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ABSTRACT

Circular differential microphone arrays (CDMAs) facilitate com-

pact superdirective beamformers whose beampatterns are nearly

frequency invariant, and allow perfect steering for all azimuthal di-

rections. Herein, we eliminate the inherent limitation of symmetric

beampatterns associated with a linear geometry, and introduce an

analytical asymmetric model forN th-order CDMAs. We derive the

theoretical asymmetric beampattern, and develop the asymmetric

supercardioid. In addition, an N th-order CDMAs design is pre-

sented based on the mean-squared-error (MSE) criterion. Experi-

mental results show that the proposed model yields optimal perfor-

mance in terms of white noise gain, directivity factor, and front-to-

back ratio, as well as more flexible nulls design for the interfering

signals.

Index Terms— Circular differential microphone arrays, asym-

metric beampatterns, broadband beamforming, supercardioid.

1. INTRODUCTION

Differential microphone arrays (DMAs) beamforming constitute

a promising solution to some real-world applications involving

speech signals, e.g., hands-free telecommunication [1]. DMAs re-

fer to arrays that combine closely spaced sensors to respond to the

spatial derivatives of the acoustic pressure field. These small-size

arrays yield nearly frequency-invariant beampatterns, and include

the superdirective beamformer [2, 3] as a particular case.

The modern concept of DMAs employs pressure microphones,

and digital signal processing techniques are used to obtain desired

directional response [4–8]. Most of the work on DMAs deals with

a linear array geometry, which is preferable in some applications

involving small devices. Yet, linear arrays may not have the same

response at different directions, and are less suitable for applica-

tions like 3D sound recording where signals may come from any

direction. In such cases, circular arrays are advantageous [9–13].

Previous works on DMAs, both for linear and circular geometries

(e.g., [14, 15]), have considered only the case of symmetric beam-

patterns, which is an inherent limitation of the linear geometry. Yet,

in different array geometries like the circular geometry, asymmetric

design may lead to substantial performance improvement.

In this paper, we derive an analytical model for asymmetric cir-

cular differential microphone arrays (CDMAs) which includes also

the traditional symmetric model as a particular case. It is shown
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that an asymmetric model achieves higher performances in terms of

white noise gain (WNG), directivity factor (DF), and front-to-back-

ratio (FBR) due to a more flexible design, which can better take into

account the constraints regarding the null directions. We first derive

the analytical asymmetric beampattern and then derive an asymmet-

ric version for the supercardioid which is designed to maximize the

FBR [4]. Additionally, a mean-squared-error (MSE) solution for an

N th-order CDMA is developed, which enables perfect steering to

every azimuthal direction. In the simulations section, we present

a third-order asymmetric design and demonstrate its benefits with

respect to the symmetric one.

2. SIGNAL MODEL

We consider an acoustic source signal, X(ω), that propagates in

an anechoic acoustic environment at the speed of sound, i.e., c ≈
340 m/s, and impinges on a uniform circular array (UCA) of ra-

dius r, consisting of M omnidirectional microphones, where the

distance between two successive sensors is equal to

δ = 2r sin
( π

M

)

≈ 2πr

M
. (1)

The direction of X(ω) to the array is denoted by the azimuth an-

gle θs, measured anti-clockwise from the x axis, i.e., at θ = 0◦.

Assuming far-field propagation, the time delay between the mth

microphone and the center of the array is τm(θs) = r
c
cos(θs −

ψm), m = 1, 2, ...,M, where ψm = 2π(m−1)
M

is the angular posi-

tion of the mth array element. The mth microphone signal is

Ym(ω) = ej̟ cos(θs−ψm)X(ω) + Vm(ω), m = 1, 2, ...,M, (2)

where ̟ = ωr
c

, j =
√
−1, ω = 2πf is the angular frequency,

f > 0 is the temporal frequency, and Vm(ω) is the additive noise at

the mth microphone. In a vector form, (2) becomes

y(ω) = [Y1(ω) · · · YM (ω)]T = d (ω, θs)X(ω) + v(ω), (3)

where d (ω, θs) is the steering vector at θ = θs, i.e.,

d (ω, θs) =
[

ej̟ cos(θs−ψ1) · · · ej̟ cos(θs−ψM )
]T

, (4)

the superscript T is the transpose operator, the vector v(ω) is de-

fined similarly to y(ω), and the acoustic wavelength is λ = c/f .

It is assumed that the element spacing, δ, is much smaller than the

wavelength of the incoming signal, i.e, δ ≪ λ, in order to approxi-

mate the differential of the pressure signal.
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Assuming a 2D scenario, the frequency-invariant beampattern of

an N th-order DMA is given, for any steering angle θs, as [4]

BN (θ − θs) =

N
∑

n=0

aN,n cos
n(θ − θs), (5)

where θ is the azimuth, and {aN,n}Nn=0 are real coefficients. The

beampattern BN (θ − θs) is a symmetric function which can prop-

erly describe the frequency-invariant beampattern of linear DMAs.

Herein, we derive an asymmetric model for N th-order CDMAs.

3. ASYMMETRIC BEAMPATTERN FOR CDMAs

We start with a simple first-order asymmetric case and then gener-

alize it for any order, N . First-order CDMAs can be designed with

at least three microphones, whose positions are ψ1 = 0, ψ2 = 2π
3

,

and ψ3 = 4π
3

. Assuming a 2D scenario, the acoustic propagation

field received at each sensor is

p (k, r, θ, ψm) = P0e
j̟ cos(θ−ψm), m = 1, 2, 3, (6)

where P0 is the wave amplitude, and k = ω
c

is the wave number.

By adding a gain ame
jωτm at each sensor, and summing all the

sensors, we get the output power:

pout (k, r, θ) = P0

3
∑

m=1

ame
jωτmej̟ cos(θ−ψm), (7)

where am is a real number and τm is a temporal delay added to the

signal acquired by the mth microphone. Without loss of generality,

we assume that P0 = 1, a1 = 1, and τ1 = 0. Using the approxi-

mation ex ≈ 1 + x, and due to the model assumption δ ≪ λ, (7)

becomes

pout (k, r, θ) ≈ 1 + a2 + a3

+ jω

3
∑

m=1

am
[

τm +
r

c
cos(θ − ψm)

]

. (8)

In order to simplify (8), we impose a2 + a3 = −1, and define

α1 =

∑3
m=1 amτm

∑3
m=1 am

(

τm + r
c
cosψm

) ,

1− α1 =

∑3
m=1 am

r
c
cosψm

∑3
m=1 am

(

τm + r
c
cosψm

) , (9)

β1 =

∑3
m=1 am

r
c
sinψm

∑3
m=1 am

(

τm + r
c
cosψm

) .

Now we can get the normalized response of the first-order asym-

metric CDMA:

B1 (θ) =
pout (k, r, θ)

pout (k, r, 0)
= α1 + (1− α1) cos θ + β1 sin θ. (10)

The second-order asymmetric CDMA’s beampattern can be writ-

ten as a product of two first-order asymmetric beampatterns terms,

i.e.,

B2 (θ) =
2
∏

i=1

[αi + (1− αi) cos θ + βi sin θ] , (11)

from which, we can easily derive the general form of the second-

order asymmetric CDMA:

B2 (θ) = υ0+υ1 cos θ+υ2 cos
2 θ+υ3 sin θ cos θ+υ4 sin θ, (12)

where {υi}4i=0 are real coefficients which depend on {αi, βi}2i=1.

Similarly, the third-order asymmetric beampattern is

B3 (θ) = ǫ0 + ǫ1 cos θ + ǫ2 cos
2 θ + ǫ3 cos

3 θ

+ ǫ4 sin θ cos θ + ǫ5 sin θ + ǫ6 sin
3 θ. (13)

Based on the last results, we can obtain the N th-order asymmet-

ric CDMAs beampattern with the mainlobe steered to θs:

BN (θ − θs) =

N
∑

n=0

ξn cos
n(θ − θs) +

⌊N−1

2
⌋

∑

n=0

µn sin
2n+1(θ − θs)

+

⌊N
2
⌋

∑

n=1

ζn cos(θ − θs) sin
2n−1(θ − θs), (14)

which is a trigonometric polynomial of power N with 2N roots. In

fact, (14) can be equivalently expressed as [16]

BN (θ − θs) =

N
∑

n=0

an cos [n(θ − θs)] +

N
∑

n=1

bn sin [n(θ − θs)] .

(15)

4. OPTIMAL ASYMMETRIC SUPERCARDIOID

The common directivity patterns in the context of microphone ar-

rays are dipole, cardioid, hypercardioid, and supercardioid. These

patterns, originally developed for linear geometry, are traditionally

symmetric with respect to the steering angle, θs.
In this section, we develop an asymmetric version of the su-

percardioid for CDMAs. The supercardioid pattern maximizes the

FBR [4], which is defined for a cylindrical noise field as

F =

∫ π/2

−π/2
B2
N (θ) dθ

∫ 3π/2

π/2
B2
N (θ) dθ

, (16)

where we assume, without loss of generality, that the steering angle

is θs = 0◦. It is easily seen that
∫ π/2

−π/2
B2
N (θ) dθ = cTΓfc and

∫ 3π/2

π/2
B2
N (θ) dθ = cTΓbc, where

c = [a0, a1, ..., aN , b1, ..., bN ]T (17)

is a vector of length 2N+1 containing the coefficients of the asym-

metric beampattern (15). Matrices Γf and Γb are diagonal, with

[Γf ]n,n =

{∫ π/2

−π/2
cos2 (nθ) dθ, n = 0, 1, ..., N

∫ π/2

−π/2
sin2 [(n−N)θ] dθ, n = N + 1, ..., 2N

[Γb]n,n =

{∫ 3π/2

π/2
cos2 (nθ) dθ, n = 0, 1, ..., N

∫ 3π/2

π/2
sin2 [(n−N)θ] dθ, n = N + 1, ..., 2N.

(18)

The coefficients {an}Nn=0 and {bn}Nn=1 are independent by the

diagonality of Γf and Γb. Thus, the circular geometry provides

more degrees of freedom in the design of optimal patterns such as
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the supercardioid, and more directional constraints should be im-

posed. The first one is the distortionless constraint:

BN (θs = 0◦) = 1, (19)

leading to
∑N
n=0 an = 1. We can add up to L ≤ 2N attenuation

constraints of the form:

BN (θ = θl) = gl, l = 1, 2, ..., L, (20)

where 0 ≤ gl ≤ 1. We formulate these constraints as

Hcc = g, (21)

where Hc is the constraint matrix of size (L + 1) × (2N + 1),
typically non-diagonal. Vector g of length L+ 1 contains the coef-

ficients gl, l = 1, 2, ..., L, and a single unity entry, satisfying (19).

We can now formulate the optimization problem:

max
c

cTΓfc

cTΓbc
, subject to Hcc = g. (22)

Rather than solving (22), we solve the equivalent problem:

max
ĉ

ĉT Γ̂f ĉ

ĉT Γ̂bĉ
subject to Ĥcĉ = 0, (23)

where

ĉ =

[

c

−1

]

, Ĥc =
[

Hc g
]

, Γ̂f =

[

Γf 0

0T 0

]

, Γ̂b =

[

Γb 0

0T 0

]

.

(24)

Let D be a null-space matrix of Ĥc (i.e., ĤcD = 0) of size

(2N +2)× (2N +1−L) and rank of 2N +1−L, which contains

2N + 1 − L basis vectors in its columns, and let ĉ = Dc̃. Note

that the matrices DT Γ̂fD and DT Γ̂bD are full-rank even though

Γ̂f and Γ̂b are not full rank since the product matrices DT Γ̂fD and

DT Γ̂bD are of size (2N +1−L)× (2N +1−L) with a rank of

(2N + 1 − L), i.e, full-rank matrices. Thus, we transform (23) to

the following unconstrained optimization problem [17]:

max
c̃

c̃TDT Γ̂fDc̃

c̃TDT Γ̂bDc̃
. (25)

The solution to (25) is the generalized eigenvector of DT Γ̂fD

and DT Γ̂bD that corresponds to the maximal generalized eigen-

value, i.e.,

D
T
Γ̂fDc̃opt = λmaxD

T
Γ̂bDc̃opt, (26)

Finally, we reconstruct c from c̃opt.

5. DESIGN FOR ASYMMETRIC CDMAs

We now proceed to design the beamformer. For that, the signal of

each microphone is multiplied by a complex gain Hm(ω), m =
1, 2, ...,M . Then, all the signals are summed to form the beam-

former output. The beampattern is defined as

B [h(ω), θ] = h
H(ω)d(ω, θ), (27)

where

h(ω) = [H1(ω) H2(ω) · · · HM (ω)]T . (28)

While (27) is the designed asymmetric beampattern, (15) is the an-

alytical asymmetric beampattern which is considered as the desired

beampattern.

Similarly to what have been done in [18], we would like to find

a filter h(ω), so that B [h(ω), θ] is as close as possible to Bn (θ)
(15), in the MSE sense. Assuming θs = 0◦, we can express (15) as

BN (θ) = t
T (θ)a+ s

T (θ)b, (29)

where

t(θ) = [1 cos θ · · · cos(Nθ)]T , (30)

s(θ) = [0 sin θ · · · sin(Nθ)]T , (31)

a = [a0 a1 · · · aN ]T , (32)

b = [b0 b1 · · · bN ]T , (33)

are vectors of length N + 1. From now on, it is assumed that θ is a

real random variable, which is uniformly distributed in the interval

[0, 2π]. We define the MSE criterion between the array beampattern

and the desired directivity pattern as

MSE [h(ω)] = E
{

|B [h(ω), θ]− BN (θ)|2
}

= h
H(ω)Φdh(ω)− h

H(ω) [Φdta+Φdsb]

−
[

a
T
Φ
H
dt + b

T
Φ
H
ds

]

h(ω) + a
T
Φta+ b

T
Φsb.

(34)

where E {·} denotes mathematical expectation with respect to

θ, Φd = E
[

d(ω, θ)dH(ω, θ)
]

, Φdt = E
[

d(ω, θ)tT (ω, θ)
]

,

Φds = E
[

d(ω, θ)sT (ω, θ)
]

, Φt = E
[

t(ω, θ)tT (ω, θ)
]

, and

Φs = E
[

s(ω, θ)sT (ω, θ)
]

.

To find the optimal filter in the MSE sense, it is impor-

tant to minimize (34) subject to the distortionless constraint

dH (ω, θs)h(ω) = 1, i.e.,

min
h(ω)

MSE [h(ω)] subject to d
H (ω, θs)h(ω) = 1. (35)

The optimal solution is given by

hopt(ω) = hu(ω) +
[1− d(ω, θs)hu]Φ

−1

ds
(ω)d(ω, θs)

dH(ω, θs)Φ
−1

d
(ω)d(ω, θs)

(36)

where hu(ω) = Φ−1

d
(ω) [Φdt(ω)b+Φds(ω)a] is the uncon-

strained filter obtained by minimizing MSE [h(ω)].

6. A DESIGN EXAMPLE

In this section, we present a design example of the third-order asym-

metric supercardioid. Third-order designs require at least M = 7
microphones. Let us assume that the steering angle is θs = 0◦ and

we would like to impose three nulls at θ1 = 75◦, θ2 = 105◦ and

θ3 = 220◦. We choose r = 0.75 cm which leads to δ = 0.65 cm.

First, we need to find the corresponding analytical asymmetric

beampattern. Solving (26), the optimal coefficients vector, c (17)

is calculated and substituted into (15). The three additional roots

are θ4 = 150◦, θ5 = 194◦, and θ6 = 260◦. Figure 1 shows the

analytical beampattern of the third-order asymmetric design (blue

solid line), its symmetric version (black dashed line), i.e., the beam-

pattern for the case that θ4 = 140◦, θ5 = 255◦, and θ6 = 285◦,

and also the third-order unconstrained symmetric supercardioid (red

circles line), which was derived in [4] and obtained for nulls at
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Figure 1: Beampattern for the third-order asymmetric supercardioid

(blue solid line) and its symmetric version (black dashed line). The

red circles line is the unconstrained third-order symmetric supercar-

dioid [4]. θ1 = 75◦, θ2 = 105◦, θ3 = 220◦.

θ1 = 98◦, θ2 = 125◦ and θ3 = 161◦, and their symmetric di-

rections. The latter is obtained by direct optimization of the FBR

without any constraints on the null directions.

Using the calculated values of c (17) and of {θi}6i=1, we can

calculate (36) and design the third-order asymmetric CDMA. Fig-

ure 2 shows the beampattern of the third-order asymmetric super-

cardioid (a),(d), the third-order symmetric supercardioid (b),(e), and

the third-order unconstrained symmetric supercardioid (c),(f), for

different frequencies and steering angles. The black dashed line

is the designed beampattern (27), while the blue circles line is the

analytical beampattern (15).
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Figure 2: Beampatterns for the third-order asymmetric supercar-

dioid CDMAs with M = 7 sensors and three imposed nulls for dif-

ferent steering angles and frequencies: (a) θs = 0◦, f = 1000 Hz,

(d) θs = 165◦, f = 1800 Hz. Beampatterns of the correspond-

ing third-order symmetric design: (b) θs = 0◦, f = 200 Hz, (e)

θs = 315◦, f = 2200 Hz . Beampatterns of the third-order uncon-

strained symmetric supercardioid: (c) θs = 0◦, f = 1500 Hz, (f)

θs = 43◦, f = 3000 Hz. The black dashed line is the designed

beampattern (27), while the blue circles line is the analytical beam-

pattern (15).

Figure 3 shows the WNG, the DF, and the FBR as a function of

frequency for the third-order asymmetric supercardioid (blue solid

line), the third-order symmetric supercardioid (black dashed line),

and the third-order unconstrained symmetric supercardioid (red cir-

cles line). The WNG, the DF, and the FBR are defined as [14, ch.2]

W [h(ω)] =
|hH (ω)d(ω,θs)|2

hH (ω)h(ω)
, (37)

D [h(ω)] =
|hH (ω)d(ω,θs)|2
hH (ω)Γdn(ω)h(ω)

, (38)

F [h(ω)] =

∫ π/2
−π/2

B2[h(ω),θ]dθ
∫ 3π/2
π/2

B2[h(ω),θ]dθ
, (39)

where [Γdn (ω)]ij = sinc
(

2̟
∣

∣

∣
sin

[

π(i−j)
M

]
∣

∣

∣

)

.

The performance of the asymmetric design is very similar to that

of the unconstrained supercardioid in terms of WNG, DF, and FBR

while the symmetric design achieves much lower FBR but slightly

higher DF, due to a narrower mainlobe. In [16], we derive also the

asymmetric hypercardioid and show that the asymmetric design can

achieve superior performance also in terms of DF. In addition, prac-

tical methods to improved the WNG, based either on regularization

methods or increasing the number of sensors, can be found in [19].
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Figure 3: FBR (a), DF (b), and WNG (c) vs. frequency for the

third-order asymmetric supercardioid (blue solid line), the third-

order symmetric design (black dashed line), and the third-order un-

constrained symmetric supercardioid (red circles line) with M = 7
sensors.

7. CONCLUSIONS

We have presented an analytical model for asymmetric CDMAs,

which includes the traditional symmetric model as a particular case.

We have derived an analytical model for N th-order asymmetric

beampattern, and asymmetric version of the supercardioid. A prac-

tical design of an N th-order asymmetric beamformer for a given

number of microphones, based on the MSE criteria, is also pro-

posed. Simulation results show that the asymmetric model allows

more degrees of freedom, compared to a symmetric model, which

can be exploited for better FBR.
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