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Optimal Speech Enhancement Under Signal Presence
Uncertainty Using Log-Spectral Amplitude Estimator

Israel Cohen, Member, IEEE

Abstract—In this paper, we present anoptimally modifiedlog-
spectral amplitude estimator, which minimizes the mean-square
error of the log-spectra for speech signals under signal presence
uncertainty. We propose an estimator for thea priori signal-to-
noise ratio (SNR), and introduce an efficient estimator for thea
priori speech absence probability. Speech presence probability is
estimated for each frequency bin and each frame by a soft-decision
approach, which exploits the strong correlation of speech presence
in neighboring frequency bins of consecutive frames. Objective and
subjective evaluation confirm superiority in noise suppression and
quality of the enhanced speech.

Index Terms—Estimation, spectral analysis, speech enhance-
ment.

I. INTRODUCTION

RECENTLY, the use of a soft-decision gain modification
in speech enhancement algorithms has been the object of

considerable research. While traditional spectral enhancement
techniques estimate the clean speech spectrum under speech
presence hypothesis, a modified estimator, which incorporates
thea priori speech absence probability (SAP), generally yields
better performance [1]–[5].

The log-spectral amplitude (LSA) estimator, developed by
Ephraim and Malah [6], proved very efficient in reducing mu-
sical residual noise phenomena. Its modification under signal
presence uncertainty is obtained by multiplying the spectral gain
by the conditional speech presence probability, which is esti-
mated for each frequency bin and each frame [4]. Unfortunately,
the multiplicative modifier is not optimal [4]. Moreover, the in-
teraction between the estimate for thea priori signal-to-noise
ratio (SNR) and the estimate for thea priori SAP may deterio-
rate the performance of the speech enhancement system [3], [7],
[8].

An alternative approach [5] is to use a small fixeda priori
SAP, , and a multiplicative modifier, which is based
on theglobal conditional SAP in each frame. This modifier is
applied to thea priori anda posterioriSNRs. However, such a
modification is inconsistent with the statistical model, and may
not be sufficient due to the small value ofand the influence of
a few noise-only bins on the global SAP.

In this paper, we present anoptimally modified LSA
(OM-LSA) estimator. We introduce a new estimator for the
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a priori SNR, and propose an efficient estimator for the
a priori SAP. The spectral gain function is obtained as a
weighted geometric mean of the hypothetical gains associated
with signal presence and absence. Thea priori SAP is esti-
mated for each frequency bin and each frame by a soft-decision
approach, which exploits the strong correlation of speech
presence in neighboring frequency bins of consecutive frames.
Objective and subjective evaluation in various environmental
conditions show that the proposed modification approach is ad-
vantageous, particularly for low input SNRs and nonstationary
noise. Excellent noise reduction can be achieved even in the
most adverse noise conditions, while avoiding musical residual
noise and the attenuation of weak speech components.

II. OPTIMAL GAIN MODIFICATION

Let and denote speech and uncorrelated additive
noise signals, respectively. The observed signal is divided
into overlapping frames by the application of a window function
and analyzed using the short-time Fourier transform (STFT).
In the time-frequency domain we have

, where represents the frequency bin index, andthe
frame index. Given two hypotheses, and ,
which indicate respectively speech absence and presence, and
assuming a complex Gaussian distribution of the STFT coeffi-
cients for both speech and noise [2], the conditional PDFs of the
observed signal are given by

(1)

where and
denote respectively the variances of speech and

noise. Applying Bayes rule, the conditional speech presence
probability can be written as
[2]

(2)

where is the a priori probability for

speech absence, is the a priori

SNR, is thea posterioriSNR,
and .
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Let denote the spectral speech amplitude, and
its optimal estimate. Assuming statistically independent spectral
components [6], the LSA estimator is defined by

(3)

Based on the statistical model

(4)

When speech is absent, the gain is constrained to be larger than
a threshold , which is determined by a subjective criteria
for the noise naturalness. Accordingly,

(5)

When speech is present, the conditional gain function, defined
by

(6)

is derived in [6] to be

(7)

Substituting (5) and (6) into (3), the gain function for the
OM-LSA estimator is obtained by

(8)

It is worthwhile mentioning that trying to optimally modify
the spectral gain function for the LSA estimator without taking
into account a lower bound threshold ( ) results in a non-
multiplicative modification, which fails to provide a meaningful
improvement over using alone [4], [6].

III. A PRIORI SNR ESTIMATION

In this section we address the problem of thea priori SNR
estimation under speech presence uncertainty.

The decision-directed approach, proposed by Ephraim and
Malah [2], provides a useful estimation method for thea priori
SNR. Accordingly, if speech presence is assumed ,
then the expression

(9)

can be substituted for thea priori SNR, where is a weighting
factor that controls the tradeoff between noise reduction and
speech distortion [2], [9]. Under speech presence uncer-
tainty, this expression estimates anonconditional a priori
SNR , and therefore the
estimate for thea priori SNR should be given by

[2], [4]. However, the division by

TABLE I
VALUES OF PARAMETERS USED FOR THEESTIMATION OF THE A PRIORI

SPEECHABSENCEPROBABILITY

may introduce interaction between the estimated
and the a priori SNR, generally deteriorating the

performance of the speech enhancement system [3], [7], [8].
In [3], [10], it was suggested to simply estimate thea priori

SNR by , rather than , even though
the latter better approximates an unbiased estimate for .
Here, we propose the following estimator:

(10)

The use of , instead of , boosts the
gain up when speech is present, which provides a compensation
for not dividing by . By definition, if is true,
then the spectral gain should degenerate to ,
and thea priori SNR estimate should coincide with . On
the contrary, if is true, then should decrease
to , or equivalently thea priori SNR estimate should be as
small as possible. This is satisfied more favorably by the pro-
posed rather than by [8].

IV. A PRIORI SAP ESTIMATION

In this section we derive an efficient estimator for the
a priori SAP. This estimator uses a soft-decision approach to
compute three parameters based on the time-frequency distri-
bution of the estimateda priori SNR, . The parameters
exploit the strong correlation of speech presence in neighboring
frequency bins of consecutive frames.

Let be a recursive average of thea priori SNR with a
time constant

(11)

By applying local and global averaging windows in the fre-
quency domain, we obtain, respectively, local and global aver-
ages of thea priori SNR:

(12)

where the subscript designates either “local” or “global,” and
is a normalized window of size . We define two

parameters, and , which represent the
relation between the above averages and the likelihood of speech
in the th frequency bin of theth frame. These parameters are
given by

if

if

otherwise

(13)
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Fig. 1. Comparison of speech estimators, OM-LSA (solid), MM-LSA (dashdot), LSA (dashed), and STSA (dotted), for various noise types and levels. Average
segmental SNR improvement for: (a) white Gaussian noise, (b) car interior noise, and (c) F16 cockpit noise.

where and are empirical constants, maximized to at-
tenuate noise while maintaining weak speech components.

In order to further attenuate noise in noise-only frames, we
define a third parameter, , which is based on the
speech energy in neighboring frames. An averaging of
in the frequency domain (possibly over a certain frequency
band) yields

(14)

To prevent clipping of speech onsets or weak components,
speech is assumed whenever increases. Clipping of
weak speech tails is prevented by delaying the transition from

to , and allowing for a certain decrease in the value of
. A pseudocode for the computation of is given

by,

where

if

if

otherwise

(15)

represents a soft transition from “speech” to “noise,” is a
confined peak value of , and and are empir-
ical constants that determine the delay of the transition.

The proposed estimate for thea priori SAP is obtained by

(16)

Accordingly, is larger if either previous frames, or
recent neighboring frequency bins, do not contain speech.
When , the conditional speech presence probability

by (2), and consequently the gain function reduces

to by (8). Therefore, to reduce the possibility of speech
distortion we restrict to be smaller than a threshold

( ).

V. PERFORMANCEEVALUATION AND DISCUSSION

The OM-LSA estimator is combined with the proposeda
priori SNR and SAP estimators, and compared to the LSA [6],
short-time spectral amplitude(STSA) [2], andmultiplicatively
modified LSA (MM-LSA) [4] estimators. The evaluation
consists of an objective segmental SNR measure, a subjective
study of speech spectrograms and informal listening tests.
Three different noise types, taken from Noisex92 database,
are used: white Gaussian noise, car noise, and F16 cockpit
noise. The performance results are averaged out using six
different utterances, taken from the TIMIT database. Half of
the utterances are from male speakers and half are from female
speakers.

The speech signals, sampled at 16 kHz, are degraded by
the various noise types with segmental SNRs in the range

dB. The STFT is implemented with Hamming
windows of 512 samples length (32 ms) and 128 samples
frame update step. Thea priori SNR is estimated using the
decision-directed approach with , where the proposed
algorithm employs the new estimator (10). The spectral gain is
restricted to a minimum of 20 dB, and the noise statistics is
assumed to be known (recursively smoothed periodogram with
a forgetting factor set to 0.9). Values of parameters used for the
estimation of thea priori SAP are summarized in Table I.

Fig. 1 shows the average segmental SNR improvement
obtained for various noise types and at various noise levels.
The OM-LSA estimator, combined with the proposeda priori
SNR and SAP estimators, achieves the best results under all
noise conditions. The advantage is more significant for low
SNRs. The segmental SNR measure takes into account both
residual noise and speech distortion. It lacks indication about
the structure of the residual noise. A subjective comparison,
conducted using speech spectrograms and validated by in-
formal listening tests, confirms the improvement obtained by
the proposed method [8]. In contrast to other methods, where
abrupt bursts of noise generally produce higha posterioriSNRs
and high spectral gains, resulting in musical noise phenomena,
the proposed method attenuates noise by identifying noise-only
regions ( ) and reducing the gain correspondingly to

. Yet, it avoids the attenuation of weak speech components
by letting descend to zero in speech regions.
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