti (wj)
j=1
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2
,out—ZZo (w;) (W) ag (w))| (3.13)
p=2 j=1
Poout = (W)™ (ZT w)) R, (w; TH(w») wi, (3.14)

f,QL

where R, (w;) is the noise covariance matrix. Assume ) is known, wy™" is

the Q-loaded focused MVDR weight vector

Wg QL _ (R£ + BQ)_lam (U}o) ’ (315)
' éf(wo)(Ri + 6Q)~tag, (wo)

Defining the SINR;,, SINR,,; to be the Signal to Interference plus Noise

Ratio(SINR) at the input and output of the beamformer, respectively

P
SINR;, = -
P+ P,
Psl,out
SIN Ry = (3.16)

)
P’Lout + P n-out

then, the AG is the ratio between SIN R,,; and SIN R;,. Substituting (3.15)

into (3.12)- (3.14), yields

~ J
ag; (wo) (R])™! (;02 (w;)ay, (w;)(a, (wj))H> (R])™"ag, (wo)

J P

agf (wo) (Rf) ! (Z >0} (wy)ay, (w;) (g () +R£(wj)D (RE)~tay, (wo) - STN Ry
(3.17)
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where: i
LAY
SINRy, = ———— - , (3.18)
> > 02 (w;) + > on(w;)
p=2j=1 j=1
R =R/ +0Q, (3.19)
and
R/ (w;) = T(w;) Ry (w;) T (w;), (3.20)

is the focused noise covariance matrix.

In order to calculate RS using (3.9), R.(w;) should be evaluated. In the case
of uncorrelated sources and spatially uncorrelated noise (i.e. R, (w;) = o2(w;)I,

we get
P

R (w;) = Zggp(wj)aep(wo)agi(wo) + o (w;)1 (3.21)

p=1

In the following sections, we conduct a numerical performance analysis based
on the asymptotic expression (3.17). We will first demonstrate the performance in
the presence of DOA uncertainties in order to illustrate the advantage of the BFT
over other focusing approaches. Later, we conduct a numerical and analytic study

of the sensitivity to focusing transformation errors at high SNR values.



58 CHAPTER 3. ROBUST ADAPTIVE FOCUSED MVDR

3.4 Numerical Study for the Case of DOAs Un-

certainties

In this section we evaluate the performance of the Q-loaded SMI-MVDR, beam-
former for three of the focusing methods discussed in the previous chapter: BFT,
WINGS and WKFT. For Q-loading, we set Ty = 0.25 which is five times the norm
of the conventional beamformer. All the rest of the simulation parameters are
identical to those of Section 2.5. In Fig.3.1(a) and Fig.3.1(b) we plot the asymp-
totic and the simulative AG versus SNR for BFT, WINGS and WKFT methods
for the coherent MVDR beamformer with and without Q-loading, respectively.
The superior performance of the BFT over that of the WINGS and WKFT in
both analytic and simulative curves, is expected due to its low focusing error. The
performance difference is especially large in the analytic AG curves and increases
with SNR, while the simulative curves exhibits a smaller yet still significant perfor-
mance difference. The significant difference between the analytic and simulative
AG especially in the BE'T method is due to the fact that in the analytic calculation
we use the asymptotic focused covariance matrix (3.9) while in the simulation we
use the SMI estimation version of it (1.18) computed by averaging over K = 46
snapshots. In Fig.3.2 the AG of the BFT focused beamformer without Q-loading
is plotted for various values of K. The analytic AG (3.17) which is considered
to be the asymptotic AG is also plotted and we can see that as K increases, the

simulative curves approach the analytic curve.

Finally, comparing Fig.3.1(a) and Fig.3.1(b) we see that a significant improve-
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ment of the AG is achieved by appropriate Q-loading of the covariance matrix. We
see that the Q-loading effectively reduces the sensitivity of the MVDR beamformer
to the focusing errors of the different methods as well as to the SMI estimation
errors and DOAs uncertainties. In Fig.3.3 the AG versus ISR is plotted for SNR

value of 40dB. The BFT exhibits superior performance for all SIR values.

Let us now examine a single source example. In Fig.3.4(a) and Fig.3.4(b) we
plot the asymptotic and the simulative AG versus SNR for BFT, WINGS and
WKFT methods for the case of one source and DOA uncertainty for the MVDR
focused beamformer with and without Q-loading, respectively. First, we note the
significant improvement in the AG achieved by the Q-loading. Without Q-loading
the AG decreases to values below —40dB, while with Q-loading we observe a slight
decrease in the AG for mid range SNR values. However, as the SNR increases the
Q-loading term become significant and the AG converges to a steady value , which
depends on the focusing errors. The comparison of the performance of the different
focussing methods for the single source case given in Fig.3.4 shows a significant
advantage of the BF'T over that of WINGS, while WKFT exhibits relatively good
performance. We see that in this case WKF'T has an advantage over the BFT in
the simulative curve. While in the analytic curve, BFT achieves a good AG over
the entire range of the SNR values while WKFT achieves the best AG at low SNR
values. From both Fig.3.4(a) and Fig.3.4(b) it can be seen that WKFT achieves an
AG about 1dB higher then that of the BF'T in the region of the low SNR values.
The reason for this is that in both BFT and WINGS methods, the beamwidth

is wider than the beamwidth in the WKFT method as can be seen in Fig.3.5(a)
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where the beampatterns of all the methods are plotted for the single source case
and for low SNR value of —10dB. In order to understand this phenomena, we
examine in Fig.3.5(b) the corresponding magnitudes of the adaptive coefficients
vector. In BFT and WINGS which are considered to be an interpolation based
approaches, it can be seen that the ”effective” array is reduced to only 16 sensors
while the physical array was of 20 sensors. Since the single source AG is roughly
10log,, N where N is the number of sensors, we get a difference of approximately
1dB in the AG.

The results presented in this section demonstrated the superiority of the BFT
over the WINGS and WKFT focusing methods in multi-source scenarios in the
presence of DOA uncertainties. We also demonstrated the efficiency of the Q-
loading procedure introduced in section 3.2 in improving the robustness of the
focused MVDR beamformer to focusing errors and to the SMI implementation

errors.

3.5 Summary

In this chapter, we first treated the important issue of reducing the beamformers’
sensitivity to focusing errors, and to other modelling errors such as gain and phase
calibration errors, source direction errors, and covariance matrix estimation er-
rors. We derived the Q-loaded wideband focused SMI-MVDR, beamformer, which
is a practical robust MVDR version for the focused beamformer. The Q-loaded
focused MVDR beamformer employs a generalized transformation-dependent load-

ing of the sample covariance matrix, thus taking into account the focusing process
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in the robust version. This yields superior robustness compared to that of the
popular diagonal loading method. We note that the Q-loaded MVDR beamformer
is a transformation-dependent process, which may be applied after any arbitrary
focusing scheme for robust focused beamforming.

To evaluate the performance of the proposed BFT method and other focusing
methods we derived an analytic expression of the asymptotic AG for the SMI-
implementation of the focused Q-loaded MVDR beamformer. Simulation results
have illustrated the superiority of the proposed BF'T method for the multi-source
case in DOA uncertainties conditions compared to that of the WINGS and WKFT
focusing methods. This is attributable to the low focusing error of the BFT across
the entire bandwidth, which yields more accurate focused data. In the single
source case, WKFT exhibits relatively good performance because of its narrower
beamwidth compared to other focusing methods. The significant improvement in
the performance and robustness of the focused Q-loaded MVDR beamformer with
respect to that of the un-loaded MVDR was also demonstrated.

An eminent point arising from both Fig.3.1(b) and Fig.3.4(b) is the degradation
in the analytic performance of WINGS and WKFT methods as the SNR increased.
In the following chapter, we investigate this degradation and show analytically
that it occurs due to the focusing error in the desired source direction. In order
to reduce this sensitivity, we propose and study two robust methods for coherent

focused wideband MVDR, beamforming.
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Figure 3.1:
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two sources and DOA uncertainties. (a) With Q-loading, (b) Without Q-loading
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Figure 3.2: AG versus SNR of BFT for various values of the number of the snap-
shots K for the case of two sources with DOA uncertainties and without Q-loading.
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Figure 3.4: Array gain versus SNR for BFT, WINGS and WKF'T for the case of

one source and DOA uncertainty. (a) With Q-loading, (b)Without Q-loading
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Chapter 4

Reducing the Sensitivity of the
Focused Wideband M VDR

Beamformer to the

Transformation Accuracy

4.1 Introduction

In the previous chapter, we investigated the performance of the focused MVDR
beamformer in the presence of DOA uncertainties. We evaluated the performance
of the BFT method which was presented in chapter 2 and compared it to that of
the panoramic focusing WINGS method and of the WKFT method which require

preliminary DOAs estimates. The results indicated a high sensitivity of the focused

67
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MVDR to focusing errors in high SNR values for the various focusing methods.
The AG degradation is especially large for the WINGS method which has relatively

large focusing errors.

In this Chapter, we investigate this sensitivity and show analytically that it is
caused due to focusing errors in the desired source direction. We will concentrate

on a single source case whose DOA is assumed to be known perfectly.

In order to reduce the sensitivity of the coherent MVDR to focusing errors,
we propose and study two robust methods for coherent focused wideband MVDR
beamforming. The first method is based on modifying the MVDR beamformer by
implementing a robust General-Rank (GR) beamforming scheme and the second
is based on modifying the focusing transformation so that the focusing error is
reduced in the direction of the desired source. A numerical study demonstrates
a significant performance improvement of the proposed robust schemes when ap-
plied. Throughout this chapter, we examine the WINGS [22] focusing method
in order to demonstrate the performance degradation due to focusing error and
the improvement achieved by the robust proposed methods. We study WINGS
method because it is a panoramic focusing method and hence, is not influenced
by DOA uncertainties, so we can analyze the sensitivity to focusing error more

simply.

This chapter is organized as follows: in Section 4.2, we conduct a numerical
and simulative study for the single source case using the WINGS focusing method.
In Section 4.3, we derive an analytic approximation to the degradation of the AG

as a function of the focusing errors and the SNR. We show analytically that this
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degradation occurs due to focusing error in the desired source direction. We also
show that the AG deteriorates as the reciprocal of the squared SNR. In order to
overcome the sensitivity to focusing errors we propose in Section 4.4 two robust
schemes for wideband focused beamforming. In Section 4.5, we conduct a perfor-
mance analysis demonstrating the efficacy of the proposed methods. Finally, we

summarize this chapter in Section 4.6.

4.2 Sensitivity to Focusing Error

The results of Section 3.4 show a considerable sensitivity of the wideband focused
MVDR to focusing errors for high SNR values. To investigate this sensitivity, we
will analyze the single source case whose DOA is assumed to be known perfectly.
We consider the WINGS method as a test case since it is a panoramic focusing
method which is not influenced by the DOAs uncertainties.

Let us examine the AG for the single source case in the presence of additive
white noise and perfect knowledge of its DOA. The simulation parameters are
identical to those of Section 2.5. Fig. 4.1 shows the asymptotic and the simulative
AG versus SNR for the coherent focused WINGS MVDR beamformer. Also shown
is the performance when a loading term was added to the covariance matrix before
inversion. This operation limits the norm of the beamformer coefficients vector
yielding a robust beamformer (for more details see Chapter 3). We can see that
the loading term improves the performance especially in high SNR values. Yet, in
both cases we can see a significant decrease in the AG as the SNR increases. The

performance of WINGS followed by the unloaded MVDR is severely degraded in
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Figure 4.1: AG versus SNR, for the case of a single source and perfect knowledge
of its DOA. With and without loading.

high SNR values. The fact that the degradation also occurs in the single source
case and also in the analytic curve implies that the performance is very sensitive to
a focusing error in the desired source direction, and less sensitive to focusing errors
in the interferences DOAs. In the following section, we investigate this degradation
and show analytically that it occurs due to the focusing error in the desired source

direction.

4.3 Sensitivity to Focusing Error for the case of

a Single Frequency

In this section, we derive an analytic approximate expression for the AG in the

single frequency case. We attempt to provide some insight into the performance
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degradation by analytically studying the case of a single frequency focusing trans-
formation from w; to wy. From the results of the previous section we saw that
without loading, the degradation is very severe, thus, the following analysis treats
the unloaded MVDR case. We statistically model the focusing errors and show
analytically how the AG decreases as the SNR increases in the presence of focusing
error. The following analysis is based on modelling the focusing errors as small
random independent perturbations of the amplitudes and the phases of the ele-
ments of the focused steering vector. A similar model has been used in [40], in
order to analyze the sensitivity of the MVDR to amplitude and phase errors of the
sensors. We now may write the mth element of the focused steering vector from

frequency w; to wy as

T(w5)ag(06)],, = o (106) (1 + At (17) + G0 17)) 2 (1) (L + Agin(w),

(4.1)
where ag,,(wy) = exp’¥m(®0) is the ideal focused steering vector, and Ag,,(w,)
represents a zero-mean complex gain error of the mth sensor. We assume that
the random gain errors are independent from sensor to sensor and have the same

variance given by
o)) 2 E [|Agu(w)f]. m=1,..N (42)
The focused data vector at frequency w; is given by

x! (w;) = s(w;)a)(wo, w;) + T(w;)n(w;). (4.3)
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where s(w;) in the desired signal component at frequency w;. n(w;) is the additive
noise at frequency w; which is assumed to be a zero-mean white Gaussian process
with variance o2. For the sake of simplicity we assume T(w;) to be unitary, then

the focused covariance matrix R (w;, wp) can be expressed as
R (w;, wo) = o (w;)ag (wo, wy) (ag (wo, wy)) " + o (w;)1 (4.4)

where o2(w;) in the power of the desired signal at w;. The weight vector of the

focused MVDR beamformer is given by

(RL(w;, wp)) " ag(wy)

wl =
" all (wo) (RE(wy, wo)) " ag(w)

(4.5)

It can be shown that the output AG of the focused MVDR beamformer is (See

appendix A.3)

N + o2 es1 1
AT - Dog6)* + (Ng— DN+ 02022 ¢ (4.6)

where £ in the input SNR. Equation (4.6) indicates that the output AG is inversely
proportional to £2 for £ > 1. In order to examine the quality and validity of the sta-
tistical approximation, Fig.4.2(a) compares the analytic (3.17) and approximated
(4.6) AG received by BFT and WINGS methods for the case of a single frequency
f = 1710Hz which has been focused to a lower frequency f; = 1500Hz. The case
of a single frequency f = 1240Hz which has been focused to a higher frequency
fo = 1500Hz is depicted at Fig.4.3(a). Figs. 4.2(b),4.2(c) and 4.3(b),4.3(c) plot
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the corresponding focusing errors versus sensor index. We can see from Fig.4.2(a)
that for focusing a high frequency onto a lower one, we get a relatively good fit
of the analytic (3.17) and the approximated (4.6) AG, especially in the WINGS
method. The AG begin decreasing at a rate of 1/£% from ¢ = 20dB for the BFT
and from ¢ =~ —10dB for the WINGS. The relatively small and roughly uniform
errors in Figs 4.2(b) and 4.2(c) and the good fit of (3.17) and (4.6) justify the
statistical approximation in this case. In Fig.4.3(a) we see a significant difference
between the analytic and approximated AG when focusing a low frequency onto a
higher one. This is because of the highly non uniform distribution of the focusing
error across the array at both BFT and WINGS as illustrated in figs 4.3(b) and
4.3(c). In this case the statistical model assumptions are not valid and the ap-
proximated AG (4.6) may not be used. However we note that also in this case we
observe a rate decay of 1/£% in the WINGS as predicted by (4.6). So (4.6) provides
some insight for the degradation of the AG in high SNR values in the presence of
a focusing error, especially when focusing from high frequency to a lower one.

In the next section we propose two methods to reduce the sensitivity to focusing

errors in high SNR values.

4.4 Robust MVDR Focused Beamformers for

Coherent Wideband Array Processing

In this section we propose and examine two methods designed to combat the

problem of sensitivity of the focused MVDR at high SNR values.



74 CHAPTER 4. REDUCING SENSITIVITY TO FOCUSING ERRORS

AGS\NR [dB]

BFT - appr
©  WINGS — approximated|
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Figure 4.2: (a) The analytic AG (3.17) for BF'T (solid) and WINGS (dashed), and
the approximated AG (4.6) for BFT (stars) and WINGS (circles) for the case of a
single frequency f; = 1710Hz transformed to the focusing frequency f, = 1500Hz.
(b) Transformation error vs. sensor index - BFT. (¢) Transformation error vs.
sensor index - WINGS.

4.4.1 General-Rank Focused MVDR (GR-MVDR)

Let us examine more closely the structure of the signal component in the focused
covariance matrix Rf (3.8). Inserting R.(w;) = o2 (w;)ay,(w;)ag (w;) + Ry (w;)
into (3.8) we get

J
RI=R{+ > T(w;)Ry(w;)T" (w;) (4.7)

J=1
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- - - WINGS - analytic
—e—BFT - approximated
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Figure 4.3: (a) The analytic AG (3.17) for BFT (solid), and for WINGS (dashed),
the approximated AG (4.6) for BFT (stars) and for WINGS (circles) for case of a
single frequency f; = 1240Hz transformed to the focusing frequency of f, = 1500Hz
. (b) Transformation error vs. sensor index - BFT. (¢) Transformation error vs.
sensor index - WINGS.

where R/ is the signal component of the focused covariance matrix
J
H H
R] = ol(w)T(wy)a,, (w;)ay (w;) T (w;). (4.8)
j=1

From the above structure we see that the rank of the signal component covariance
is larger than one. Therefore, we should use the general rank MVDR beamformer
e.g. [41]. For the case where the source spectrum o2(w;) is known, we may find the

Minimum Variance solution for the weight vector by maintaining a distortionless
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array response to the signal covariance
minw? (wo)RIw(wo) subject to wi (wo) R w(wo)= 1. (4.9)
Following [41], the solution of (4.9) is given by

WéRfMVDR =P {(Ri)fle} ; (4.10)

where P {-} denotes the principal eigenvector of a matrix.

Robust GR-M VDR for the focused wideband M VDR

In [41] a robust version handling the uncertainties in the knowledge of R is also
derived, based on the concept of the narrowband diagonal loading. We now extend
the robust narrowband version of [41] to the focused wideband case. We are
interested in limiting the white noise gain of the beamformer. In case of the

focused beamformer, the output noise power is given by

J
1
<ﬁwf=dKW@H(3;;T0mﬁﬁﬂwo>wﬁ, (4.11)

where we assume that the noise spectrum is frequency independent, i.e. o2(w) =

02 Vw. Thus, limiting the white noise gain yields the following additional

quadratic constraint

(wy)"Qwf <Ty, (4.12)
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J
where Q é%ZT(wl)TH(wl) and Tj is a design parameter. Solving (4.9) with the
i=1

additional constraint (4.12), by using the lagrange multipliers method, we get

1
(R£ + 5Q)_1RSW(§ = Xng. (4.13)

The solution to (4.13) is given by the robust Q-loaded form of the GR-MVDR

WéRfMVDRfQL =P {(R£ + ﬁQ)_le} ) (4.14)

where [ is the loading factor. Note that the GR focused MVDR requires a-priori

2

knowledge of the spectral shape of the source o

(w;). In practice the spectral
density should be estimated. Following [41] we use a robust version combating a

small signal spectrum mismatch

W{{OBUSTfGRfMVDR =P {(Rgcf +8Q) ' (R] - el)}, (4.15)

where € is the norm of the error in R/. Since the robust version is required for high
SNR values, reasonably accurate PSD estimation of the source spectrum should

be possible.

4.4.2 Enhanced Focusing (EF)

This method attempts to reduce the focusing error directly, and will be presented
for WINGS focusing. WINGS has a relatively large focusing error due to the

panoramic focusing requirement. Adding an additional error component in the
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desired source direction to the LS minimization term (1.12) of the WINGS enables
us to reduce the error in the source direction. In this case, the minimization term

of the WINGS (1.8) becomes:

&t = < |G twn) — TGl (4.16)
where
G(w) =[ag,(w) , G(w)] (4.17)

and 0y is the desired source direction. This solution achieves better performance
as shown in the next section. Yet, it requires an accurate estimation of the desired
source direction which is a drawback. In order to increase the robustness to DOA
uncertainties, we add 4 auxiliary directions at —2, —1, 1,2 degrees relative to the

assumed desired source direction. In this case, (4.17) becomes

é(w) = [a9d—2(w)7 a9d—1(w)> ag, (w)7 s a6d+2(w)7 G(w)] . (418)

Fig. 4.4 illustrates the benefit of adding the auxiliary directions. We can see that
WINGS-EF with the auxiliary directions as in (4.18) is robust to direction errors

of approximately 2 degrees.
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Figure 4.4: Focusing error versus angle for the various robust methods. Also
presented the non-robust WINGS for comparison. The diamond marks the true
source direction.

4.5 Performance Analysis of the Robust Focused

MVDR

In this section, the performance of the proposed robust focused MVDR schemes,
is numerically studied for the single source case. The simulation parameters are
identical to those in Section 2.5. The signal spectrum which is required for the
GR-MVDR is assumed to be flat in accordance with the simulation. There is an

error at the desired source direction of 1.5 degrees.



80 CHAPTER 4. REDUCING SENSITIVITY TO FOCUSING ERRORS

12
S

AGSINR [dB]

—— MVDR — analytic
—<— MVDR - simulation
- — — EF — analytic

EF — simulation
2k GR—- MVDR - analytic
—e— GR- MVDR - simulation

I I I I I I
—-20 —-10 o 10 20 30 40 50
SNR [dB]

Figure 4.5: AG versus SNR of the various solutions for robust focused WINGS
Q-loaded MVDR. Single source case with DOA error of 1.5 degrees.

4.5.1 Sensitivity to Source DOA

Fig.4.5 shows the analytic and simulative AG versus SNR of the focused WINGS-
MVDR robust and non robust methods with a loading term. One can see that both
robust schemes improve the performance of the focused WINGS MVDR, bringing
the AG closer towards the ideal values. Both methods exhibit robustness to the
DOA error.

4.5.2 Sensitivity to Source Spectrum

In this section we examine the sensitivity of the focused GR-MVDR to errors in
the spectral shape of the source. Note that we assume a flat signal spectrum

in accordance with the above example in which, white Gaussian sources were
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Figure 4.6: Array gain of the GR-MVDR solution for AR source spectrum with a
known DOA. A maximal deviation of 3.5dB.

simulated. Figs. 4.6 and 4.7 demonstrate the performance of the focused GR-
MVDR method when the source is shaped by an Auto-Regressive filter of a single
pole whose spectrum is plotted at Fig. 4.8. In Figs. 4.6 and 4.7 we examine,
respectively, 3.5dB and 1dB maximal spectral deviation between the actual and
the assumed spectrum. From these examples we see that the robust extension
of the focused GR-MVDR method (4.15) can handle a spectral deviation smaller
than 1dB. In practice, for a larger deviation, spectrum estimation of the desired

source should be used.
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Figure 4.7: Array gain of the GR-MVDR solution for AR source spectrum with a
known DOA. A maximal deviation of 1dB. The legend is like in fig. 4.6.

20%0g, H, (7][dB]

> i i i i i
1200 1300 1400 1500 1600 1700 1800
Frequency [HZz]

Figure 4.8: Spectrum of the Auto-Regressive signal. 1dB maximal deviation
(dashed) and 3.5dB maximal deviation (solid).
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4.6 Summary

We investigated the sensitivity of the focused MVDR beamformer to focusing er-
rors in high SNR values and show analytically that the output AG of the focused
MVDR is inversely proportional to the squared SNR. In order to reduce this sen-
sitivity, we proposed and investigated two robust methods for wideband focused
beamforming. The proposed methods aim at reducing the sensitivity of the beam-
former’s performance to focusing error, especially at high SNR scenarios. This
sensitivity is more significant in interpolation based focusing methods which do not
require preliminary estimates of the DOAs but have higher focusing errors. This
independence of the focusing procedure on the preliminary DOAs estimates is a de-
sirable property, therefore, designing robust MVDR beamformers for interpolation
based focusing schemes is of importance. The first robust method is based on mod-
ifying the MVDR beamformer using the General-Rank (GR) approach, and the
second is based on modifying the focusing scheme itself. We examine the proposed
methods by applying them to the WINGS focusing transformation. The results
indicate that both EF and GR-MVDR focusing methods can improve the perfor-
mance of the WINGS significantly, especially at high SNR values. The GR-MVDR
requires a spectral source estimation and the EF method requires an estimation
of the desired signal DOA. However, the GR-MVDR method is computationally
advantageous over the EF method, since spectral estimation is considerably less

complex than data dependent calculation of the focusing transformations.
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Chapter 5

Conclusion

5.1 Summary

In this work, we have proposed and investigated a Bayesian approach for focusing
transformation design, which takes into account the statistical uncertainties in the
DOAs during the focusing process. The focusing transformation block serves as
a preprocessor stage of the wideband adaptive beamformer aiming at transform-
ing the steering vectors of the array onto a fixed steering vector matched to a
specific frequency, thus, allowing the use of a narrowband adaptive beamforming
algorithm. The proposed Bayesian focusing approach is a compromise between
the directional focusing approach which requires preliminary DOA estimates, and
the panoramic focusing approach which is based on spatial interpolation and does
not require any DOA estimates. A close form solution to the BFT is derived us-
ing a weighted extension of the WINGS focusing approach. The solution to the

Bayesian focusing problem yields an optimal MMSE focusing transformation and

85
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consequently an improved focused beamformer with better AG.

The proposed BFT approach requires the conditional PDFs of the DOAs to
be available. In practice, they are not known perfectly and should be estimated
from the received data. In order to estimate them, we proposed a time progressing
algorithm which consists of two stages, the first performs DF on the focused vector

and the second stage is the focused beamformer algorithm.

Adaptive beamformers such as the MVDR have a high sensitivity to focusing
errors, and to other modelling errors such as gain and phase calibration errors,
source direction errors, and covariance matrix estimation errors. This sensitiv-
ity can be reduced in the narrowband case by employing the diagonal loading
procedure. In this work we derived the Q-loaded wideband focused SMI-MVDR
beamformer, which is a generalization of the diagonal loading scheme suitable to

the focused wideband beamformer.

The Q-loaded focused MVDR beamformer employs a generalized
transformation-dependent loading of the sample covariance matrix, thus taking
into account the focusing process in the robust version. This yields superior
robustness to the focused beamformer, compared to that of the popular diagonal

loading method.

We evaluated the performance of the proposed BFT method and other focus-
ing methods by conducting simulations and comparing their results to the analytic
expression of the AG which was derived earlier. The results illustrate the superi-
ority of the proposed BFT method for the multi-source case in DOA uncertainties

conditions compared to that of the WINGS and WKFT focusing methods. This
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is attributed to the low focusing error of the BFT across the entire bandwidth,
which yields more accurate focused data. The significant improvement in the per-
formance and robustness of the focused Q-loaded MVDR beamformer with respect
to that of the un-loaded MVDR was also demonstrated.

The simulation results demonstrate a consistent degradation in the perfor-
mance of WINGS and WKFT methods as the SNR increased. We investigate this
degradation and show analytically that it occurs due to the focusing error in the
desired source direction. There is a rate decay of 1/£2 where € is the input SNR.

In order to reduce this sensitivity, we proposed and studied two robust methods
for coherent focused wideband MVDR beamforming. The proposed methods aim
at reducing the sensitivity of the beamformer’s performance to focusing error, es-
pecially at high SNR scenarios. This sensitivity is more significant in interpolation
based focusing methods which do not require preliminary estimates of the DOAs
but have higher focusing errors. The first robust method is based on modifying
the MVDR beamformer applying the General-Rank (GR) approach, and the sec-
ond is based on modifying the focusing scheme itself. We examined the proposed

methods by applying them to the WINGS focusing transformation.

5.2 Future Research

The methods we have proposed in this work open several interesting directions for

future study:

1. In this work we assumed that the sources propagate at a free medium. This
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assumption is lenient since the impulse response of the channel is not taken
into account. One of the effects of a typical channel is the multipath effect
which causes reflected versions of the signal to be received by the array. This
leads to a singular source covariance matrix due to perfect coherence between
the signal and its reflections, and as a consequence, to the signal cancellation
problem, which is a serious drawback in adaptive beamformers. In [28] a
steered wideband adaptive beamformer optimized by a maximum likelihood
criterion is presented and discussed in the light of a very general reverberation
model. Yet, the proposed channel model is fairly simplistic. Note that
the focusing procedure decorrelates the covariance matrix of the received
vector [13], thus removing the singularity due to the correlated signals. In
light of the above, an analytic and simulative study of the BFT in more

realistic reverberant multipath environment is of considerable interest.

. The BFT focusing procedure requires apriori knowledge of the PDF's of the

DOAs or an estimated version of them. We modelled them as gaussian ran-
dom variables where we estimated their mean using a DF algorithm and
assumed their variance to be a fixed value equal to a quarter of the 3dB
beamwidth. A possible improvement would be to take the CRB of the es-
timations produced by the DF algorithm to be the variance of the gaussian
PDFs. This allows us to take into account other parameters which supposed
to influence the PDF, such as SNR. A different approach would be to model
the DOAs using a Markov chain. The motivation is to model not only the

DOASs themselves but also the connection between DOAs estimates produced
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at different times.

3. The BFT was developed using a weighted extension of the WINGS method
[22]. It is designed to provide a focusing method which is robust to DOAs
uncertainties. In practice, there are other array calibration errors which
should be taken into account. We take care of them by employing the Q-
loaded MVDR beamformer. In [22] two robust extensions to the WINGS
method are presented aiming at increasing the robustness to the noise gain
of the transformation which can be caused also because of array calibration
errors. Employing this robust extensions also to the BFT will yields a focus-
ing method which is robust to both DOA uncertainties and array calibration

eIrors.

4. In Section 2.5 it was demonstrated that WINGS introduces high errors at
frequencies below the focusing frequency. This is expected since WINGS is
an interpolation based focusing method, in which focusing is equivalent to
spatial interpolation [18] of the array. Interpolating from a low frequency
to a higher one, is equivalent to extrapolating the array beyond its physical
length, thus, yielding high focusing errors. One can reduce the WINGS
transformation error by focusing to the lowest frequency of the bandwidth.
However, this will reduce the effective aperture of the focused array, thus
reducing the spatial resolution of the array. In the literature there are several
papers dealing with the issue of choosing the optimal focusing frequency
(e.g. [38,39]). It is expected that optimization of the focusing frequency for

the BFT as well as for other focusing transformations will also can improve
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its performance.

. BFT is a non-unitary focusing method. In the literature the benefits of

a unitary focusing transformation is demonstrated [9]. In [24] a unitary
focusing transformation which employing a weighting function is derived.
Combining both the Bayesian approach and the unitary approach of [24] is

expected to yield a considerably more robust focusing method.

. In Chapter 3 we demonstrate the performance degradation in low SNR values

in interpolation based approaches (see Fig.3.5(b)). This degradation is sig-
nificant especially in the single source case where the adaptive beamformer
is reduced to the conventional beamformer, since the array beamwidth is
widened. It is of interest to further investigate this degradation and to find

techniques to reduce it when using interpolation based methods.

. In Chapter 4 we proposed and investigated two robust methods aiming to

handle the sensitivity in high SNR values due to focusing error in the desired
source direction. This study can be extended to other focusing methods such

as the unitary focusing transformation proposed in [24].

. In this work, the issue of computational complexity of the BF'T was not con-

sidered and compared to other focusing methods. It is desirable to evaluate

this complexity and to search for techniques to reduce it.
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A.1 Derivation of (3.6)

Using the method of Lagrange multipliers to solve (3.5a)-(3.5¢), the function to be
minimize 1s
F = (wh)"Riw] + 3 | (w})" Qw}~To | (A.1)

+ A [af(wg)wg — 1} + [(Wg)Hag(wo) - 1] M

Taking the gradient with respect to wg and setting the result to zero gives

(W TRL + B(w)) T Q+Aall (wp) =0, (A:2)
(Wi = —xall (wo) [BQ + RI] . (A.3)

Solving for A by substituting (A.3) into (3.5b) yields (3.6). Note that the above

derivation is an extension of the well known diagonal loading solution which is
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used for the narrowband case.

A.2 Proof that w’Qw is a monotonically de-

creasing function of (3

Let us define

substituting (A.4) into (3.6), we get

&g (wo)

;. Q:(RL+4D)
0

W), = — — (A.5)
&l (wo) (Rgﬁ + m) g (wo)
Now, calculating (w))” Qw? we get
| (R + 1) )|
(W) Qwj = : s =h(®). (AG)

(égf(wo) (f{i + ﬁI) o ée(wo))

h(3) has the form of the diagonal loading constraint for which there is a well-

known proof that it is a monotonically decreasing function of 3, see e.g [1] p.589.
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A.3 Derivation of (4.6)

Defining:
G = (A7)
i 0 0 - 1+ Agn(wy) |

The covariance matrix for the case of a single source with a single frequency
wj is

R = oy(w;)ag(w;)ay (wy) + op (w;)L, (A.8)
where ay(w;) = Gag(w;). Using Woodbury’s Identity [32], the inverse of (A.8)

(1 ay! (w;)ag(w;))I — £a,(w;)ay (w;)
Ro=o 1+ €&y (w;)ag(w;) ’ (4.9)

é O’ﬁ(’lﬂj)
o (wy)

where & . The SINR in the beamformer output is

H(

w;)a,(w;)ay (w;)w(w;)
wH(wywiny) (A.10)

SINR = ¥

where w(w;) is the MVDR beamformer coefficient vector.

N>>1
=

It can be shown that F{a} (w;)ay(w;)} N(1+ o2(w;)) where

or(w;) £ E [|Agm(wj)\2] , m=1,..,N. (A.11)
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Substituting the last result and the MVDR coefficient vector expression into

(A.10) yields (4.6).
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