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SUMMARY

We introduce a multichannel blind deconvolution algorithm
for seismic signals based on Markov-Bernoulli random field
modeling. The proposed model accounts for layer discontinu-
ities resulting from splitting, merging, starting or terminating
layers within the region of interest. We define a set of reflec-
tivity states and legal transitions between reflector configura-
tions of adjacent traces, and subsequently extract sequences of
reflectors that are connected across the traces by legal transi-
tions. The improved performance of the proposed algorithm
and its robustness to noise, compared to a competitive algo-
rithm, are demonstrated using simulated and real seismic data
examples.

INTRODUCTION

Multichannel seismic modeling and inversion is desired for
estimating the reflectivity sequences and wavelet from mea-
sured noisy traces. Mendel et al. (1981) assume an autore-
gressive moving-average (ARMA) model and use a maximum
likelihood estimator for the reflectivity. Kaaresen and Taxt
(1998) assume that the wavelet is of short duration. Santa-
maria et al. (1999) use a Gaussian mixture model for the reflec-
tivity sequence. While statistical methods generally require a
large data set for derivation of a good estimate (Mendel, 1991;
Lazear, 1993), sparsity of the reflectivity sequences can be ex-
ploited to cope with the ill-posed nature of the basic blind de-
convolution problem (Kaaresen and Taxt, 1998; Jeffs, 1998),
and to improve the performance of non-blind deconvolution
methods (Meilhac et al., 2001). Channel sparsity enables effi-
cient channel estimation, which is suitable for relatively short
traces (Kaaresen and Taxt, 1998; Kaaresen, 1998).

Multichannel blind deconvolution (see Tong and Perreau
(1998) and references therein, Xu et al. (1995); Luo and Li
(1998)) is often more advantageous and more robust than
single-channel blind deconvolution. Certain relations between
spatially near channels are used to regularize the problem. Lat-
eral continuity of the reflectors across channels has been used
in Kaaresen and Taxt (1998) to further improve the channel es-
timates. Idier and Goussard (1993b) model the 2-D structure
of the underground reflectivity as a Markov-Bernoulli random
field, and impose lateral continuity to generate deconvolution
results that are superior to those obtainable by single-channel
deconvolution methods. However, since the parametric mod-
els used in these works result in a non-convex optimization
problem, a global optimal solution is very difficult to achieve.
Usually some sort of constrained search is performed within a
group of possible solutions for the locations of reflectors (such
as the Single Most Likely Replacement approach in Kormylo
and Mendel (1982)), and a typical tradeoff remains between
the extent of the search, the computational complexity, and the

optimality of the final solution. Lavielle (1991) has modeled
the two dimensional reflectivity as a Markov random field, and
used Simulated Annealing and a maximum a posteriori proba-
bility (MAP) criterion for its estimation.

Recently, we have proposed a deconvolution method that at-
tempts to maximize a MAP criterion using dynamic program-
ming (Heimer et al., 2007; Heimer and Cohen, 2008). A search
is performed among continuous paths of reflectors instead of
single reflectors, and the best continuous reflector paths are
chosen by dynamic programming. We showed that our ap-
proach recovers the reflectivity better than the Iterative Win-
dowed Maximization (IWM) algorithm of Kaaresen and Taxt
(1998), and particularly its advantage is more significant when
the SNR is low. However, our reflectivity model did not take
into account layer discontinuities. As a result, the application
of our algorithm was limited to areas of mostly continuous lay-
ers.

In this paper, which summarizes the results in Heimer and Co-
hen (2009), we introduce an improved method for estimating
the two dimensional reflectivity pattern by using a Markov-
Bernoulli random field modeling. Unlike the model proposed
in Heimer et al. (2007), the Markov-Bernoulli random field ac-
counts for layer discontinuities resulting from splitting, merg-
ing, starting or terminating layers within the region of interest.
The algorithm performs a search only among a subgroup of
two dimensional reflectivity patterns that fit into the model.
The Viterbi algorithm (Forney, 1973) is employed for effi-
ciently finding the most likely reflectivity pattern in each iter-
ation. We define a set of reflectivity states and legal transitions
between reflector configurations of adjacent traces, and subse-
quently extract sequences of reflectors, connected across the
traces by legal transitions. The performance of the proposed
algorithm is investigated for reflectivity patterns that contain
discontinuities. Improved performance and robustness to noise
are demonstrated for simulated and real seismic data.

SIGNAL MODEL

We assume M received signals (traces) z(m) [n] of length N +
K− 1 , each generated by a single input signal h [n] of length
K passing through a channel x(m) [n] of length N, which rep-
resents the reflectivity sequence of the mth trace. The output
signal of channel m can be written as

z(m) [n] =
K−1∑

k=0

h [k]x(m) [n− k]+ e(m) [n] (1)

for m = 1, . . . ,M and n = 1, . . . ,N + K− 1, where e(m) [n] de-
notes white Gaussian noise, which is statistically independent
of the reflectivity sequence x(m) [n] and h [n]. We denote by
zm∈RRRN+K−1 a single trace m and by z ∈RRR(N+K−1)×M the con-
catenation of zm, m = 1, . . . ,M.
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Let x ∈RRRN×M represent the two dimensional reflectivity, and
let q ∈{0,1}N×M denote a binary matrix representing the ex-
istence of reflectors in x, i.e. q(n,m) = 1 if there is a re-
flector in row n and column m of x, otherwise q(n,m) = 0.
Let t́, t̄, t̀∈{0,1}N×M be binary matrices representing transi-
tion variables of reflectors in x for ascending, horizontal, and
descending layers respectively, i.e. t́ (n,m) = 1 if q(n,m) = 1,
q(n−1,m+1) = 1 and these two reflectors belong to the
same layer boundary, otherwise t́ (n,m) = 0. In a similar
way t̄ (n,m) = 1 if q(n,m) = 1, q(n,m+1) = 1 and these
two reflectors belong to the same layer boundary, otherwise
t̄ (n,m) = 0. Also t̀ (n,m) = 1 if q(n,m) = 1, q(n+1,m+1) =
1 and these two reflectors belong to the same layer boundary,
otherwise t̀ (n,m) = 0. Using these definitions, the two dimen-
sional reflectivity model is defined as follows:

1) For each column m, the sequences {t́ (n,m)}n, {t̄ (n,m)}n,
{t̀ (n,m)}n and {q(n,m)}n are white (binary) pro-
cesses.

2) p
(
t́, t̄, t̀

)
= p

(
t́
)

p(t̄) p
(
t̀
)
.

3) p{t́(n,m−1) = a, t̄(n,m−1) = b, t̀(n,m−1) = c,q(n,m)}=
p{q(n,m), t́(n,m) = a, t̄(n,m) = b, t̀(n,m) = c}.

4) p{t́(n,m−1) = 0, t̄(n,m−1) = 0, t̀(n,m−1) = 0
|q(n,m) = 0}= 1.

5) p{t́ (n,m) = 1} = µ́ , p{t̄ (n,m) = 1} = µ̄ ,
p{t̀ (n,m) = 1}= µ̀ .

6) p{q(n,m) = 1}= λ .

7) p{q(n,m) = 1 | t́(n+1,m−1) = 0, t̄(n,m−1) = 0,
t̀(n−1,m−1) = 0}= ε .

Properties 5, 6 and 7 define the parameters of the reflec-
tivity model µ́, µ̄, µ́,λ ,ε , which are related by λ = 1 −
(1− µ́)(1− µ̄)(1− µ̀)(1− ε).

The amplitude field of the reflectivity pattern is characterized
by two parameters r and σ2

a . A reflector in x(n1,m−1) is said
to be a predecessor of a reflector in x(n2,m) if q(n1,m−1) = 1,
q(n2,m) = 1, |n1−n2| ≤ 1, and the transition variable connect-
ing these two reflectors is equal to 1. Then the amplitude field
is defined as follows:

8) If a reflector in x(n2,m) has no predecessors, or has more
than one predecessors, then x(n2,m)∼ N

(
0,σ2

a
)
.

9) If a reflector in x(n2,m) has a predecessor x(n1,m− 1),
then x(n2,m)∼ N

(
r x(n1,m−1),

(
1− r2)σ2

a
)
.

It is shown in Idier and Goussard (1993b,a) that these defini-
tions describe a Markov-Bernoulli random field of reflectors
with Gaussian amplitudes, which is homogeneous and sym-
metric. In each column, the binary variable representing the
existence of a reflector is Bernoulli distributed with a parame-
ter λ . The parameter σ2

a determines the variance of the ampli-
tudes and the parameter r determines the correlation between
reflector amplitudes along a layer boundary.

ESTIMATION PROCEDURE

Let xm and qm denote, respectively, the mth columns of x and
q, and let am denote a vector of reflector amplitudes in the
reflectivity sequence xm. Note that the length of am may vary
for different traces, according to the number of reflectors in
a specific trace m. Maximum a posteriori estimation of the
locations and amplitudes of reflectors is given by

{q̂, â}= argmax p(q,a|z) . (2)

Let q̂t be an estimate of q in iteration t, and let q̂t,n
m be the mth

column of the matrix q̂t , with the insertion of a new reflector in
the nth sample. Let â

(
q̂t,n

m

)
denote an estimate of the reflec-

tors amplitudes in q̂t,n
m given the observations zm. A maximum

a posteriori estimator for the reflectors amplitudes is defined
by

â(qm) = argmax
a

p(am|qm,zm) . (3)

Using a matrix form of (1), i.e., zm = Hqm am +em, where Hqm

is composed of replicas of h translated to the locations of each
reflector, we obtain zm|qm,am ∼ N

(
Hqm am,σ2

e I
)

and am|qm

∼ N
(
0,σ2

a I
)
. Hence (3) yields the following known estimator:

â(qm) =
(

HT
qm

Hqm +
σ2

e
σ2

a
I
)−1

HT
qm

zm . (4)

For finding sequences of reflectors across traces, we define the
following set of reflectivity states and legal transitions between
reflectors across traces. For each m, we define N states which
represent reflector configurations with a single additional re-
flector in the nth sample with respect to the current estimate
(if there is already a reflector at that sample in the current esti-
mate, then there is no change). An additional state is preserved
for identifying reflector configurations that remain the same as
in the previous iteration. A legal transition exists from each of
the first N states in a trace to the three closest states in the next
trace, i.e. the reflectors in consecutive traces are in the same
sample or are separated by one sample. In addition, a legal
transition exists from each of the first N states in a trace to the
last state in the next trace, and from the last state in a trace to
each of the first N states in the next trace. A legal path is a
sequence of M states, one from each trace, that are connected
by legal transitions. We define the maximum a posteriori esti-
mated path as
{

q̂t+1
1 , â

(
q̂t+1

1

)
, . . . , q̂t+1

M , â
(

q̂t+1
M

)}

= argmax
{Legal Paths}

p
{

qt,n1
1 , â

(
qt,n1

1

)
, . . . ,qt,nM

M , â
(

qt,nM
M

)
|z

}

= argmax
{Legal Paths}

p
{

z1|qt,n1
1 , â

(
qt,n1

1

)}
p
{

â
(

qt,n1
1

)
|qt,n1

1

}

p
{

qt,n1
1

} M∏

m=2

p
{

zm|qt,nm
m , â

(
qt,nm

m
)}

p
{

qt,nm
m |qt,nm−1

m−1

}

M∏

m=2

p
{

â
(
qt,nm

m
) |qt,nm

m ,qt,nm−1
m−1 , â

(
qt,nm−1

m−1

)}
(5)

A path can be efficiently obtained by using the Viterbi algo-
rithm (Forney, 1973) as follows. Let sn,m denote a state in the
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Figure 1: Performances of the proposed Markov-Bernoulli deconvolution (MBD) algorithm and the IWM algorithm in a simulated
blind scenario under low SNR conditions (-5dB). (a) True reflectivity pattern; (b) received traces; (c) and (d), reflectivity and
wavelet estimates obtained by using the IWM algorithm; (e) and (f), reflectivity and wavelet estimates obtained by using the
proposed algorithm.

mth trace characterized by an additional reflector in the nth
sample compared to a previous iteration, i.e., reflector state
qt,n

m . Let Pnm,m denote a path of states across the traces [1..m]
that ends in the state snm,m. Let D(P) , p(P|z) be the proba-
bility of the states in the path P given the observations z, and
let Po

nm,m , argmax
Pnm ,m

D(Pnm,m) be the path that ends with the

state snm,m, whose probability given the observations is maxi-
mal. Let Bnm,m represent the set of states from which there is a
legal transition to the state snm,m. Recal that the processes are
Markov processes of the first order, we have

no
m−1 , argmax

nm−1∈Bnm ,m

D
(

Po
nm−1,m−1

)
p(zm|snm,m) p

(
snm,m|snm−1,m−1

)

p(z)
(6)

Po
nm,m =

(
Po

no
m−1,m−1

...snm,m

)
(7)

where
... describes the concatenation of the state on its right

to the path on its left. Equations (6) and (7) provide an effi-
cient way of calculating the sequence of states in the states set

whose probability given the observations is maximal. We ini-
tialize Po

n1,1 , sn1,1 for n1 = 1, . . . ,N, and then use (6) and (7)
to recursively calculate Po

nM ,M for nM = 1, . . . ,N. Finally, we
choose

no
M , argmax

nM

D
(

Po
nM ,M

)

and then we obtain the final desired path:

Po , Po
no

M ,M .

EXPERIMENTAL RESULTS

Simulated Data

Hundred and thirty traces of 130 samples length are generated
by convolving a wavelet with a pattern of reflectors, accord-
ing to the proposed Markov-Bernoulli model. The traces are
corrupted by white Gaussian noise (SNR =−5 dB). The SNR
is defined by SNR ,

(
λσ2

a /σ2
e
)∑

k h2[k], where σe denotes
the standard deviation of the noise. A comparison is made be-
tween the IWM algorithm of Kaaresen and Taxt (1998) and the
proposed algorithm. The results are presented in Figure 1.
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Figure 2: Performances of the MBD and IWM algorithms for real seismic data. (a) Received traces; (b) and (c), reflectivity and
wavelet estimates obtained by using the IWM algorithm; (d) and (e), reflectivity and wavelet estimates obtained by using the MBD
algorithm.

It is clear from the results that the proposed algorithm recov-
ers the true reflectors more accurately than the IWM algorithm.
Furthermore, the wavelet estimate obtained by the proposed al-
gorithm is characterized by lower MSE (MSE =

∥∥∥h− ĥ
∥∥∥

2
). A

comparison of Figures 1(a) and (c) shows that the IWM algo-
rithm generates false reflectors in some areas, and misdetects
true reflectors in other areas. Hence, the improvement by using
the proposed algorithm is not related to the specific choice of
sparsity parameter in the IWM algorithm, since a larger spar-
sity parameter would cause additional true reflectors to disap-
pear, and a smaller sparsity parameter would lead to additional
false reflectors.

Real Data
Figure 2(a) shows real seismic data (courtesy of GeoEnergy
Inc., Texas) containing 150 traces of 150 samples long. The
reflectivity and wavelet estimates obtained by using the IWM
and proposed algorithms are presented in Figure 2. Since the
true layer structure is unknown, one can only appreciate the

continuous nature of the channel estimates obtained by using
the proposed algorithm.

CONCLUSION

We have presented an algorithm for multichannel seismic de-
convolution that is based on Markov-Bernoulli random field
modeling of the lateral dependency between reflectors in con-
secutive traces. The computational complexity of the proposed
algorithm is generally higher than that of the IWM algorithm.
However, some reduction in complexity can be achieved by
selecting in each iteration more than one path. Furthermore,
when estimating the amplitudes for a new configuration of re-
flectors in a certain trace, not all the amplitudes need to be
estimated, since reflectors that are distant from a newly added
reflector or a removed reflector remain with nearly the same
estimated amplitude values.
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