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Abstract

In this paper, we present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral

continuity of earth layers by dynamic programming approach. We assume that reflectors in consecutive channels, related

to distinct layers, form continuous paths across channels. We introduce a quality measure for evaluating the quality

of a continuous path, and iteratively apply dynamic programming to find the best continuous paths. The improved

performance of the proposed algorithm and its robustness to noise, compared to a competitive algorithm, are

demonstrated through simulations and real seismic data examples.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Wavelet estimation; Multichannel blind deconvolution; Seismic signal; Sparse reflectivity; Reflectivity estimation
1. Introduction

In seismic exploration, a short duration seismic
pulse is transmitted from the surface, reflected from
boundaries between underground earth layers, and
received by an array of sensors on the surface [1].
The received signals, called seismic traces, are
analyzed to extract information about the under-
ground structure of the layers in the explored area
[2,3]. Pre-processing is applied to the raw data in
order to increase the signal-to-noise ratio (SNR)
and attenuate surface waves that are unrelated to
the underground structure. Subsequently, the traces
e front matter r 2008 Elsevier B.V. All rights reserved
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can be modeled under simplifying assumptions as
noisy outcomes of convolutions between reflectivity
sequences (channels) and an unknown wavelet. The
objective of multichannel blind seismic deconvolu-
tion is to estimate both the wavelet and the
reflectivity sequences from the measured traces.

Single-channel blind deconvolution is generally
an ill-posed problem, and requires some a priori
information about the channels or the wavelet. The
reflectivity sequence is often modeled as a Bernoulli–
Gaussian random sequence, and second-order
statistics may be used to partially reconstruct the
input signal. Several methods based on high-order
statistics have been developed [4,5], which require
very long data to properly estimate the output
statistics. Alternatively, the wavelet can be modeled
as an autoregressive moving-average (ARMA)
process, and a maximum likelihood estimator for
the reflectivity can be derived [6].
.
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Multichannel blind deconvolution (see [7] and
references therein, [8,9]) is often more advantageous
and more robust than single-channel blind decon-
volution. Sparsity of the reflectivity sequences may
be used to cope with the ill-posed nature of the basic
blind deconvolution problem [10,11], and to im-
prove the performance of non-blind deconvolution
methods [12]. Channel sparsity has been used in
[10], together with an assumption of short wavelet,
to formulate an efficient channel estimation
method suitable for relatively short traces (see also
[13]). Lateral continuity of the reflectors across
channels is also used to further improve the channel
estimates. Idier and Goussard [14] model the two-
dimensional structure of the underground reflectiv-
ity as a Markov–Bernoulli random field, and impose
lateral continuity to generate deconvolution results
that are far superior to those obtainable by single-
channel deconvolution methods. However, their
estimator of the two-dimensional reflectivity pattern
is suboptimal, since the dependency between col-
umns is treated locally, i.e., each column of the
reflectivity is estimated separately, under prior
distributions given by the previous column whose
estimate is held fixed.

In this paper, lateral continuity of reflectors
across channels is combined with the blind decon-
volution algorithm of Kaaresen and Taxt [10]. We
employ dynamic programming [15,16] to find the
shortest continuous paths of reflectors across
channels, and develop an improved multichannel
blind deconvolution algorithm for seismic signals,
which exploits the lateral continuity of earth layers.
Rather than measuring the increase in the fit to the
data each single reflector yields, versus the decrease
in sparsity of the channel estimates, we measure the
increase in the fit to the data obtained by a complete
continuous path of reflectors, versus the decrease in
the sparsity of paths. This approach is an attempt
to look at the data as a whole, and account for
dependency between all columns in the data, and
not only adjacent ones. The improved performance
of the proposed algorithm and its robustness to
noise, compared to the blind deconvolution algo-
rithm of Kaaresen and Taxt, are demonstrated
by using simulated and real seismic data examples.
The rest of this paper is organized as follows: In
Section 2, we describe the signal model and briefly
review the blind deconvolution algorithm presented
in [10]. In Section 3, we describe a dynamic
programming method for finding the shortest
continuous path in an image. In Section 4, we
introduce a multichannel blind deconvolution algo-
rithm, which exploits the continuity of earth layers
and utilizes the dynamic programming approach.
In Section 5, the performance of the proposed
algorithm is demonstrated on simulated and real
seismic data, and compared to an existing algo-
rithm. Finally, in Section 6 we discuss the additional
complexity of the proposed algorithm.

2. Signal model and basic blind deconvolution process

2.1. Signal model

We assume M received signals (traces), each
generated by a single input signal h½n� passing
through a channel xðmÞ½n� and corrupted by additive
uncorrelated noise eðmÞ½n�. The output signal of
channel m can be written as

zðmÞ½n� ¼
XK�1
k¼0

h½k�xðmÞ½n� k� þ eðmÞ½n�

for m ¼ 1; 2; . . . ;M ; n ¼ 1; 2; . . . ;N. (1)

The following assumptions are made for the wavelet
h and the channels:
(1)
 All channels are excited by the same wavelet h.

(2)
 The wavelet h has a finite support of length K,

which is shorter than the channel.

(3)
 Each channel is sparse, i.e., the number of non-

zero elements (reflectors) in a channel is small
relative to the channel’s length.
(4)
 The dependency between different channels is
modeled as follows. Let P ¼ ðn1; n2; . . . ; nMÞ be a
vector of M integer line numbers such that n1 is
uniformly distributed in the range ½1;N�, and
nmjnm�1 is uniformly distributed in the range
½nm�1 � 1; nm�1 þ 1� for m ¼ 2; 3; . . . ;M. We call
the vector P the ‘‘location vector of a single
layer’’. Let eaðPÞ ¼ ðeaP

1 ; eaP
2 ; . . . ; eaP

M Þ denote a
vector such that eaP

1 is normally distributed with
zero mean and standard deviation sa, and such
that eaP

mjeaP
m�1 is normally distributed with mean

reaP
m�1 and standard deviation sa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

for
some constant r close to 1 and m ¼ 2; 3; . . . ;M.
This is a Markov model for the amplitudes of
the reflectors along the layer with locations P.
The two-dimensional reflectivity pattern is the
stacking of the M channels as columns in
an NnM matrix X. Let fP1;P2; . . . ;PLg be
the location vectors of L single layers and
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feaðP1Þ;eaðP2Þ; . . . ;eaðPLÞg be their amplitudes.
The model for the structure of the matrix X is
as follows: xðmÞ½n� ¼ 0 if nmePl for all l ¼

1; 2; . . . ;L (i.e., no layer passes through that
pixel), xðmÞ½n� ¼ eaPl

m if Pl is the only location
vector such that nm 2 Pl (i.e., only one layer
passes through that pixel), and xðmÞ½n��Nð0;s2aÞ
if there is more than one location vector that nm

belongs to (i.e., more than one layer passes
through the pixel).
(5)
 The noise eðmÞ½n� is white, Gaussian, and
independent of h½n� and xðmÞ½n�.
In [10] assumption 4 is replaced by the following
two assumptions.
(4.1)
 The elements in a channel are independent and
identically distributed with zero-mean Bernoulli–
Gaussian distribution.
(4.2)
 Some degree of lateral continuity of the
reflectors across channels is suggested, without
stating any specific model for this continuity.
1The set of alternatives suggested in [10] is obtained by

either removing the middle reflector, adding a single reflector

somewhere inside the window, or moving the middle reflector to

another location inside the window.
Assumption 3 makes it useful to write (1) in the
following way:

zðmÞ½n� ¼
XQ

q¼1

h½n� nm;q�am;q þ eðmÞ½n�, (2)

where nm;q is the discrete time of reflection q in
channel m, and am;q is its amplitude. Notice that am;q

is the value of the qth non-zero element in the mth
column of X. It equals eaP

m for some single layer P if
this is the only layer that pases through this
location, otherwise, if more than a single layer
passes through this location, then am;q�Nð0;s2aÞ.
The matrix representation of (2) is given by

zðmÞ ¼ HðmÞaðmÞ þ eðmÞ, (3)

where zðmÞ ¼ ½zðmÞ½0� zðmÞ½1� . . . zðmÞ½N��T, HðmÞ is a
matrix with elements HðmÞnq ¼ h½n� nm;q�, and
eðmÞ ¼ ½eðmÞ½0� eðmÞ½1� . . . eðmÞ½N��T. For later use
we adopt the notation in [10] and define the matrix
Hw as the columns of H corresponding to reflectors
inside a certain time window w, aw represents the
amplitudes of the reflectors inside the window, Hw

contains the columns of H corresponding to
reflectors outside the window, and aw represents
the amplitudes of the reflectors outside the window
(the channel index m is omitted for convenience).
2.2. Basic single-channel iterative algorithm

The basic algorithm proposed in [10] is applicable
to a single channel, and does not require measure-
ments from an array of sensors. It includes an
initialization step that provides a coarse approxima-
tion of the channel, followed by two steps, which are
repeated iteratively until convergence. More specifi-
cally, the steps of the algorithm are as follows:

Step 1: Initialization. This step can be performed
in several ways. One way, employed in [10], is to
place initial reflectors in local maxima points of the
absolute value of the received signal z. The reflectors
amplitudes are set to the values of z in these
locations.

After the initialization step, the following steps
are iterated, until a convergence criterion is fulfilled.

Step 2: Wavelet estimation. Writing (1) in a
matrix form (omitting the channel index m) we have

z ¼ Xhþ e, (4)

where Xðn; kÞ ¼ x½n� k�, n ¼ 1; 2; . . . ;N, k ¼ 1; 2;
. . . ;K , z and e are defined as in (3), and h ¼

½h0 : h1 : . . . : hK�1�
T. The wavelet estimate is ob-

tained by least squares fit to the received signal,
given the channel estimate bx:
bh ¼ ðbXTbXÞ�1bXTz, (5)

where bXðn; kÞ ¼ bx½n� k�, n ¼ 1; 2; . . . ;N, k ¼ 1; 2;
. . . ;K . Since there is a scaling ambiguity between h

and a, a normalization step is applied to h after each
estimation.

Step 3: Channel estimation. This step utilizes a
suboptimal search for updating the channel estimate
as follows: Let bnq be a vector representing the
locations of all reflectors in the channel estimate in
the qth iteration, and let baq denote their amplitudes.
Then for each reflector in the channel estimate
perform the following:
(3.1)
 Center a window w around the reflector, and
denote by bnwq ¼ ½n1 n2 . . . np�

T the locations
of reflectors inside the window w.
(3.2)
 Examine and compare a set of alternative
vectors fenwi g obtained from a predetermined
set of alternatives1 by performing the following
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steps (3.2.1)–(3.2.5) for each alternative i:
(3.2.1) Calculate an approximation to the

received signal using only existing
reflectors outside the window w, and
the current wavelet estimate bh. Then
subtract it from the received signal:

bzo ¼ bHw
q bawq , (6)

zr ¼ z� bzo. (7)

(3.2.2) Construct a matrix bHw
i according to

the locations of reflectors inside the
window in the examined alternative i,
and find their new amplitudes giving
the best approximation to the remain-
der of the data zr, given their locations
and the current wavelet estimate:

bawi ¼ ½ðbHw
i Þ

T bHw
i �
�1ðbHw

i Þ
Tzr. (8)

(3.2.3) Calculate an approximation for zr

using the new reflector amplitudes
from (8):

bzr;i ¼ bHw
i bawi . (9)

(3.2.4) Calculate the inner product of bzr;i and zr,

qi ¼ zTr bzr;i. (10)

(3.2.5) Calculate a quality measure of the
alternative by including a penalty term
for the sparsity of the alternative:

‘i ¼ qi � yMw
i , (11)

where Mw
i represents the number of

reflectors inside the window w in this
alternative, and y is some predeter-
mined weighting factor for the penalty
term.
(3.3)
 After calculating the quality measure ‘i for
all alternative location vectors, choose iopt ¼

arg maxi ‘i, and set the locations vector enwiopt as
the locations of reflectors inside the window w

in the channel estimate and the amplitudes bawiopt
as their amplitudes.
(3.4)
 Proceed to the next reflector in this channel
estimate (Step 3.1).
Steps 2 and 3 are performed iteratively until some
convergence criterion is fulfilled. For example, we

may assume convergence when the reflectors loca-
tions remain the same and the reflectors amplitudes
variation is insignificant, i.e., bnq ¼ bnq�1, and
kbaq � baq�1k=kbaqko0:05. It is shown in [17] that this
process produces a suboptimal maximum a poster-
iori estimator of h; n and a, given z.

2.3. Expansion for multichannel blind deconvolution

An expansion of the single-channel algorithm is
proposed in [10] for the case of multichannel
measurements, where the assumption of lateral
continuity of the reflectors across channels can be
made. The initialization step is the same as for the
single channel, and performed for each channel
independently. The estimation of the wavelet h is
also carried out in the same manner, except that the
least squares fit to the data is performed with
respect to all traces simultaneously:

bh ¼ B�1u, (12)

where B ¼
PM

m¼1
bXT

m
bXm, u ¼

PM
m¼1

bXT
m zm, andbXmðn; kÞ ¼ bxm½n� k�. The resulting wavelet estimate

minimizes the mean squared error (MSE) between
the received data and the reconstructed data given
the channel estimate.

The channel estimation step is performed for each
channel at a time in a similar way as before, except
that the quality measure ‘ is modified to favor
reflectors that form continuous sequences with
reflectors in adjacent channels. The new measure ‘
suggested in [10] for the multichannel case is
given by

‘ ¼ q� yMw þ v�M� þ vnMn

þ v=M= � vjM j � vkMk, (13)

where M� represents the number of reflectors that
have neighbor reflectors in adjacent channels in
the same time location (horizontal layers), M= and
Mn represent the number of reflectors that have
neighbor reflectors in smaller or greater time
locations by 1 sample (descending or ascending
layers, respectively, with a slope of one sample per
channel), v�, vn, and v= are weights that affect the
degree to which the algorithm tends to favor these
kind of continuities, and M j and Mk represent the
number of reflector pairs that are one or two
samples apart in the same channel. The last two
terms in (13) prevent an undesirable clustering of
reflectors in case of several closely spaced layers.
Subtraction of these terms introduces a penalty for
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Fig. 1. A noisy gray level image and the shortest continuous path

(denoted by white circles) obtained by dynamic programming.

The path ‘‘length’’ is the sum of gray levels along the path, and

the continuity parameter d is 1.
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channel estimates that produce such clustering. In
the rest of this paper we refer to this multichannel
version of the algorithm as the basic algorithm.

3. Dynamic programming for finding the shortest

continuous path

Dynamic programming is an effective way to find a
global minimum in some non-convex optimization
problems. We now briefly describe the problem of
finding the shortest continuous path across an image,
and the solution by dynamic programming [16].

3.1. Problem formulation

Assume we have a gray level image of size
N �M. The problem is to find a ‘‘path’’, i.e., a
sequence of M pixels fðnm;mÞg

M
m¼1 one in each

column, such that the following two conditions are
satisfied:
(1)
 jnm � nmþ1jpd for all m ¼ 1; 2; . . . ;M � 1,
where d is some small positive integer constant.
We refer to this condition as the ‘‘continuity
condition’’, and to a path for which this
condition is satisfied as a continuous path.
(2)
 The path is the ‘‘shortest’’ among all continuous
paths, in the sense that a certain length measure
is minimized for this path among all the
continuous paths.
A common length measure for a given path is the
sum of gray levels of the pixels, which the path
passes through. Fig. 1 demonstrates an image and
the shortest path obtained for d ¼ 1 (the path is
marked with white circles).

In this work we are interested in a length criterion
that measures not only the total intensity of the path
(as represented by the sum of gray levels) but also
the degree to which the gray levels along the path
change slowly (since we assume that the amplitude
of a reflection from a layer boundary changes slowly
along the boundary, as reflected by the Markov
model for the amplitudes presented earlier).

3.2. Extraction of shortest path

We now describe a dynamic programming algo-
rithm using a general length measure defined as
follows: Let ðn;mÞ be the coordinates of a pixel in
row n and column m. Let P ¼ fðn1;m1Þ; ðn2;m2Þ; . . .g
denote a path of pixels. Let SP be the length of path
P. We define a concatenation of a pixel ðn;mÞ to a
path P of length m� 1 as the operation of creating a
new path eP of length m whose m� 1 first pixels are
the m� 1 pixels of P and whose last pixel is the pixel
ðn;mÞ. We use the notation eP ¼ ðP ... ðn;mÞÞ to
describe the concatenation. Let sðn;m;PÞ be a value
associated with the pixel ðn;mÞ with respect to the
path P so that SeP ¼ SP þ sðn;m;PÞ, i.e., the con-
catenation of the pixel ðn;mÞ to the path P increases
the length of the path by sðn;m;PÞ. We assume that
the value sðn;m;PÞ is defined for every combination
of pixel ðn;mÞ and path P. We use fg to denote the
empty path, and define its’ length as 0. Let Pn;m ¼

fðn1; 1Þ; ðn2; 2Þ; . . . ; ðn;mÞg denote a continuous path
starting at column 1 and ending at pixel ðn;mÞ.
Denote by Po

n;m the continuous path that starts at
column 1 and ends at pixel ðn;mÞ with minimum
length among all such paths. The algorithm starts
with the following initialization:

Po
n;1 ¼ ðn; 1Þ for n ¼ 1; 2; . . . ;N, (14)

SPo
n;1
¼ pðn; 1; fgÞ for n ¼ 1; 2; . . . ;N. (15)

Then for each column m ¼ 2; . . . ;M compute

SPo
n;m
¼ min

n�dpkpnþd
SPo

k;m�1
þ sðn;m;Pk;m�1Þ

for n ¼ 1; 2; . . . ;N, (16)

Po
n;m ¼ ðP

o
ko;m�1

..

.
ðn;mÞÞ for n ¼ 1; 2; . . . ;N, (17)

where ko denotes the value of k achieving the
minimum in (16). After the column M is processed,
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we obtain the desired path Popt by

no ¼ argmin
n

SPo
n;M

(18)

Popt ¼ Po
no;M . (19)

This procedure achieves the continuous path
from columns 1 to M with minimal length.
2The number of continuous paths is approximately

Nð2d þ 1ÞM�1, while the number of possible reflectors is N M.
4. Combining dynamic programming and

multichannel blind deconvolution

4.1. Proposed approach

According to the two-dimensional reflectivity
model presented in Section 2, we assume that any
non-zero element in a channel is a member of a path
of non-zero elements across the channels, which
satisfies the continuity condition (Condition 1 in
Section 3). In the basic algorithm, a decision
whether or not to add a reflector to a channel
estimate, is made according to the increase in the fit
to the data compared to the decrease in the sparsity
measure (as reflected in the quality measure ‘ in (11)
or (13)). In the multichannel version of the
algorithm, a measure of local continuity is added
to the decision criterion, which encourages reflectors
that are members of a local continuous sequence.
The approach presented here allows the process to
add, not single reflectors, but complete continuous
paths of reflectors to the image of channel estimates.
Rather than measuring the increase in the fit to the
data each single reflector yields, versus the decrease
in sparsity of the channel estimate, we measure the
increase in the fit to the data obtained by a complete
continuous path of reflectors, versus the decrease in
sparsity of paths, i.e., number of continuous
reflector paths.

According to the two-dimensional reflectivity
model presented in Section 2, all paths of reflectors
in the true channels are continuous with continuity
parameter d ¼ 1. The steps of the new algorithm are
as follows:

Step 1: Initialization. The initialization is carried
out by finding several continuous paths (with
parameter d ¼ 1) along which the sum of gray
levels is maximal or minimal among all continuous
paths in the same region of the data. Finding the
path with maximal sum of gray levels (maximal
length) can be done by finding the path with
minimal length of the negative image. The steps of
this initialization are as follows:
(1.1)
 Use dynamic programming to find the con-
tinuous path of minimal length in the original
image.
(1.2)
 Similarly, find the path of maximal length.

(1.3)
 Choose the path from the above two steps for

which the absolute value of the length is
maximal and add it to the channel estimate,
setting the amplitudes along it to be the value
of the data in those locations.
(1.4)
 Let S9fðn;mÞ : jn� nmjoDg be a strip of a
certain predetermined width D around the
path fðnm;mÞg

M
m¼1 found in the previous step.

Then, for finding the next extremum path, we
replace the values of the true data in that strip
by zeros, and subsequently extract the extre-
mum path (the received signal z is randomly
distributed with zero mean, and therefore
replacing the data values with zeros ensures
that this strip will not be a part of the
following paths in the initialization step, since
zeros are not contributing to an extremum
value).
(1.5)
 If the number of paths found so far is less than
a predetermined number, go to step 1.1.
At the end of the initialization step, we replace all
the zero values, inserted in Step 1.4, back to their
original values.

Step 2: Wavelet estimation. After initialization of
the channel estimate, the wavelet estimate is
obtained in the same manner as in the basic
algorithm (Section 2), which is simply the least
squares fit to the data given the current channel
estimate and the received signals, and normalizing
the estimated wavelet afterwards.

Step 3: Channel estimation. The channel esti-
mates are updated by examining and comparing a
few alternatives that include adding a new contin-
uous path of reflectors, or translating an existing
path. Since the number of possible continuous paths
is much larger than the number of possible single
reflectors,2 we use again dynamic programming
as described in Section 3, to find the continuous
path that maximizes a criterion that will be
defined shortly. That path only is examined as a
candidate for inclusion or substitution of other
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paths. The criterion that is used for finding a path
by dynamic programming is explained in the
following two steps of the algorithm.

Step 3.1: In this step, we calculate a probability
measure for the existence of a new reflector at every
possible location in the two-dimensional reflectivity
pattern (additional to the currently estimated re-
flectors), and evaluate the corresponding amplitude
given that a reflector indeed exists in that location.
For each channel, we go over all locations in this
channel, and for every location, we create an
alternative reflectivity by placing a new reflector
at this location. The probability measure and the
amplitude of the new reflector are calculated
independently of other channels, in the same
manner as in [10], as described in Section 2. During
this step we do not assume any prior for the
locations or the amplitudes, hence this is actually a
maximum likelihood estimation as follows:

Let nm denote the vector containing the locations
of reflectors in column m according to the current
reflectivity estimation. The set of examined alter-
natives for this reflectivity column are denoted

by fenm
i g

N
i¼1 where enm

i is created by placing a new

reflector in location i. For each i 2 ½1;N�
we calculate: lm

i ¼ maxam
i

logðpðzmjam
i ;enm

i ÞÞ and

bam
i ¼ arg maxam

i
logðpðzmjam

i ;enm
i ÞÞ. Let us denote by

bam
i the amplitude of the reflector from bam

i that is

located in line i (this is the amplitude of the new
reflector we placed). This first stage yields a
probability measure for the existence of a new
reflector at each possible location, at each column,
and maximum likelihood estimate of the reflector
amplitude.

The details of this calculation are as follows: For
each column m and location i:
(3.1.1)
 Temporarily place a new reflector at line i.

(3.1.2)
 Define a window centered at line i.

(3.1.3)
 Calculate the contribution to the data made

by existing reflectors outside the window,
using the current wavelet estimate, and
subtract it from the data as in (6) and (7).
(3.1.4)
 Find the amplitudes of reflectors inside the
window giving the best fit to the remainder of
the received signal zm

r , given their locations, and
the current wavelet estimate as in (8).
(3.1.5)
 Calculate an approximation for zm
r using the

new reflector amplitudes from (8):

bzm
r;i ¼

bHw
i bawi , (20)
where bzm
r;i is a projection of zm

r on the
columns of bHw

i and bawi are the coefficients
of each column of bHw

i in the projection.

(3.1.6)
 Calculate the inner product ‘m

i ¼ ðz
m
r Þ

Tbzm
r;ias

in (10):
Since it is assumed that zm

r ¼ Hw
i awi þ ew

where ew is white Gaussian noise, then ‘m
i ¼

maxaw
i
logðpðzm

r ja
w
i ;enm

i ÞÞ and bawi ¼ arg maxaw
i

logðpðzm
r ja

w
i ;eniÞÞ.
Step (3.1) generates an image of ‘‘qualities’’ which
is referred to as the ‘‘qualities image’’, representing
the log of probability of a new reflector existing at
each possible location at each channel given the
existing reflectors.

Step 3.2: Now, for estimating the two-dimen-
sional reflectivity, we recall the priors for the
locations of reflectors and their amplitudes in the
two-dimensional reflectivity model. We seek a
vector of integer line numbers:

ðî1; î2; . . . ; îMÞ

¼ arg max
i1;...;iM

pðâ1i1 ; â
2
i2
; . . . ; âM

iM
,

n̂1i1 ; n̂
2
i2
; . . . ; n̂M

iM
jz1; z2; . . . ; zM Þ

¼ arg max
i1;...;iM

pðz1; . . . ; zM jâ1i1 ; . . . ; â
M
iM
; n̂1i1 ; . . . ; n̂

M
iM
Þ

�pðâ1i1 ; . . . ; â
M
iM
jn̂1i1 ; . . . ; n̂

M
iM
Þpðn̂1i1 ; . . . ; n̂

M
iM
Þ

¼ arg max
i1;...;iM

pðz1; . . . ; zM jâ1i1 ; . . . ; â
M
iM
; n̂1i1 ; . . . ; n̂

M
iM
Þ

�pðâ1i1 . . . ; â
M
iM
jn̂1i1 ; . . . ; n̂

M
iM
Þ

¼ arg max
i1;...;iM

pðz1jâ1i1 ; n̂
1
i1
Þpðâ1i1 jn̂

1
i1
Þ
YM
m¼2

pðzmjâm
im
; n̂m

imÞ

�pðâm
im
jâm�1

im�1
; n̂m

im
Þ. (21)

Here we incorporate the prior for the amplitudes
that is given by the Markov model. Omission of the
term pðbn1i1 ;bn2i2 ; . . . ;bnM

iM
Þ is justified since all contin-

uous paths are equally probable. In order to
calculate the term pðbam

im
jbam�1

im�1
;bnm

im
Þ in (21), we need

to keep track of all paths that already exist in the
two-dimensional reflectivity estimation, at each
step, which is a cumbersome task. Usually placing
a new reflector and updating its neighbors, causes
their amplitudes to change only slightly, hence we
can replace the term pðbam

im
jbam�1

im�1
;bnm

im
Þ with the term

pðbam
im
jbam�1

im�1
Þ, i.e., incorporate the Markov model with

only the new path to be added to the reflectivity
estimate rather than all the previously extracted
paths. So, finally, if we take the log of (21), use the
notation of ‘i from step 3.1.6, use the Markov
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model to evaluate pðbam
im
jbam�1

im�1
Þ and multiply the

criterion by �1 we obtain

ðbi1;bi2; . . . ;biM Þ ¼ arg min
i1;i2;...;iM

�
XM
m¼1

‘m
im
þ
ðba1

i1
Þ
2

2s2a

þ
XM
m¼2

ðbam
im
� rbam�1

im�1
Þ
2

2ð1� r2Þs2a
.

This vector must also be a valid location vector of
a layer, so it must represent a continuous path.

Now we employ dynamic programming as
described in Section 3 to find a continuous path
(with parameter d ¼ 1) in the qualities image, that
minimizes this criterion. This is achieved by
defining the measure sðn;m;PÞ in the dynamic
programming as follows:

sðn; 1; fgÞ ¼ �‘1n1 þ
ðba1

n1
Þ
2

2s2a
,

sðn;m;PÞ ¼ �‘m
nm
þ
ðbam

nm
� rbalastðPÞÞ

2

2ð1� r2Þs2a
,

where balastðPÞ is the best estimated amplitude for a
new reflector placed in the last pixel of the path P.

As long as the channel estimate includes less than
the known number of layers, we add new paths to
the two-dimensional reflectivity estimate. Each
additional path is inserted into a FIFO list, and
when we reach the desired number of layers, we
sequentially perform the following steps:
(a)
 Remove the next existing path from the begin-
ning of the list and from the channel estimate.
(b)
 Find a new best path.

(c)
 Add the new path to the end of the list and to

the channel estimate.
This procedure is similar to the one described in
[10], since we actually move each path to a different
better location. If a path current location is optimal,
then the path is selected again at the same location.
The advantage of this procedure is that tuning of a
sparsity parameter is unnecessary until the channel
estimate has the desired number of reflectors.
Tuning of a sparsity parameter depends on the
SNR, and involves several executions of the whole
process.

Steps 2 and 3 are iterated until a certain stopping
criterion is satisfied. In the production of the results
in this work the stopping criterion was a predeter-
mined number of iterations.
4.2. Implementation notes

A new reflector affects the optimal values of
neighboring reflectors, as explained in the beginning
of this section. Hence, after we find the best path
of reflectors and add it to the channel estimate,
we have to update all reflectors that are in the
neighborhood of this path, which requires some
management. We propose to temporarily save
optimal values of reflectors for all possible locations
and after the best path is selected, use the relevant
values to update the necessary reflectors. When a
path is removed from the channel estimate, we
recalculate the optimal values of reflectors using (8),
noting that bHw does not include a column for the
removed reflector.

When we calculate the quality of a reflector at a
given location, we also calculate the quality of
existing reflectors, so that the latter reflectors
may be selected as members of a new path. This
facilitates the search for a new path which crosses or
merges with an existing path. The qualities of
existing reflectors are calculated in the same way
as if a given reflector is new. A table holding the
number of paths that go through each location in
the channel estimate is updated every time a path is
added or removed (for example, if a path which
crosses another path is removed, the crossing point
continues to hold a reflector).
4.3. Optimality of the channel estimate

To demonstrate the advantage of the proposed
algorithm over the basic algorithm, consider the
following example. Suppose that the true reflectors
in a certain area are as shown in Fig. 2(a), where
each column represents a channel and the non-zero
elements are marked in black. Let ‘a; ‘b; ‘c and ‘d

represent the values of the measure ‘, as defined in
(13), for the reflectors shown in Figs. 2(a), (b), (c)
and (d), respectively. Assume that

‘a4‘b4‘c and ‘b4‘d .

Then, maximization of the measure ‘ by using the
basic algorithm may yield misplaced reflectors as
shown in Fig. 2(b), since the search method allows
changing the location of a single reflector at a time,
and the algorithm is stuck at a local maximum of
the measure ‘.

On the other hand, by using the proposed
algorithm and setting d to 1, the channel estimates
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Fig. 2. An example demonstrating a local maximum of the measure ‘, where the basic algorithm gets stuck. (a) True locations of reflectors

ð‘ ¼ ‘aÞ; (b) reflector locations obtained by using the basic algorithm ð‘ ¼ ‘bo‘aÞ. To increase ‘ from ‘b to ‘a, the algorithm needs to go

through either the channel estimate shown in (c) or (d). However, if ‘ for (c) and (d) is lower than ‘b, then the basic algorithm is unable to

produce the correct reflectors.
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shown in Figs. 3(b) and (d) are not possible, since
they contain non-continuous paths. Therefore,
maximization of the measure ‘ would yield the true
reflectors as shown in Fig. 2(a). In this example, the
continuity constraint excludes a local maximum of
the measure ‘, which enables the algorithm to
produce the correct reflectors. In general, assuming
that the basic method of finding reflectors without
the continuity constraint is suitable for most
reflectors, the continuity constraint further increases
the measure ‘ by excluding local maxima, as
demonstrated above. However, if the basic method
misplaces many reflectors, but the displacement is
small in randomly up and down directions, then we
may still expect that the continuity constraint would
increase the measure ‘, since the algorithm searches
for a continuous path closest to the misplaced
reflectors. If the displacement is large or tends to
one direction (up or down), then the continuity
constraint would generally be insufficient.

4.4. Parameter selection

The most important parameter that affects the
performance of the proposed algorithm is the
number of expected reflections. This number may
be set in advance based on prior knowledge. A
better strategy is choosing some threshold for the
increase in the fit to the data gained by a given path,
and including only paths that contribute ‘‘data-fit’’
above that threshold. The threshold parameter can
be set adaptively during the process according to the
distribution of data-fit contribution from continu-
ous paths.
5. Experimental results

5.1. High noise example

In this simulation 30 traces of 511 samples length
are generated by convolving a certain wavelet with a
pattern of reflectors. The pattern of reflectors,
shown in Fig. 3(b), is created according to the new
model presented in Section 2. The number of layers
is taken from a binomial distribution with para-
meters N ¼ 511 and l ¼ 0:05, and the parameter r

of the Markov model is 0:95.
The wavelet that is used in our simulations is

shown in solid line in Fig. 3(e). The traces are
corrupted by high level white Gaussian noise
ðSNR ¼ �15 dBÞ. The SNR is defined by SNR9
ðs2a=s

2
eÞ
P

kh2
½k�, where sa is the standard deviation

of the reflectors amplitudes, and se is the standard
deviation of the noise. A comparison is made
between the basic multichannel algorithm proposed
in [10] (with consideration of local continuities of
reflectors), and the new version proposed in this
work. The results are presented in Fig. 3.

It is clear from the results that the proposed
algorithm recovers the true reflectors more accu-
rately than the basic algorithm. Furthermore, the
wavelet estimate obtained by the proposed algo-
rithm is characterized by lower MSE ðMSE ¼
kh� ĥk2Þ. A comparison of Figs. 3(c) and (b) shows
that the basic algorithm generates false reflectors in
some areas, and misdetects true reflectors in other
areas. Hence, the improvement by using the proposed
algorithm is not related to the specific choice of
sparsity parameter in the basic algorithm, since a
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Fig. 3. Results of multichannel blind deconvolution obtained by using the basic and new algorithms in a high noise situation. (a) Received

noisy traces ðSNR ¼ �15 dBÞ, (b) true channels, (c) channel estimates obtained by using the basic algorithm, (d) channel estimates

obtained by using the proposed algorithm, (e) wavelet estimates obtained by using the basic algorithm, (f) wavelet estimates obtained by

using the proposed algorithm.
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larger sparsity parameter would cause additional true
reflectors to disappear, and a smaller sparsity
parameter would yield additional false reflectors.

5.2. No noise example

In this simulation 30 traces of 511 samples length
are generated by convolving the same wavelet as in the
previous example with a different pattern of reflectors,
shown in Fig. 4(b). The traces do not contain noise.
Applying the basic and proposed algorithms to the
data shown in Fig. 4(a) yields channel and wavelet
estimates as shown in Figs. 4(c)–(f).

The continuity constraint enables the proposed
algorithm to avoid some local maxima of the
optimality measure ‘ by excluding solutions with
non-continuous paths, as can be seen for example in
the middle part of the reflectivity pattern. The
absence of noise in this example enables to isolate
this effect from the effects of noise, but naturally
this effect also exists in the presence of noise.
5.3. Real data results

Fig. 5(a) shows real seismic data (courtesy of
GeoEnergy Inc., Texas) containing 110 traces of 551
samples long. The channel and wavelet estimates
obtained by using the basic and proposed algo-
rithms are presented in Fig. 5. Since the true layer
structure is unknown, one can only appreciate the
continuous nature of the channel estimates obtained
by using the proposed algorithm. After the end of
the computations it was found out that the wavelet
was zero phase, which clearly makes a compelling
argument for the new proposed algorithm.

6. Complexity of the proposed algorithm

Both the basic and the proposed algorithms
involve calculation of the quality measure ‘ for
new reflectors in all possible locations. This part of
the algorithms is the most time consuming, but is
performed once for every scan of channel estimates.
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Fig. 4. Results of multichannel blind deconvolution obtained by using the basic and new algorithms in a clean situation. (a) Received

clean traces, (b) true channels, (c) channel estimates obtained by using the basic algorithm, (d) channel estimates obtained by using the

proposed algorithm, (e) wavelet estimates obtained by using the basic algorithm, (f) wavelet estimates obtained by using the proposed

algorithm.
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In [10], the reflectors are updated during the
calculation, while in the proposed method the
computation of ‘ is completed for all channels,
and only afterwards the best path is included in the
channel estimate. Since a single path may be
supplemented after each calculation, the proposed
algorithm generally requires more iterations to
converge when compared to the basic algorithm.
However, assuming that distant paths are suffi-
ciently independent, i.e., jointly adding two distant
paths is approximately the same, in terms of quality,
as adding each path separately, we may accelerate
the convergence of the algorithm by adding or
removing after each iteration a few distant paths.

7. Limitations of the model

The main limitation of the proposed model and
algorithm is the assumption of paths that start at
column 1 and end at column M. In real situations
layers can end or start within the region of interest,
leave the region of interest at its top or bottom, and
also merge or split. These situations present a
problem for the proposed algorithm. However, if
reflectors’ amplitudes are sufficiently large, a con-
tinuous path of reflectors can still be extracted
which contains also an artificial continuation of the
path through the noise-only area. The artificial
extension of the path may also cross areas of
other layers. An improved model that accounts for
such phenomena and appropriate modification of
the estimation procedure are topics for future
research.

8. Conclusion

We have presented an improved algorithm for
multichannel blind deconvolution in seismic appli-
cations, where reflectors in channels are sparse and
laterally continuous. The improved performance,
compared to that obtained by an existing algorithm,
is achieved by combining the existing approach
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Fig. 5. (a) Real seismic data containing 110 traces of 551 samples long, (b) channel estimates obtained by using the basic algorithm,

(c) channel estimates obtained by using the proposed algorithm, (d) wavelet estimates obtained by using the basic algorithm, (e) wavelet

estimates obtained by using the proposed algorithm.
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with a dynamic programming method for finding
continuous lines in images. We have demonstrated
the robustness of the proposed algorithm to high
noise level, and the mechanism that enables exclud-
ing local maxima of the quality measure ‘. In return,
the proposed algorithm is characterized by higher
computational complexity and slower convergence
rate than the existing algorithm. In some applica-
tions the reflectors paths may vary more rapidly
between channels, which necessitates increasing the
parameter d. However, increasing the parameter d

relaxes the continuity constraint and accordingly
may reduce the benefits anticipated from the
proposed approach.
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