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SUMMARY where:k is the well known convolution operator anth] are
independent and identically distributed (i.i.d) additihite

Seismic deconvolution is associated with recovering tflece Gaussian noise (AWGN), i.eu[n] ~ .4 (0,62).

tivity series from a seismic signal when the wavelet is known

In this paper, we address the problem of multichannel semi- Ve assume an array of seismic channels, all share the same
blind seismic deconvolution, where the wavelet is unknown Waveletand the noise in the channels are statisticallypede

and there is some uncertainty in the assumed wavelet. Wedent and identically distributed. Denoting bthe channel in-

present a novel, two-stage iterative algorithm that reove d€X we get the following set of input-output relations:
bot_h th_e reflectivity anpl the wavelet. Whlle the refl_ectlvny s[n] = ri[n] s w[n] +vi[n], 1<i<N. @)
series is recovered using sparse modeling of the signal, the

wavelet is recovered usirfg minimization, exploiting the fact ~ We can write[(R) in the following vector-matrix form:

that all channels share the same wavelet. )
s =Wri+vj, 1<i<N (3)

wheres € RNtN—1 s a vector representation of the seis-
INTRODUCTION mic signals[n], 1<n< N +Ny—1, ri e RV is a vec-

tor representation of the reflectivity signa[n], 1< n <N,
Deconvolution and kernel estimation are two problems com- W e R(N+Nv—1)xNr s the convolution matrix ofv[n], and
mon to many fields, including engineering, physics and aether v; e RN+N—1 is a vector representation of the noise signal
Different approaches for solving the problems can be found vi[n], 1< n <Ny +Ny — 1.
in the literature depending on the specific problem, the a pri ) ) )
ori knowledge and the different assumptions made about the The goal of the basic problem is to recoverfrom s while
signals. The basic idea is that a signal goes through a linearssuming full knowledge otV and oy. This problem has
system (defined by the kernel), the output of the linear sys- been widely investigated and is called the deconvolutiabpr
tem is contaminated by some noise and the goal is to recover®M. A wide variety of solutions have been proposed to
the kernel and the input signal. Kernel estimation problems SCIVe this problem, depending on the model of the signal
assume to know the signal and aim to find the kernel, while N Seismic deconvolution, assuming a sparse modelrfor
deconvolution problems assume to know the kernel and aim to SParse deconvolution methods have been proposed. One of

find the signal. them is Basis Pursuit Denoising (Elad, 2010; Gill et[al., 201
Lu and Vaswanl, 2010; Dai and Pelckmans, 2012), which is an
Our discussion is on seismic signals. An interesting way of approach that solves the following optimization problem:
modeling can be as follows: A series of impulses are gener-

ated in the undergrogr)d. Iayerg of the earth. This series goes £ = min 1 HAX—YHg +A x4 (4)
through the earth until it is received on the surface by aayarr X2

of seismic sensors. The kernel defining the channel traderse when we know thay = Ax +b.

by the impulse series is called the wavelet, which is definedb P

the seismic source. This kind of modeling in the literatwre i Minimization of the termf|Ax —y||3 maintains fidelity to the
used often as a convenient approach to seismic modeling, forobservations, and minimization of the terf®||; maintains
example in3). The recorded data, in the form of SParsity of the recovered signal. The paramateontrols the
seismic traces, are analyzed, and interesting parametees-a trade-off between them. The minimization problem can also
tracted to improve understanding of the layer structuraneh € presented in the following form:

nel modeling in that particular area and so on. In some cases
it is also common to transmit a very short (in the time domain)
pulse from the surface, let it traverse the earth channiécte

off one of the layers and return to the surface.

A .
X=min x|, st |Ax—yl,<e (5)
wheree controls the above-mentioned trade-off.

In our case, we do not have full knowledgefof We haveA’,
a noisy version ofA, which holds the relatiod = A’ — Ay,
PROBLEM FORMULATION whereAy represents the uncertaintyAn Later on we address

) the problem with a specific definition & .
We denote the earth’s impulse response, the wavelet| bly

The reflectivity series and the seismic data are denotedihy
andg[n], respectively. The input-output relation between the MULTICHANNEL SEMI-BLIND DECONVOLUTION
reflectivity series, the wavelet and the seismic data arengiv
by Our purpose is to establish a general method for the Semi-
s{n] = r[n] sk w[n] + v[n] 1) Blind Deconvolution problem and to specifically analyze a
case of wavelet uncertainty as shown later. First, we iniced
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the general method. The method relies on the different model
ing of each of the recovered signals. We know nothing about
the reflectivity signal besides the fact that it is sparsejdver

we assume to know the wavelet up to some level of noise. The

noise can be additive to the wavelet signal or intrinsic te oh

the parameters that form the wavelet model, or any otheenois
that can be mathematically formulated. We assume non-&pars
representation of the wavelet signal and choose to work with
the ¢, minimization for wavelet recovery. This method was

problem. In our case we first define a new tevfna§the sum
of the noise elements:

Nr+Ny—1
Y= ), Min (10)
n=1
and nowe will be the standard deviation of:
& =0y =1/E( —EV)? (11)

adapted to best fit our problem. The method we propose is anwhereE is the expectation operator.

iterative method, with two steps in each iteration, as fe$io

1. Assume to know the wavelet and use the sparse deconvolu
tion method to recover the reflectivity signal.

2. Assume to know the reflectivity and use theminimiza-
tion method to recover the wavelet.

In the first step we chose to work with the BPDN method for
recovering sparse signals. As mentioned before regartiag t
method, the most important thing is to choose the trade-off
parameter wisely. Our method relies on the fact that therince
tainty in the wavelet is represented as additive noise tértle
wavelet.

We now introduce the general method of choosing the trade-
off parameter when assuming additive noise to the wavelet
and later on we demonstrate this method for a specific case
Denote byw € RN the vector representation of the signal
w[n], 1< n< Ny. The additive noise to the wavelet is de-
noted byw, € R™ and the corresponding convolution matrix
isWy e RIN+Nu=1)xNr 1y the same way we denote the initial
wavelet we are given and its corresponding convolutionimatr
asw’ € RM andwW’ € RN+Na—1)xNr 50 e get the relation,

W =W’ —W,. (6)

Substituting[(6) into[(3) we get,

§ =Wrj+vi = (W —Wy)ri +vi = Wrj +vi —Wyri. (7)

Looking at this relation,

S = W'ri + Vi —Wyr; 8)

we can identify thatV’ is our assumed wavelet, amg— W,

is the term that represents the noise, or uncertainty, ipribie-
lem. For a wise choice of the trade-off parameter, variance
analysis must be performed for that term. A major issue we
have identified is that in each iteration the variance of tire u

For the second step, we assume the reflectivity series and aim
to recover the wavelet. Unlike the first step, here we can-
not apply BPDN, or any other sparse deconvolution method
for that matter. The simple reason is that the wavelet is not
a sparse signal. We look at this problem from another point
of view, dictionary learning. Dictionary learning is a btba
field that can provide many insights on how to update the
wavelet. Several ideas were tested accordin;ZOlO

' rd, 20111; Skretting and Engan, |2010; Lloyd,
[1982).

The seismic data can be considered a linear combination of
the columns ofW, the dictionary, where the reflectivity se-
ries can be treated as the coefficients. This makes sense be-
cause the columns 8¥ are shifted versions af. With that in

mind, finding the wavelet when the reflectivity series is know

-can be treated by methods from the field of dictionary learn-

ing, as the purpose of this stage is to update and Igérn
(defined directly byw). We use a method of dictionary up-
date based on the Signature Dictionary as described inl(Elad
M). Specifically, we would like to minimize tHg expres-
sion>N ; [|s —Wri||3, where{s} ; and{r;}N , are known
and the k-th column oV, denoted by, is a shifted version

of w, i.e.,wx = Rgw where

Ok—1xNy,
TN >Ny
ON, —kxx Ny
This minimization problem was solved iIlO) to ob-
tain the optimalwv, although solved for differerRy matrices.

Accordingly we get the following solution:

-1
N
[Zfi[k]fi[i]] R(R;
1Lli=1

Rk (12)

Nr

wOoPt — Z

k=1]

Ny N N

DY nKIRE s

i=1k=1
(13)

from which we can update the matii.

certainty term can be changed and a wise adaptation to thatThis step is common to all different kinds of uncertainties i
trade-off parameter needs to be made. We denote the new nois¢he wavelet since the true wavelet model and its conneation t

term as,
/
Vi = Vi —Wyrj.

9)

the seismic data are not affected by wavelet uncertainty.

Now we proceed with analyzing a specific case of wavelet un-

For the first step we assume to know the wavelet and recovercertainty: AWGN contamination of the wavelet. The model

the reflectivity series. As mentioned before, this is done by
applying the BPDN solution to our problem. The literature
does not prove, nor imply, a generic analysis for choosieg th

we are assuming is as follows:

w = w-+wy (14)

trade-off parameter, but it is clear that this parameter has \here the elements ofy are i.i.d and normally distributed
a strong relation to the standard deviation of a more general it 3 known variance. i.e.

definition of a term that accounts for all noise elements @ th

Wy[K] ~ A4(0,02), 1<k< Ny (15)
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In addition we assume that, and{v; iN:1 are statistically in-
dependent. We recall that our purpose is to ch@paecording

to (I0) and[(I1L). In this case we have the exact form &glin (6)
so no further adaptations need to be made to fit the proposed

model and method.

Recall that
wy[1] 0o - 0
wy[2] wy[1] 0
. (2] .
Wy [Nw] 0
Wy = 0 Wy [Nw] wy[1]
0 0 wW[2]
0
0 0 W[N]

Substituting this into[{9) we obtain

3
VK = vk = > wlk—j+2]ri[j], 1<k<Ne+Ny—1
=1
J (16)
Substituting this intd(1I0) we get,
Nr+Ny—1 Ny /N
V=3 vinl-3; (Zﬁ['ﬂ) wlj]. @7
n=1 j=1 \k=1

We can see that is a linear combination of independent nor-
mally distributed random variables, so we can directly wbta
the variance and the standard deviationjof —

Ne+Ny—1 No / Ne 2
oF = a\i[,]+2<2ri[k]> o2 (18)
n=1 j=1 \k=1
N, 2
= (Nr+NW—1)oV2+NW<Zri[k]> a2
k=1

and now we can obtaig from (11):

\
(Ny +NW_1)O_\?+NW <Z
k=1

&

2
I [k]) o2. (19

Notice the dependence ar and gy, which varies from iter-
ation to iteration. We show an easy way to updafein each
iteration to best fit to the current iteration. Updating, is not
trivial and has no analytical solution to date, so in our eyst
we assumey, remains constant from one iteration to the next.
To updateo,, we analyze the current wavelet that was recov-
ered from the last iteration and the initial wavelet that was
given to us. The initial wavelety;,i; and the current wavelet,
Weurr, €an be modeled as,

Winit = W+ Wy

Weurr = W + W, (20)

where we assume that,[k] ~ .#7(0,62),1 < k < Ny and
W [K] ~ 4 (0,042) ,1 < k< Ny. We knoway, and aim to find

oy,- We recall that we holdviiy andweyr fixed, and analyze
the following term,

2
Winit —=Weurel3 = [[w+wy — (W+w)[5 (1)
= Nu|od+(a0)7].
It is easy to see that we can extraxy,
/ 1 2 2
Oy = N_w [|Winit —Weurr||5 — 0. (22)

Now we can updatey, at the beginning of each iteration.

RESULTSAND DISCUSSION

In this section we describe the experimental results obthin
from testing the performances of Multichannel Semi-blind
Sparse Deconvolution (MSSD). We focus on synthetic data.
Synthetic reflectivity sequences were created using theemod
presented in| (Idier and Gousdard, 1993) with signal-tseoi
ratio (SNR) varied in the range-0 —20 dB. Fifty channels
were created using the Ricker wavelet. We observed the re-
sults in terms of the correlation between the recoveredaefle
tivity and the original reflectivity, and compared them te th
case where we assume a fixed wavelet. The fixed wavelet

was tested with the SSI (Dossal and Mallat, 2005; Taylor]et al

11979} Oldenburg et al.. 1986) and SM cchi,
2014) algorithms. The SSI represented the non-blind direct

and the SMBD represented the blind directive in our compar-
ison. The comparison showed without doubt that MSSD out-
performed both SSI and SMBD.

In the next figures we present some results related to an exam-
ple of SNR =20 dB andy, = 0.15.

In we show the seismic data as was received in the
seismic sensors. The seismic data is a result of the coimolut
between the true reflectivity and the true wavdlet. Figlire-2 e
amines the reflectivity recovered using MSSD. Even without
a quantitative measure we can see that the signal outliees ar
recovered nicely using MSSD. At certain points we can see
that MSSD has created discontinuities, for example near-cha
nel number 13 at time 25 and channel number 20 at time 170.
These discontinuities are due to the fact that each chasirel i
covered irrespective of its neighbors; the neighbors deenta
into account only at the stage of wavelet estimation.

examines a “low-level” effect of the MSSD recovery
by focusing on a specific channel. We notice the difficulty in
recovering adjacent impulses, such as samples 64 and . Thi
is because the wavelet is wide (in the time domain) so it is
difficult to distinguish between two close impulses.

examines the estimation of the wavelet. We recall

that MSSD is a two-stage algorithm, where the second stage
is wavelet recovery. Here we can see the initial wavelet that

was provided at the beginning and the estimated wavelédt, bot

compared to the true wavelet. We can see that the estimation
of the wavelet is almost perfect.
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Figure 1:SNR = 20 dB, oy = 0.15, (a) Seismic Data; (b) true
(original) reflectivity.

SUMMARY AND CONCLUSIONS
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Figure 2: SNR = 20 dB, g = 0.15: Recovered reflectivity

using MSSD.
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Figure 3: SNR = 20 dB, gy = 0.15: MSSD recovered reflec-

In this study we presented a new deconvolution method basedtivity compared to the original reflectivity, for a specifiban-

on a two-stage iterative process that recovers the refiigctiv
series from the seismic data given a wavelet containing some
kind of an uncertainty. We presented a general two-stage me-
thod, where one of the steps is fixed at the wavelet recovery
stage, and the other is semi-fixed at the reflectivity regover
stage. The recovery of the reflectivity is semi-fixed becanise
general the method does not change from one type of signal
to another; they all apply the BPDN solution for reflectivity
recovery. The part in this stage that does change is the way
we choose the trade-off parameter in the BPDN solution. In
this study we have presented one case in which we analyticall
calculated the trade-off parameter. We compared our method
to blind and non-blind methods. The results clearly show the
advantage and logic behind MSSD. Also, we presented a more
detailed example and discussed some effects of our method.
The immediate conclusion is that a stage of wavelet update is
necessary and that the performance of our proposed method fo
both wavelet and reflectivity series recovery is very prangs

nel.

0.5 " T
= True wavelet
0.4 %« | — — Estimated wavelet|]
i |nitial wavelet
0.3f
0.2
0.1p

Amplitude

N
"y}
«

10 20 30 40 50
Time [Sample]

Figure 4: Wavelet estimatio®NR = 20 dB, g, = 0.15.
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