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SUMMARY

Seismic deconvolution is associated with recovering the reflec-
tivity series from a seismic signal when the wavelet is known.
In this paper, we address the problem of multichannel semi-
blind seismic deconvolution, where the wavelet is unknown
and there is some uncertainty in the assumed wavelet. We
present a novel, two-stage iterative algorithm that recovers
both the reflectivity and the wavelet. While the reflectivity
series is recovered using sparse modeling of the signal, the
wavelet is recovered usingℓ2 minimization, exploiting the fact
that all channels share the same wavelet.

INTRODUCTION

Deconvolution and kernel estimation are two problems com-
mon to many fields, including engineering, physics and others.
Different approaches for solving the problems can be found
in the literature depending on the specific problem, the a pri-
ori knowledge and the different assumptions made about the
signals. The basic idea is that a signal goes through a linear
system (defined by the kernel), the output of the linear sys-
tem is contaminated by some noise and the goal is to recover
the kernel and the input signal. Kernel estimation problems
assume to know the signal and aim to find the kernel, while
deconvolution problems assume to know the kernel and aim to
find the signal.

Our discussion is on seismic signals. An interesting way of
modeling can be as follows: A series of impulses are gener-
ated in the underground layers of the earth. This series goes
through the earth until it is received on the surface by an array
of seismic sensors. The kernel defining the channel traversed
by the impulse series is called the wavelet, which is defined by
the seismic source. This kind of modeling in the literature is
used often as a convenient approach to seismic modeling, for
example in (Mendel, 2013). The recorded data, in the form of
seismic traces, are analyzed, and interesting parameters are ex-
tracted to improve understanding of the layer structure, chan-
nel modeling in that particular area and so on. In some cases
it is also common to transmit a very short (in the time domain)
pulse from the surface, let it traverse the earth channel, reflect
off one of the layers and return to the surface.

PROBLEM FORMULATION

We denote the earth’s impulse response, the wavelet, bywrns.
The reflectivity series and the seismic data are denoted byrrns
andsrns, respectively. The input-output relation between the
reflectivity series, the wavelet and the seismic data are given
by

srns � rrns�wrns� vrns (1)

where� is the well known convolution operator andvrns are
independent and identically distributed (i.i.d) additivewhite
Gaussian noise (AWGN), i.e.,vrns � N p0,σ2

v q.

We assume an array ofN seismic channels, all share the same
wavelet and the noise in the channels are statistically indepen-
dent and identically distributed. Denoting byi the channel in-
dex, we get the following set of input-output relations:

sirns � rirns�wrns� virns, 1¤ i ¤ N. (2)

We can write (2) in the following vector-matrix form:

si � Wri�vi, 1¤ i ¤ N (3)

where si P R
Nr�Nw�1 is a vector representation of the seis-

mic signal sirns, 1 ¤ n ¤ Nr � Nw � 1, ri P R
Nr is a vec-

tor representation of the reflectivity signalrirns, 1¤ n ¤ Nr,
W P R

pNr�Nw�1q�Nr is the convolution matrix ofwrns, and
vi P R

Nr�Nw�1 is a vector representation of the noise signal
virns, 1¤ n ¤ Nr �Nw�1.

The goal of the basic problem is to recoverri from si while
assuming full knowledge ofW and σv. This problem has
been widely investigated and is called the deconvolution prob-
lem. A wide variety of solutions have been proposed to
solve this problem, depending on the model of the signalri.
In seismic deconvolution, assuming a sparse model forri,
sparse deconvolution methods have been proposed. One of
them is Basis Pursuit Denoising (Elad, 2010; Gill et al., 2011;
Lu and Vaswani, 2010; Dai and Pelckmans, 2012), which is an
approach that solves the following optimization problem:

^

x � min
x

1
2
‖Ax�y‖2

2�λ ‖x‖1 (4)

when we know thaty � Ax�b.

Minimization of the term‖Ax�y‖2
2 maintains fidelity to the

observations, and minimization of the term‖x‖1 maintains
sparsity of the recovered signal. The parameterλ controls the
trade-off between them. The minimization problem can also
be presented in the following form:

^

x � min
x

‖x‖1 s.t. ‖Ax�y‖2   ε (5)

whereε controls the above-mentioned trade-off.

In our case, we do not have full knowledge ofA. We haveA1,
a noisy version ofA, which holds the relationA � A1

�Av,
whereAv represents the uncertainty inA. Later on we address
the problem with a specific definition ofAv.

MULTICHANNEL SEMI-BLIND DECONVOLUTION

Our purpose is to establish a general method for the Semi-
Blind Deconvolution problem and to specifically analyze a
case of wavelet uncertainty as shown later. First, we introduce
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the general method. The method relies on the different model-
ing of each of the recovered signals. We know nothing about
the reflectivity signal besides the fact that it is sparse, however
we assume to know the wavelet up to some level of noise. The
noise can be additive to the wavelet signal or intrinsic to one of
the parameters that form the wavelet model, or any other noise
that can be mathematically formulated. We assume non-sparse
representation of the wavelet signal and choose to work with
the ℓ2 minimization for wavelet recovery. This method was
adapted to best fit our problem. The method we propose is an
iterative method, with two steps in each iteration, as follows:

1. Assume to know the wavelet and use the sparse deconvolu-
tion method to recover the reflectivity signal.

2. Assume to know the reflectivity and use theℓ2 minimiza-
tion method to recover the wavelet.

In the first step we chose to work with the BPDN method for
recovering sparse signals. As mentioned before regarding this
method, the most important thing is to choose the trade-off
parameter wisely. Our method relies on the fact that the uncer-
tainty in the wavelet is represented as additive noise to thetrue
wavelet.

We now introduce the general method of choosing the trade-
off parameter when assuming additive noise to the wavelet
and later on we demonstrate this method for a specific case.
Denote byw P R

Nw the vector representation of the signal
wrns, 1¤ n ¤ Nw. The additive noise to the wavelet is de-
noted bywv P R

Nw and the corresponding convolution matrix
is Wv PR

pNr�Nw�1q�Nr . In the same way we denote the initial
wavelet we are given and its corresponding convolution matrix
asw1

PR
Nw andW1

P R
pNr�Nw�1q�Nr so we get the relation,

W � W1

�Wv. (6)

Substituting (6) into (3) we get,

si � Wri �vi � pW1

�Wvqri �vi � W1ri �vi �Wvri. (7)

Looking at this relation,

si � W1ri �vi �Wvri (8)

we can identify thatW1 is our assumed wavelet, andvi�Wvri

is the term that represents the noise, or uncertainty, in theprob-
lem. For a wise choice of the trade-off parameter, variance
analysis must be performed for that term. A major issue we
have identified is that in each iteration the variance of the un-
certainty term can be changed and a wise adaptation to that
trade-off parameter needs to be made. We denote the new noise
term as,

v1i � vi �Wvri. (9)

For the first step we assume to know the wavelet and recover
the reflectivity series. As mentioned before, this is done by
applying the BPDN solution to our problem. The literature
does not prove, nor imply, a generic analysis for choosing the
trade-off parameter,ε, but it is clear that this parameter has
a strong relation to the standard deviation of a more general
definition of a term that accounts for all noise elements in the

problem. In our case we first define a new term, ¯v1i , as the sum
of the noise elements:

v̄1i �
Nr�Nw�1
¸

n�1

v1irns (10)

and nowε will be the standard deviation of ¯v1i :

εi � σv̄1

i
�

b

Epv̄1i �Ev̄1iq
2 (11)

whereE is the expectation operator.

For the second step, we assume the reflectivity series and aim
to recover the wavelet. Unlike the first step, here we can-
not apply BPDN, or any other sparse deconvolution method
for that matter. The simple reason is that the wavelet is not
a sparse signal. We look at this problem from another point
of view, dictionary learning. Dictionary learning is a broad
field that can provide many insights on how to update the
wavelet. Several ideas were tested according to (Elad, 2010;
Tosic and Frossard, 2011; Skretting and Engan, 2010; Lloyd,
1982).

The seismic data can be considered a linear combination of
the columns ofW, the dictionary, where the reflectivity se-
ries can be treated as the coefficients. This makes sense be-
cause the columns ofW are shifted versions ofw. With that in
mind, finding the wavelet when the reflectivity series is known
can be treated by methods from the field of dictionary learn-
ing, as the purpose of this stage is to update and learnW
(defined directly byw). We use a method of dictionary up-
date based on the Signature Dictionary as described in (Elad,
2010). Specifically, we would like to minimize theℓ2 expres-
sion

°N
i�1‖si �Wri‖

2
2, wheretsiu

N
i�1 andtriu

N
i�1 are known

and the k-th column ofW, denoted bywk, is a shifted version
of w, i.e.,wk � Rkw where

Rk �

�

�

0k�1�Nw

INw�Nw

0Nr�k�Nw

�


. (12)

This minimization problem was solved in (Elad, 2010) to ob-
tain the optimalw, although solved for differentRk matrices.
Accordingly we get the following solution:

wopt
�

�

�

Nŗ

k�1

Nŗ

j�1

�

Ņ

i�1

rirksrir js

�

RT
k R j

�




�1
Ņ

i�1

Nŗ

k�1

rirksRT
k si

(13)
from which we can update the matrixW.

This step is common to all different kinds of uncertainties in
the wavelet since the true wavelet model and its connection to
the seismic data are not affected by wavelet uncertainty.

Now we proceed with analyzing a specific case of wavelet un-
certainty: AWGN contamination of the wavelet. The model
we are assuming is as follows:

w1

� w�wv (14)

where the elements ofwv are i.i.d and normally distributed
with a known variance, i.e.,

wvrks �N p0,σ2
wq, 1¤ k ¤ Nw. (15)
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In addition we assume thatwv andtviu
N
i�1 are statistically in-

dependent. We recall that our purpose is to chooseεi according
to (10) and (11). In this case we have the exact form as in (6)
so no further adaptations need to be made to fit the proposed
model and method.

Recall that

Wv �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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.

Substituting this into (9) we obtain

v1irks � virks�
ķ

j�1

wvrk� j�1srir js, 1¤ k ¤ Nr �Nw �1.

(16)
Substituting this into (10) we get,

v̄1i �
Nr�Nw�1
¸

n�1

virns�
Nw̧

j�1

�

Nŗ

k�1

rirks

�

wvr js. (17)

We can see that ¯v1i is a linear combination of independent nor-
mally distributed random variables, so we can directly obtain
the variance and the standard deviation of ¯v1i :

σ2
v̄1

i
�

Nr�Nw�1
¸

n�1

σ2
virls

�

Nw̧

j�1

�

Nŗ

k�1

rirks

�2

σ2
w (18)

� pNr �Nw�1qσ2
v �Nw

�

Nŗ

k�1

rirks

�2

σ2
w

and now we can obtainεi from (11):

εi �

g

f

f

e

pNr �Nw�1qσ2
v �Nw

�

Nŗ

k�1

rirks

�2

σ2
w . (19)

Notice the dependence onσv andσw, which varies from iter-
ation to iteration. We show an easy way to updateσw in each
iteration to best fitε to the current iteration. Updatingσv is not
trivial and has no analytical solution to date, so in our system
we assumeσv remains constant from one iteration to the next.
To updateσw we analyze the current wavelet that was recov-
ered from the last iteration and the initial wavelet that was
given to us. The initial wavelet,winit and the current wavelet,
wcurr, can be modeled as,

winit � w�wv
wcurr� w�w1

v
(20)

where we assume thatwvrks � N p0,σ2
wq,1 ¤ k ¤ Nw and

w1vrks �N
�

0,σ 12
w
�

,1¤ k ¤Nw. We knowσw and aim to find

σ 1

w. We recall that we holdwinit andwcurr fixed, and analyze
the following term,

‖winit �wcurr‖
2
2 �

∥

∥w�wv �
�

w�w1

v
�

∥

∥

2
2 (21)

� Nw

�

σ2
w�

�

σ 1

w

�2
�

.

It is easy to see that we can extractσ 1

w,

σ 1

w �




1
Nw

‖winit �wcurr‖
2
2�σ2

w. (22)

Now we can updateσw at the beginning of each iteration.

RESULTS AND DISCUSSION

In this section we describe the experimental results obtained
from testing the performances of Multichannel Semi-blind
Sparse Deconvolution (MSSD). We focus on synthetic data.
Synthetic reflectivity sequences were created using the model
presented in (Idier and Goussard, 1993) with signal-to-noise
ratio (SNR) varied in the range 0��20 dB. Fifty channels
were created using the Ricker wavelet. We observed the re-
sults in terms of the correlation between the recovered reflec-
tivity and the original reflectivity, and compared them to the
case where we assume a fixed wavelet. The fixed wavelet
was tested with the SSI (Dossal and Mallat, 2005; Taylor et al.,
1979; Oldenburg et al., 1986) and SMBD (Kazemi and Sacchi,
2014) algorithms. The SSI represented the non-blind directive
and the SMBD represented the blind directive in our compar-
ison. The comparison showed without doubt that MSSD out-
performed both SSI and SMBD.

In the next figures we present some results related to an exam-
ple of SNR = 20 dB andσw � 0.15.

In Figure 1 we show the seismic data as was received in the
seismic sensors. The seismic data is a result of the convolution
between the true reflectivity and the true wavelet. Figure 2 ex-
amines the reflectivity recovered using MSSD. Even without
a quantitative measure we can see that the signal outlines are
recovered nicely using MSSD. At certain points we can see
that MSSD has created discontinuities, for example near chan-
nel number 13 at time 25 and channel number 20 at time 170.
These discontinuities are due to the fact that each channel is re-
covered irrespective of its neighbors; the neighbors are taken
into account only at the stage of wavelet estimation.

Figure 3 examines a “low-level” effect of the MSSD recovery
by focusing on a specific channel. We notice the difficulty in
recovering adjacent impulses, such as samples 64 and 70. This
is because the wavelet is wide (in the time domain) so it is
difficult to distinguish between two close impulses.

Figure 4 examines the estimation of the wavelet. We recall
that MSSD is a two-stage algorithm, where the second stage
is wavelet recovery. Here we can see the initial wavelet that
was provided at the beginning and the estimated wavelet, both
compared to the true wavelet. We can see that the estimation
of the wavelet is almost perfect.
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Figure 1:SNR � 20 dB,σw � 0.15, (a) Seismic Data; (b) true
(original) reflectivity.

SUMMARY AND CONCLUSIONS

In this study we presented a new deconvolution method based
on a two-stage iterative process that recovers the reflectivity
series from the seismic data given a wavelet containing some
kind of an uncertainty. We presented a general two-stage me-
thod, where one of the steps is fixed at the wavelet recovery
stage, and the other is semi-fixed at the reflectivity recovery
stage. The recovery of the reflectivity is semi-fixed becausein
general the method does not change from one type of signal
to another; they all apply the BPDN solution for reflectivity
recovery. The part in this stage that does change is the way
we choose the trade-off parameter in the BPDN solution. In
this study we have presented one case in which we analytically
calculated the trade-off parameter. We compared our method
to blind and non-blind methods. The results clearly show the
advantage and logic behind MSSD. Also, we presented a more
detailed example and discussed some effects of our method.
The immediate conclusion is that a stage of wavelet update is
necessary and that the performance of our proposed method for
both wavelet and reflectivity series recovery is very promising.
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Figure 2: SNR � 20 dB, σw � 0.15: Recovered reflectivity
using MSSD.

0 20 40 60 80 100 120
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [Sample]

A
m

pl
itu

de

 

 

Recovered reflectivity
True reflectivity

Figure 3:SNR � 20 dB,σw � 0.15: MSSD recovered reflec-
tivity compared to the original reflectivity, for a specific chan-
nel.
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Figure 4: Wavelet estimation,SNR � 20 dB,σw � 0.15.
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