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SUMMARY

In this paper we introduce a multichannel blind deconvolution
algorithm for the restoration of two-dimensional (2D) seis-
mic data. This algorithm is based on a 2D reflectivity prior
model, which takes into account the spatial dependency be-
tween neighboring traces. Each reflectivity column is esti-
mated from the corresponding observed trace using the esti-
mate of the preceding reflectivity column and a modified max-
imum posterior mode (MPM) algorithm. The MPM algorithm
employs a Gibbs sampler to simulate realizations of seismic re-
flectivities. We apply the algorithm to synthetic and real data,
and demonstrate improved results compared to those obtained
by a single-channel deconvolution method.

INTRODUCTION

Multichannel blind seismic deconvolution aims at restoring
a two-dimensional (2D) reflectivity section and an unknown
seismic pulse (wavelet) from 2D observed seismic data. Un-
der simplifying assumptions, the seismic data can be modeled
as a result of convolution between the reflectivity section and
a one-dimensional (1D) seismic wavelet, degraded by additive
noise.

Many methods rely on the assumption that the wavelet is a
1D vertical signal and break the multichannel deconvolution
problem into independent 1D deconvolution problems. Ko-
rmylo and Mendel (1982) use second order statistics meth-
ods to estimate an autoregressive moving average wavelet and
the Single Most Likely Replacement (SMLR) algorithm to re-
cover a Bernoulli-Gaussian (BG) reflectivity. Kaaresen and
Taxt (1998) estimate a finite impulse response wavelet using
a least-squares fit and recover a BG reflectivity using the it-
erated window maximization algorithm proposed in Kaare-
sen (1997). Cheng et al. (1996) estimate simultaneously a
Bernoulli-Gaussian reflectivity and a moving average wavelet
using a Bayesian framework in which prior information is im-
posed on the seismic wavelet, BG reflectivity parameters and
the noise variance. Rosec et al. (2003) use a moving average
wavelet and model the reflectivity sequence as a mixture of
Gaussian distributions (Lavielle (1995)). They propose both
the stochastic expectation maximization (SEM) algorithm
(Celeux and Diebolt (1985), Celeux et al. (1996)) and a
Bayesian framework for parameter estimation. The estimated
parameters are employed by the maximum posterior mode
(MPM) algorithm (Chalmond (1989)), which uses realiza-
tions of the reflectivity simulated by a Gibbs sampler (Robert
(1994), Geman and Geman (1984)) to estimate the reflectivity.

Application of 1D restoration methods to 2D seismic data is
clearly suboptimal, as it does not take into account the corre-
lation between neighboring traces, which stems from the pre-

sumed continuous and roughly horizontal structure of the earth
layers. Idier and Goussard (1993) proposed a multichannel de-
convolution method, which takes into account the stratification
of the layers, and uses two 2D reflectivity models: Markov-
Bernoulli-Gaussian (MBG) I and II. The deconvolution is car-
ried out using a suboptimal maximum a posteriori (MAP) es-
timator, which iteratively recovers the columns of the reflec-
tivity section. Each reflectivity column is estimated from the
corresponding observed trace and the estimate of the previ-
ous reflectivity column, using an SMLR-type method. Kaare-
sen and Taxt (1998) also suggest a multichannel version of
their blind deconvolution algorithm, which encourages spa-
tial continuity of the estimated reflectors using an optimiza-
tion criterion which penalizes non-sparse and non-continuous
configurations. Heimer et al. (2007) and Heimer and Cohen
(2008) introduced a multichannel blind deconvolution method
which combines the algorithm of Kaaresen and Taxt with dy-
namic programming (Amini et al. (1990), Buckley and Yang
(1997)) to find continuous paths of reflectors across the chan-
nels of the reflectivity section. However, layer discontinuities
are not taken into account by this method. Heimer and Cohen
(2009) also proposed a multichannel blind deconvolution algo-
rithm which is based on the MBG I reflectivity model and re-
cover the reflectivity section using the Viterbi algorithm (For-
ney (1973)).

In this paper, which summarizes some of the results in Ram
et al. (2010), we introduce a multichannel blind deconvolution
algorithm. The algorithm is based on the MBG I reflectivity
model and iteratively deconvolves the seismic data, while tak-
ing into account the spatial dependency between neighboring
traces. The algorithm employs in each step a modified version
of the MPM algorithm which first employs a Gibbs sampler to
simulate realizations of each column of the 2D reflectivity, and
then estimates this column from its realizations. Experimental
results on synthetic and real data demonstrate improved results
compared to those obtained by the single-channel deconvolu-
tion method of Rosec et al. (2003).

REFLECTIVITY MODEL

We assume that the seismic wavelet h is a 1D vertical vector
of length Nh, which is invariant in both horizontal and vertical
directions. The reflectivity section R is a matrix of size Nr × J
and the 2D seismic data Y is a matrix of size Ny × J, where
Ny = Nh +Nr − 1. Y can be modeled as the following noise-
corrupted convolution product:

Y = h∗R+W (1)

where W is a matrix of size Ny × J which denotes an additive
white Gaussian noise independent of R with zero mean and
variance σ2

w.
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We use the MBG I reflectivity model proposed by Idier and
Goussard (1993) so that the stratification of the layers of the
Earth will be taken into account in the deconvolution pro-
cess. This model is composed of a Markov-Bernoulli random
field (MBRF), which controls the geometrical characteristics
of the reflectivity, and an amplitude field, defined condition-
ally to the MBRF. The MBRF comprises two types of binary
variables: location variables and transition variables. The lo-
cation variables, set in a Nr ×J matrix Q, indicate the position
of layer boundaries. Let qk, j denote the location variable in the
(k, j) position of Q. Then qk, j is set to one if a reflector exists
in the (k, j) position of R, and is set to zero otherwise. The
transition variables, set in three Nr × J − 1 matrices T/, T−
and T∖, determine whether adjacent location variables belong
to the same layer boundary or not. Let t/k, j, t−k, j, t∖k, j denote the

transition variables in the (k, j) positions of T/, T− and T∖, re-
spectively. Then t/k, j is set to one if qk, j and qk−1, j+1 belong to
the same layer boundary and to zero otherwise. Similarly t−k, j
and t∖k, j are set to one if qk, j belongs to the same layer boundary
as qk, j+1 and qk+1, j+1, respectively, and to zero otherwise.

Let p(⋅) denote a probability distribution function. Then the
MBRF has the following properties:

1. Separability property:
p
(

t/k, j, t
−
k, j, t

∖
k, j

)
= p

(
t/k, j

)
p
(

t−k, j
)

p
(

t∖k, j
)
.

2. The jth columns of Q, T/, T− and T∖, denoted q j,

t/j , t−j and t∖j , respectively, are white and Bernoulli dis-
tributed marginally from the rest of the field.

3. The characteristic parameters of the Bernoulli distribu-
tions are given by:
λ = p

(
qk, j = 1

)
, µ/ = p

(
t/k, j = 1

)
,

µ− = p
(

t−k, j = 1
)

, µ∖ = p
(

t∖k, j = 1
)

.

4. Horizontal symmetry:
p
(

qk, j, t
/
k, j, t

−
k, j, t

∖
k, j

)
=

p
(

qk, j, t
/
k+1, j−1, t

−
k, j−1, t

∖
k−1, j−1

)
.

5. Isolated transition variables cannot be set to one:
p
(

t/k, j = 0, t−k, j = 0, t∖k, j = 0
∣∣qk, j = 0

)
= 1.

6. Discontinuities along layer boundaries are possible:
p
(

qk, j = 1
∣∣∣t/k+1, j−1 = 0, t−k, j−1 = 0, t∖k−1, j−1 = 0

)
=

ε .

7. λ is related to
{

µ/,µ−,µ∖,ε
}

according to: λ = 1−(
1−µ/

)(
1−µ−)(1−µ∖

)
(1− ε) .

We now turn to the amplitude field R. Let r j denote the
jth column of R, and let rk, j denote the kth reflector in r j.

Also, let t/k+1, j−1 (respectively, t−k, j−1, t∖k−1, j−1) be set to one,
then we will further refer to the reflector rk, j as a successor
of rk+1, j−1 (respectively rk, j−1, rk−1, j−1) and symmetrically
rk+1, j−1 (respectively rk, j−1, rk−1, j−1) will be referred to as a
predecessor of rk, j. The correlation between rk, j and reflectors
in previous columns depends on the local geometry of the lay-
ers and is described through p

(
rk, j

∣∣qk, j, t j−1,r j−1
)
, where

t j−1 =
{

t/j−1, t
−
j−1, t

∖
j−1

}
. These conditional probabilities can

be separated into three cases:

1. If qk, j = 0 then there is no reflector at position (k, j),
and rk, j = 0.

2. If qk, j = 1, and if rk, j is the unique successor of a
unique predecessor rk+dk, j−1 (−1 ≤ dk ≤ 1) then

rk, j = ark+dk, j−1 +wr. (2)

where a ∈ [0,1] and wr ∼ N
[
0,
(
1−a2)σ2

r
]
.

3. If qk, j = 1 and rk, j has no predecessor, has more than
one predecessor, or is not a unique successor, then
rk, j is sampled from the basic Gaussian distribution
N
(
0,σ2

r
)
.

We note that since the deconvolution problem is blind, the
wavelet h and the parameters

(
λ ,σr,σw,a,µ/,µ−,µ∖,ε

)
are

unknown. Thus, before the deconvolution is performed, we es-
timate them from the observed data using the SEM algorithm
of Rosec et al. (2003), and from traces deconvolved using the
MPM algorithm of Rosec et al.

RECURSIVE CAUSAL MULTICHANNEL BLIND DE-
CONVOLUTION

Deconvolution Scheme

The MAP estimator of the matrices
{

T/,T−,T∖,Q
}

, com-
prising the MBRF, and the amplitude field R is:(

T̂/, T̂−, T̂∖,Q̂, R̂
)
=

argmax
T/,T−,T∖,Q,R

p
(

T/,T−,T∖,Q,R ∣Y
)
. (3)

Obtaining the exact MAP solution is very difficult because
of the large dimension of the state-space of

{
T/,T−,T∖,Q

}
.

Here we use a suboptimal iterative maximization procedure:

(1) First column: (r̂1, q̂1) = argmax
r1,q1

p(r1,q1 ∣y1 ) (4)

(2) For j ∈ [2,J] :
(
r̂ j, q̂ j, t̂ j−1

)
=

argmax
r j ,q j ,t j−1

p
(
r j,q j, t j−1

∣∣y j, r̂ j−1, q̂ j−1
)

(5)

where Markov Chain Monte Carlo (MCMC) methods are used
for the optimization of its partial criteria. The first partial cri-
terion can be optimized using the MPM algorithm presented
by Rosec et al. (2003). Finding an optimal solution for the
maximization problem (5) is very hard, since it requires ex-
amination of all the possible configurations of q j, t j−1, whose
number ranges from 2Nr to 8Nr . Therefore, we apply instead a
modified version of the MPM algorithm. This algorithm esti-
mates the vectors r j,q j, t j−1 from realizations simulated by a
Gibbs sampler, described next.
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Figure 1: Synthetic 2D data deconvolution results for SNR of 0 dB: (a) Synthetic 2D reflectivity section. (b) 2D seismic data. (c)
True wavelet (solid) and its estimate (dashed). (d) Single-channel deconvolution results. (e) Multichannel deconvolution results.

Gibbs Sampler

The Gibbs sampler generates samples of r j,q j, t j−1 from
the joint distribution p

(
r j,q j, t j−1

∣∣y j, r̂ j−1, q̂ j−1
)
. Instead of

sampling directly from the joint distribution, the Gibbs sam-
pler iteratively samples from the conditional distributions of
rk, j,qk, j, t/k, j−1, t

−
k, j−1 and t∖k, j−1 using the following steps:

1. Initialization: choice of q(0)
j , r(0)j and t(0)j−1.

2. For i = 1, ..., I
For k = 1, ...,Nr

∙ simulate t/ (i)k, j−1 ∼ B
(

µ/
k, j−1

)
∙ simulate t− (i)

k, j−1 ∼ B
(

µ−
k, j−1

)
∙ simulate t∖ (i)k, j−1 ∼ B

(
µ∖

k, j−1

)
∙ simulate q(i)k, j ∼ B

(
λ b

k, j

)
∙ simulate r(i)k, j ∼ N

(
mb

k, j,V
b
k, j

)
if q(i)k, j = 1, other-

wise r(i)k, j = 0.

where B(α) denotes a Bernoulli distribution with parameter
α , and the definitions of µ/

k, j−1, µ−
k, j−1, µ∖

k, j−1, λ b
k, j, mb

k, j and

V b
k, j can be found in Ram et al. (2010).

MPM algorithm

We estimate each column r j, 1 < j ≤ J using a modified ver-
sion of the MPM algorithm. This algorithm employs the Gibbs

Table 1: Comparison Between the Quality of Restoration of
the Single-Channel (SC) and Multichannel (MC) Deconvolu-
tion Algorithms, for SNR of 0 dB.

SC MC
Lmiss+ f alse 207.13 (13.76) 185.57 (18.01)

Lmiss 167.94 (9.51) 148.91 (13.54)
L f alse 145.55 (11.82) 131.9 (14.08)
LSSQ 101.35 (4.46) 94.1 (6.23)

Lmiss+ f alse
2 146.65 (8.99) 123.08 (11.64)

Lmiss
2 118.4 (5.69) 98.16 (8.46)

L f alse
2 96.05 (8.06) 81.17 (8.93)

sampler described above, to generate realizations of r j,q j and
t j−1. The Gibbs sampler performs I0 iterations until it reaches
a steady state period, then the samples produced in the fol-
lowing iterations are used to estimate the kth samples of r j,q j
and , t j−1. The modified MPM algorithm follows these steps
iteratively:

1. For i = 1, ..., I simulate
(

r(i)j ,q(i)
j , t(i)j−1

)
using the

Gibbs sampler.

2. For k = 1, ...,Nr

∙ detection step:

t̂/k, j−1 =

⎧⎨⎩ 1, if 1
I−I0

I∑
i=I0+1

t/ (i)k, j−1 > 0.5

0, otherwise
,

t̂−k, j−1 =

⎧⎨⎩ 1, if 1
I−I0

I∑
i=I0+1

t− (i)
k, j−1 > 0.5

0, otherwise
,
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Figure 2: Real data deconvolution results: (a) Estimated wavelet. (b) Real seismic data. (c) Single-channel deconvolution results.
(d) Multichannel deconvolution results.

t̂∖k, j−1 =

⎧⎨⎩ 1, if 1
I−I0

I∑
i=I0+1

t∖ (i)k, j−1 > 0.5

0, otherwise
,

q̂k, j =

⎧⎨⎩ 1, if 1
I−I0

I∑
i=I0+1

q(i)k, j > 0.5

0, otherwise

∙ estimation step

r̂k, j =

⎧⎨⎩
I∑

i=I0+1
q(i)k, jr

(i)
k, j

I∑
i=I0+1

q(i)k, j(k)
, if q̂k, j = 1

0, otherwise

3. r̂ j =
[
r̂1, j, ..., r̂Nr , j

]T .

EXPERIMENTAL RESULTS

Synthetic data

We generated a 2D reflectivity section of size 76×100, shown
in Fig. 1(a), using the MBG I model. We then convolved it
with a 25 samples long Ricker wavelet and added white Gaus-
sian noise, with signal to noise ratio (SNR) of 0 dB, where
the SNR is defined as SNR = 10log10

(
λσ 2

r Eh
σ 2

w

)
. We created

20 such realizations, and applied to them the proposed multi-
channel algorithm and the single-channel MPM algorithm of
Rosec et al. (2003). One such realization is shown in Figs.
1(b), and the results obtained for it by the single-channel and
multichannel algorithms are depicted in Figs. 1(d) and (e),
respectively. The true wavelet and the wavelet estimated for
this realization are shown in Fig. 1(c). Visual comparison be-
tween these results shows improved performance of the multi-
channel algorithm over the performance of the single-channel
algorithm. The estimates of the multichannel algorithm are
more continuous, contain less false detections and are gener-
ally closer to the true reflectivity than the deconvolution results
of the single-channel algorithm.

In order to quantify and compare the performances of the mul-
tichannel and single-channel algorithms, we used the four loss
functions suggested in Kaaresen (1998), and three new ones
defined in Ram et al. (2010). The means and standard devia-
tions of the loss functions calculated for the estimates obtained
by single-channel and multichannel deconvolution are shown
in percents in Table 1. It can be seen that for all the loss func-
tions, the multichannel algorithm achieves lower mean values
than the single-channel algorithm. This implies that the mul-
tichannel algorithm produces better deconvolution results than
the single-channel algorithm.

Real Data

We applied the proposed multichannel algorithm and the MPM
algorithm of Rosec et al. to real seismic data from a small
land 3D survey in North America (courtesy of GeoEnergy Inc.,
Texas) of size 400× 200. The seismic data and correspond-
ing estimated wavelet are shown in Figs. 2(b) and (a), and the
reflectivity sections obtained by single-channel and multichan-
nel deconvolution are shown in Figs. 2(c) and (d), respectively.
Comparing these reflectivity sections, it can be seen that the es-
timates obtained by multichannel deconvolution contain layer
boundaries which are more continuous and smooth than the
ones obtained by the single-channel deconvolution. The mul-
tichannel algorithm also manage to detect parts of the layers
that the single-channel deconvolution missed.

CONCLUSION

We have presented a multichannel blind deconvolution algo-
rithm, which takes into account the spatial dependency be-
tween neighboring traces. Qualitative assessment of synthetic
data deconvolution results shows improved performance of the
proposed algorithm compared to a single-channel deconvolu-
tion algorithm.
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