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SUMMARY

‘We present an algorithm for multichannel blind deconvolution of seis-
mic signals, which exploits lateral continuity of earth layers by dy-
namic programming approach. We assume that reflectors in consecu-
tive channels, related to distinct layers, form continuous paths across
channels. We introduce a quality measure for evaluating the quality
of a continuous path, and iteratively apply dynamic programming to
find the best continuous paths. The improved performance of the pro-
posed algorithm and its robustness to noise, compared to a competitive
algorithm, are demonstrated using simulated and real seismic data ex-
amples.

INTRODUCTION

Blind deconvolution is generally an ill-posed problem, and requires
some a priori information about the channels or the wavelet. The
reflectivity sequence is often modeled as a Bernoulli-Gaussian ran-
dom sequence, and second-order statistics may be used to partially
reconstruct the input signal. Several methods based on high-order
statistics have been developed (Mendel, 1991; Lazear, 1993), which
require very long data to properly estimate the output statistics. Al-
ternatively, the wavelet can be modeled as an autoregressive moving-
average (ARMA) process, and a maximum likelihood estimator for the
reflectivity can be derived (Mendel et al., 1981).

Multichannel blind deconvolution is often more advantageous and more
robust than single-channel blind deconvolution (see Tong and Perreau
(1998) and references therein, Xu et al. (1995); Luo and Li (1998)).
Sparsity of the reflectivity sequences may be used to cope with the
ill-posed nature of the basic blind deconvolution problem (Kaaresen
and Taxt, 1998; Jeffs, 1998), and to improve the performance of non-
blind deconvolution methods (Perros-Meilhac et al., 2001). Channel
sparsity has been used in Kaaresen and Taxt (1998), together with the
assumption of short wavelet, to formulate an efficient channel esti-
mation method suitable for relatively short traces (see also Kaaresen
(1998)). Lateral continuity of the reflectors across channels is also
used to further improve the channel estimates. Idier and Goussard
(1993) model the 2-D structure of the underground reflectivity as a
Markov-Bernoulli random field, and impose lateral continuity to gen-
erate deconvolution results that are far superior to those obtainable by
single-channel deconvolution methods.

In this paper, which summarizes the results in (Heimer and Cohen,
2007), lateral continuity of reflectors across channels is combined with
the blind deconvolution algorithm of Kaaresen and Taxt (1998). We
employ dynamic programming (Amini et al., 1990; Buckley and Yang,
1997) to find the shortest continuous paths of reflectors across chan-
nels, and develop an improved multichannel blind deconvolution algo-
rithm for seismic signals, which exploits the lateral continuity of earth
layers. Rather than measuring the increase in the fit to the data each
single reflector yields, versus the decrease in sparsity of the channel
estimates, we measure the increase in the fit to the data obtained by
a complete continuous path of reflectors, versus the decrease in the
sparsity of paths. The increase in the fit to the data achieved by a con-
tinuous path of reflectors is calculated as the sum of contributions to
the fit from all reflectors in that path. The improved performance of the
proposed algorithm and its robustness to noise, compared to the blind
deconvolution algorithm of Kaaresen and Taxt, are demonstrated by
using simulated and real seismic data examples.

SIGNAL MODEL

We assume M received signals (traces), each generated by a single
input signal k[n] passing through a channel x(") [n] and corrupted by
additive uncorrelated noise e(" [n]. The output signal of channel m
can be written as

K-1
2" ) = Y Rk [ — k] + ™ [n] (1)
k=0
wherem=1,...,M,and n=1,... ,N. We assume the following:

1. All channels are excited by the same wavelet /.

2. The wavelet & has a finite support of length K, which is shorter
than the channel.

3. Each channel is sparse, i.e., the number of non-zero elements
(reflectors) in a channel is small relative to the channel’s length.

4. The element in a channel are independent and identically dis-
tributed with zero-mean Bernoulli-Gaussian distribution.

5. Reflectors in consecutive channels form continuous paths across
channels.

6. The noise ¢ [n] is white, Gaussian, and independent of /[n]
and x(" [n].

The third assumption makes it useful to write (1) in the following way:

P
Zm n]= Z hln—npp) amp+ e(m [n] )
p=1

where n,, , is the discrete time of reflection p in channel m, and a,,, ,
is its amplitude. The matrix representation of (2) is given by

AR ¢ (COPNCORINCD) 3)

where 2" = [ Z("[0]  Z("[1] 2 [N] ]T, H™ is a matrix
(m) _

with P columns as the number of reflections in channel m, H;;," =
h[n—npp), and e = [ m[o] ¢lm)[1] e™[N] 1", For
later use we adopt the notation in Kaaresen and Taxt (1998) and define
the matrix H" as the columns of H corresponding to reflectors inside
a certain time window w, a" represents the amplitudes of the reflec-
tors inside the window, H" contains the columns of H corresponding
to reflectors outside the window, and a" represents the amplitudes of
the reflectors outside the window (the channel index m is omitted for
convenience).

DYNAMIC PROGRAMMING FOR FINDING THE SHORTEST
CONTINUOUS PATH

Dynamic programming is an effective way to find a global minimum
in some nonconvex optimization problems. We now briefly describe
the problem of finding the shortest continuous path across an image,
and the solution by dynamic programming (Buckley and Yang, 1997).

Problem Formulation

Assume we have a gray level image of size N x M. The problem is to
find a “path”, i.e., a sequence of M pixels {(nm,m)}%:1 one in each
column, such that the following two conditions are satisfied:
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1. |y —npe1| <d forall m=1,2,...M — 1, where d is some
small positive integer constant. We refer to this condition as
the “continuity condition”, and to a path for which this condi-
tion is satisfied as a continuous path.

2. The path is the “shortest” among all continuous paths, in the
sense that a certain length measure is minimized for this path
among all the continuous paths.

A common length measure for a given path is the sum of gray levels
of the pixels, which the path passes through. In this work we are in-
terested in a length criterion that measures not only the total intensity
of the path (as represented by the sum of gray levels) but also the de-
gree to which the gray levels along the path have the same sign (since
all reflectors representing the same underground layer have the same
sign). One way to achieve that is to use a length criterion that com-
bines the total variation of the path and the sum of gray levels. The
total variation is defined as

M—1
TV = Z |p (nm,m) — p (M1, m+ 1)

m=1

where p (n,m) is the gray level of pixel (n,m). The length measure in

M

this case is S = uTV + Y, p(nn,m) , where y is some weight that
m=

controls the tradeoff between sum of gray levels and total variation

along the path.
Extraction of Shortest Path

We now describe the dynamic programming algorithm using the sum
of gray levels as a length measure. Let (n,m) be the coordinates of a
pixel in row n and column m, let P, ,, = {(n1, 1), (n2,2),..., (n,m)} de-
note a continuous path starting at column 1 and ending at pixel (n,m),
and let p (n,m) represent the value of the pixel (n,m). Denote by F? ,
the continuous path that starts at column 1 and ends at pixel (n,m)
with minimum sum of pixels values, and by S, the sum of pixels
values along the path P?,. The algorithm starts with the following
initialization: '

vy = (n1) forn=1,2,...,N 4)

o p(n,1) forn=1,2,....N. 5)

n,1

Then for each column m =2,..., M compute

SO = p(n,m)+nidrgnkirgln+d5zﬁm,l forn=1,2,...,N (6)
P, = (Pf,,,,,,,, v(n,m)) forn=1,2,....N %)

where k denotes the value of k achieving the minimum in (6), and the
sign VV means adding the pixel on its right to the end of the path. After
the column M is processed, we obtain the optimal path P, by

n°

argminsSy 3, 8)
n

Popt = yll)’"M . (9)

MULTICHANNEL BLIND IDENTIFICATION

‘We assume that any nonzero element in a channel is a member of a path
of nonzero elements across the channels, which satisfies the continuity
condition (Condition 1). In the basic algorithm, a decision whether or
not to add a reflector to a channel estimate, is made according to the
increase in the fit to the data compared to the decrease in the sparsity
measure. In the multichannel version of the algorithm, a measure of
local continuity is added to the decision criterion, which encourages

reflectors that are members of a local continuous sequence. The ap-
proach presented here allows the process to add, not single reflectors,
but complete continuous paths of reflectors to the image of channel es-
timates. Rather than measuring the increase in the fit to the data each
single reflector yields, versus the decrease in sparsity of the channel
estimate, we measure the increase in the fit to the data obtained by a
complete continuous path of reflectors, versus the decrease in sparsity
of paths, i.e., number of continuous reflector paths. The increase in the
fit to the data achieved by a path of reflectors is calculated as the sum
of contributions to the fit from all reflectors in the path.

Let us assume a certain continuity parameter d for which the paths of
reflectors in the true channels are continuous. The steps of the new
algorithm are as follows:

Step 1 - Initialization:

The initialization is carried out by finding several continuous paths
(with parameter d) along which the sum of gray levels is maximal or
minimal among all continuous paths in the same region of the data:

1.1) Use dynamic programming to find the continuous path of mini-
mal length in the original image.

1.2) Similarly, find the path of maximal length (can be done by find-
ing the path of minimal length in the image multiplied by —1).

1.3) Choose the path from the above two steps for which the abso-
lute value of the length is maximal and add it to the channel
estimate.

1.4) Let S 2 {(n,m): |n—ny,| < D} be a strip of a certain predeter-
mined width D around the path {(1,,,m)}¥_, found in the
previous step. Then, for finding the next extremum path, we
replace the values of the true data in that strip by zeros, and
subsequently extract the extremum path (the received signal z
is randomly distributed with zero mean, and therefore replac-
ing the data values with zeros ensures that this strip will not
be a part of the following paths in the initialization step, since
zeros are not contributing to an extremum value).

1.5) If the number of paths found so far is less than a predetermined
number, go to step 1.1.

At the end of the initialization step, we replace all the zero values,
inserted in Step 1.4, back to their original values.

Step 2 - Wavelet Estimation:

After initialization of the channel estimate, the wavelet estimate is ob-
tained in the same manner as in the basic algorithm, which is simply
the least squares fit to the data given the current channel estimate and
the received signals.

Step 3 - Channel Estimation:

The channel estimates are updated by examining and comparing a few
alternatives that include adding a new path of reflectors, and removing
or translating an existing path. Since the number of possible paths is
much larger than the number of possible single reflectors, we use again
dynamic programming to find the continuous path that maximally in-
creases the fit to the data. That path only is examined as a candidate
for inclusion or substitution of other paths. In order to find a path of
reflectors that maximally increases the fit to the data, given all existing
reflectors, we execute the following two steps procedure:

Step 3.1: For each channel, calculate the contribution of adding a re-
flector at each possible location at that channel. The “Quality” of plac-
ing a new reflector at time ¢ is calculated as follows:

3.1.1) Temporarily place a new reflector at time 7.
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Figure 1: Results of multichannel blind deconvolution obtained by using the basic and new algorithms in a high noise situation. (a) Received noisy
traces (SNR = —10 dB); (b) True channels; (c) channels estimates obtained by using the basic algorithm; (d) channels estimates obtained by using
the proposed algorithm; (e) wavelet estimate obtained by using the basic algorithm; (f) wavelet estimate obtained by using the proposed algorithm.

3.1.2) Define a window centered at time ¢.

3.1.3) Calculate the contribution to the data made by existing reflec-
tors outside the window, using the current wavelet estimate,
and subtract it from the data.

3.1.4) Find the amplitudes of reflectors inside the window giving the
best fit to the remainder of the received signal z,, given their
locations, and the current wavelet estimate.

3.1.5) Calculate a new approximation to the entire received signal z
using existing reflectors outside the window, and the new re-

flectors inside the window from (3.1.4):

(10)

3.1.6) Calculate the difference between the data and its new approxi-
mation:
Z,=7—1Z. an
3.1.7) Our general goal is to minimize Hzg|\2, but we would also like
all the reflectors along the best path to have the same sign.
Hence, we define the “quality” of adding a reflector at time
t as the sign of this reflector (calculated in Step 3.1.4) multi-
plied by some positive function whose maximization is equiv-
alent to minimizing ||z, e.g..

0(t) =sign[@” (1)] (L -z’ z.) 12)
where L is some large constant (selected so that it is greater
than z!'z, throughout the algorithm). The definition of the
quality in (12) allows us to seek the path with maximum qual-
ities (path with positive reflectors mostly increasing the fit to
the data) and path of minimum qualities (path with negative
reflectors mostly increasing the fit to the data).

Step (3.1) generates an image of “qualities” which we will refer to as
the “qualities image”, representing the improvement of the fit to the
data achieved by placing a new reflector at each possible location at
each channel given the existing reflectors.

Step 3.2: Now we employ dynamic programming to find two contin-
uous paths (with parameter d) in the qualities image. The first path
is characterized by minimal sum of qualities, while the second path
is associated with maximal sum of qualities. Out of these two paths
we select the one with larger absolute value of quality sums, since
this path maximally increases the fit to the data. The total contribu-

tion of the best path is ‘S;,’UA’M‘. After finding the best path, given the

existing reflectors and the current wavelet estimate, a possible option
is to continue with the same procedure as described in Kaaresen and
Taxt (1998), i.e., calculate a quality criterion combining the increase
in the fit to the data due to the additional path and the decrease in the
sparsity of paths. Here we use a slightly different approach, assuming
some a priori knowledge of the reflectors probability density, or the
expected number of reflections in the data. As long as the channel es-
timate includes less than this expected number of reflections, we add
new paths. Each additional path is inserted into a FIFO list, and when
we reach the desired number of reflectors, we sequentially perform the
following steps:

3.2.1) Remove the next existing path from the beginning of the list
and from the channel estimate.

3.2.2) Find a new best path.

3.2.3) Add the new path to the end of the list and to the channel esti-
mate.

This procedure is similar to the one described in Kaaresen and Taxt
(1998), since we actually move each path to a different better location.
If a path current location is optimal, then the path is selected again at
the same location. The advantage of this procedure is that tuning of
a sparsity parameter is unnecessary until the channel estimate has the
desired number of reflectors. Tuning of a sparsity parameter depends
on the SNR, and involves several executions of the whole process.

Steps 2 and 3 are iterated until a certain stopping criterion is satisfied.
In the production of the results in this work the stopping criterion was
a predetermined number of iterations.
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Figure 2: (a) Real seismic data containing 110 traces of 551 samples long; (b) channels estimates obtained by using the basic algorithm; (c) channels
estimates obtained by using the proposed algorithm; (d) wavelet estimate obtained by using the basic algorithm; (e) wavelet estimate obtained by

using the proposed algorithm.

EXPERIMENTAL RESULTS

Simulated Data

Twenty traces of 511 samples length are generated by convolving a
certain wavelet with a pattern of reflectors. The reflectors, shown in
Figure 1(b), are generated with the following properties:

1. The reflectors at each channel are Bernoulli distributed ac-
cording to a selected density (probability of 5% for a reflector
at any certain sample was used throughout all simulations).

2. The reflectors amplitudes in each channel are Gaussian dis-
tributed.

3. The reflectors are located along continuous paths across the
channels (although a path does not have to start at the first
channel and end at the last).

4. The progress of the path across channels is a Markov chain
of locations, where the location of a reflector in channel m
on a certain path is the linear continuation of the reflectors
locations in channels m — 1 and m — 2, with some probability
of moving one sample up or down from that location. The
reflectors amplitudes along a path are also a Markov chain,
with the restriction that the reflectors signs remain the same
along the path.

The wavelet that is used in our simulations is shown in solid line in Fig-
ure 1(e). The traces are corrupted by high level white Gaussian noise
(SNR = —10 dB). The SNR is defined by SNR £ (02/02) ¥ h*[K],
where o, is the standard deviation of the reflectors amplitudes, and
o, is the standard deviation of the noise. A comparison is made be-
tween the basic multichannel algorithm proposed by Kaaresen and
Taxt (1998) (with consideration of local continuities of reflectors), and
the new version proposed in this work. The results are presented in
Figure 1.

It is clear from the results that the proposed algorithm recovers the true
reflectors more accurately than the basic algorithm. Furthermore, the

wavelet estimate obtained by the proposed algorithm is characterized
by lower MSE (MSE = Hh — ﬁHz)' A comparison of Figures 1(c) and

(b) shows that the basic algorithm generates false reflectors in some
areas, and misdetects true reflectors in other areas. Hence, the im-
provement by using the proposed algorithm is not related to the spe-
cific choice of sparsity parameter in the basic algorithm, since a larger
sparsity parameter would cause additional true reflectors to disappear,
and a smaller sparsity parameter would lead to additional false reflec-
tors.

Real Data

Figure 2(a) shows real seismic data (courtesy of GeoEnergy Inc., Texas)
containing 110 traces of 551 samples long. The channel and wavelet

estimates obtained by using the basic and proposed algorithms are pre-

sented in Figure 2. Since the true layer structure is unknown, one

can only appreciate the continuous nature of the channel estimates ob-

tained by using the proposed algorithm.

CONCLUSION

We have presented an improved algorithm for multichannel blind de-
convolution in seismic applications, where reflectors in channels are
sparse and laterally continuous. The improved performance, compared
to that obtained by an existing algorithm, is achieved by combining
the existing approach with a dynamic programming method for find-
ing continuous lines in images. We have demonstrated the robustness
of the proposed algorithm to high noise level, and the mechanism that
enables excluding local maxima of the quality measure £. In return,
the proposed algorithm is characterized by higher computational com-
plexity and slower convergence rate than the existing algorithm. In
some applications the reflectors paths may vary more rapidly between
channels, which necessitates increasing the parameter d. However, in-
creasing the parameter d relaxes the continuity constraint and accord-
ingly may reduce the benefits anticipated from the proposed approach.
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