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Summary

In this paper, an efficient method is proposed for de-
tecting and extracting fault surfaces in 3-D seismic
volumes. The seismic data is transformed into a volume
of local fault extraction (LFE) estimates, representing the
likelihood that a given point lies on a fault surface. The
fault surfaces are partitioned into relatively small linear
portions, which are identified by analyzing tilted and
rotated subvolumes throughout the region of interest.
Directional filtering and thresholding further enhance the
seismic discontinuities attributable to fault surfaces.

Introduction

Seismic interpretation can be broadly subdivided into
two components: structural, which investigates the
nature and geometry of the subsurface structures; and
stratigraphic, which investigate the subsurface stratigra-
phy. A major component of the structural interpretation
is the identification, location and extraction of individual
fault surfaces. Fault surfaces are common subterranean
structures, associated with displacements or offsets of
seismic layers. Their consistent and reliable detection
in 3-D seismic data provides an interpreter with very
powerful means to quickly visualize and map complex
geological structures. A common tool facilitating struc-
tural and stratigraphic interpretation is the coherency
cube, originated by Bahorich and Farmer (Bahorich and
Farmer, 1995). It is calculated from the seismic data
using a coherency measure that quantifies the seismic
discontinuity at each point. Discontinuities attributable
to fault surfaces include dip, azimuth, and offset changes
of seismic reflectors, and waveform and amplitude varia-
tions caused by defocusing. Such discontinuities appear
on coherence slices as incoherent linear or curved features
(Marfurt et al., 1999; Gersztenkorn and Marfurt, 1999;
Neff et al., 2000; Lees, 1999).

The most acceptable coherence measures are based on
cross-correlation (Bahorich and Farmer, 1995), semblance
(Marfurt et al., 1998), or eigenstructure (Gersztenkorn
and Marfurt, 1999; Gersztenkorn et al., 1999; Kirlin,
1992) techniques. These methods typically suffer from
either a lack of robustness, especially when dealing with
noisy data, or high computational complexity (Marfurt et
al., 1999; Gersztenkorn and Marfurt, 1999). Recently, a
robust and computationally efficient analysis method was
introduced for the estimation of seismic coherency (Co-
hen and Coifman, 2002). It involves a coherency measure,
namely the local structural entropy (LSE), which eval-
uates the dissimilarity of subvolumes enclosing a given
analysis point. Dealing with subvolumes, rather than in-

dividual traces, leads to robustness, while avoiding the
expensive computations of semblance and eigenstructure-
based large covariance matrices and eigenvalues. A major
drawback of coherency-based fault analysis is that seismic
discontinuities may also result from geological features,
which are unrelated to faults. Furthermore, creating a
consistent geological interpretation from large 3-D seismic
data volumes often requires manual intervention, which is
time-consuming, tedious and imprecise.

In this paper, which summarizes the results in (Cohen et
al., 2005), we propose a robust and computationally ef-
ficient method for the extraction of fault surfaces in 3-D
seismic volumes. The seismic data is transformed into a
volume of local fault extraction (LFE) estimates, which
provides the interpreter with a much clearer visual in-
dication of the fault surfaces. The LFE estimate at a
given analysis point is obtained by the following proce-
dure. First, a 3-D analysis cube, tilted and rotated about
the analysis point, is selected by the interpreter. The
analysis cube moves throughout the seismic volume and
outputs for each point a measure of normalized differential
entropy (NDE). The NDE value represents the likelihood
of a fault surface, having similar dip and azimuth as of
the analysis cube, to intersect with the analysis point.
Subsequently, the local average of the NDE is removed,
and portions of fault surfaces, approximately aligned with
the analysis cube, are extracted by directional filtering.
The filtered NDE coefficients are thresholded, and filtered
back to produce directional LFE volumes. Finally, the
LFE attribute is given by the maximal directional LFE,
over the presumably tested set of dips and azimuths. This
practically gathers the significant portions of the fault sur-
faces into smooth larger surfaces.

Local Fault Extraction

In this section we describe the basic components forming
the proposed fault extraction algorithm.

Normalized Differential Entropy

We begin by subtracting the mean value from each trace
of the seismic data . Specifically, the data is modified by

d̂xyt = dxyt − Et {dxyt} = dxyt − 1
Nt

Nt∑
k=1

dxyk , (1)

where dxyt and d̂xyt are respectively the original and mod-
ified t-th sample of the trace at position (x, y), and Nt

is the total number of samples in each trace. Then, a
relatively small 3-D analysis cube is selected by the in-
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Fig. 1: (a) A vertical cross-section and (b) horizontal slice illustrating the geometrical distribution of traces and samples used
in the analysis cube. The analysis cube, consisting of two subvolumes, is centered about an analysis point λ = (x, y, t), and
defined by length of major axis L1, length of minor axis 2L2 + 1, time duration N samples, azimuth ϕ, and dip γ.

terpreter. The analysis cube moves throughout the 3-
D modified seismic volume and outputs for each point a
measure of NDE.

The analysis cube is defined by the length of major axis
L1, length of minor axis 2L2 + 1, time duration N sam-
ples, azimuth ϕ, and dip γ (Fig. 1). It comprises two
identical subvolumes, which are tilted and rotated about
the analysis point λ = (x, y, t). The samples within the
two subvolumes are rearranged in a consistent manner
into two column vectors v1,λ(γ, ϕ) and v2,λ(γ, ϕ). The
NDE at the analysis point λ is defined by the normalized
difference of this two vectors:

Nλ(γ, ϕ) =
‖v1,λ(γ, ϕ)− v2,λ(γ, ϕ)‖p

‖v1,λ(γ, ϕ)‖p + ‖v2,λ(γ, ϕ)‖p
, (2)

where ‖·‖p is the `p norm. The NDE is a gradient based
formula and is a normalized version of the Prewitt edge
detection filter (Jain, 1989). It provides an extension of
edge detection to surface detection in three dimensions.
Specifically, if the two subvolumes are perfectly correlated
without a disruption or offset of seismic layers, presum-
ably there is no fault surface enclosed between them, so
v1,λ(γ, ϕ) = v2,λ(γ, ϕ) and Nλ(γ, ϕ) = 0. Otherwise,
the likelihood for the presence of a fault surface, aligned
in the gap between the two subvolumes, is proportional
to the offset of v1,λ(γ, ϕ) and v2,λ(γ, ϕ). In this case,
0 < Nλ(γ, ϕ) ≤ 1, where the maximum value of Nλ(γ, ϕ)
is obtained for maximally offset correlated subvolumes,
i.e., v1,λ(γ, ϕ) = −v2,λ(γ, ϕ).

Contrast Enhancement

The second step of the algorithm is contrast enhance-
ment. Fault surfaces having dips and azimuths about

the same dip and azimuth of the analysis cube are dis-
tinguished by higher NDE values, compared to the local
average NDE value. Accordingly, we apply a contrast
enhancement filtering to the NDE values, and set to zero
negative values. This facilitates the analysis of regions
that contain dipping layers or are highly discontinuous.

The contrast enhancement filtering can be efficiently im-
plemented using a discrete “Mexican Hat” function:

f(n) = C(1− n2) exp(−n2/2) (3)

where n = kτ (k ∈ ZZ), and C is a normalization constant
such that

∑∞
k=−∞ |f(kτ)| = 2. We use a finite length

filter (−4.5 ≤ n ≤ 4.5), containing odd number of uni-
formly spaced coefficients (we obtained good results for
31 coefficients, but generally it depends on the size of the
analysis cube and the ”thickness” of the fault surfaces).
The filtered NDE is given by:

N̄λ(γ, ϕ) = gλ(γ, ϕ)∗Nλ(γ, ϕ) =
∑
λ′

gλ−λ′(γ, ϕ)Nλ′(γ, ϕ) ,

(4)
where gλ(γ, ϕ) is a rotated version of f , such that its main
axis is perpendicular to the slabs of the analysis cube. The
contrast enhanced NDE is given by

N̂λ(γ, ϕ) = max
{
N̄λ(γ, ϕ), 0

}
. (5)

Directional LFE

The third step of the algorithm is directional filtering. In
this step, we extract the portions of fault surfaces that
are approximately aligned with the analysis cube.
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The directional filter, denoted by hλ(γ + α, ϕ), is a 3-D
ellipsoid, tilted by γ +α with respect to the time axis, ro-
tated by ϕ with respect to the in-line axis, and normalized
by

∑
λ

hλ(γ, ϕ) = 1. Its dimensions, selected by the in-
terpreter, control the minimal dimensions of the detected
subsurfaces. The maximum value of α is determined by
the dip increment ∆γ (|α| < ∆γ/2). In our implementa-
tion, we used a 3-D pencil-like shaped Hanning window,
whose dimensions are 61 samples at its major axis and 3
samples at its minor axes. The dip increment is ∆γ = 5o,
and the relative tilt of the directional filter α is restricted
to {−2o, 0, 2o}. Clearly, we could use a smaller dip in-
crement and discard the relative tilt. However, the above
formulation is computationally more efficient.

Directional filtering of the contrast enhanced NDE yields

Cλ(γ + α, ϕ) =
∑
λ′

hλ−λ′(γ + α, ϕ)N̂λ′(γ, ϕ) . (6)

These coefficients are thresholded by δ (0 < δ < 1),

C̃λ′(γ + α, ϕ) =

{
Cλ′(γ + α, ϕ), if Cλ′(γ + α, ϕ) ≥ δ
0, otherwise,

(7)
and then filtered back to produce the directional LFE,
given by

Lλ(γ, ϕ) =
∑
λ′,α

C̃λ′(γ + α, ϕ)hλ−λ′(γ + α, ϕ) . (8)

The directional LFE volumes contain significant portions
of fault surfaces, characterized by roughly the same dip
and azimuth orientations as those of the analysis cube.

Constructing the Fault Surfaces

The final step of the algorithm is keeping at each point
the maximum directional LFE value, over the tested set
of dips and azimuths. Specifically, the LFE attribute at
the analysis point λ is given by

Lλ = max
γ,ϕ

{Lλ(γ, ϕ)} . (9)

The LFE volume thus gathers and connects the significant
portions of faults into smooth large fault surfaces.

Results

In this section we use a real data example to demonstrate
the applicability of the LFE algorithm, and to illustrate
its execution. The data example (courtesy of GeoEnergy)
is from the Gulf of Mexico. The data is decimated in
both time and space. The time interval is 8 ms, in-line
trace spacing is 25 m, and cross-line trace spacing is
50 m. A small subvolume with an in-line distance of
5.025 km and a cross-line distance of 10.05 km (201 x 201
traces) is used for demonstration. Each trace is 3.208 s
in duration (401 samples).
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Fig. 2: A vertical cross-section through the seismic data at
y = 6 km.

Fig. 2 shows a vertical cross-section through the seismic
data at y = 6 km. Cross-sections through the NDE and
directional LFE volumes, corresponding to an analysis
cube of [7 7 21] samples with dip γ = −20o and azimuth
ϕ = 0o, are displayed in Fig. 3. Clearly, the dip and
azimuth of the analysis cube determine the portions of
fault surfaces to be detected. In particular, surfaces hav-
ing dips and azimuths about the same dip and azimuth
of the analysis cube are distinguished by higher NDE val-
ues, compared to the locally averaged NDE. The second
step of the algorithm is contrast enhancement. This step
removes the 3-D local average of the NDE, thus compen-
sating for regions that are highly discontinuous, but often
do not contain fault surfaces. The third step of the algo-
rithm is directional filtering. Here, we detect the portions
of fault surfaces that are approximately aligned with the
analysis cube. The minimal dimensions of the detected
subsurfaces are controlled by the dimensions of the di-
rectional filter. For the present example, we used a 3-D
pencil-like shaped Hanning filter, whose dimensions are
61 samples at its major axis and 3 samples at its minor
axes. The dip increment is ∆γ = 5o, the azimuth incre-
ment is ∆ϕ = 45o, and the relative tilt of the directional
filter α is restricted to {−2o, 0, 2o}. The filtered NDE co-
efficients are thresholded by δ = 0.12, and filtered back
to produce the directional LFE volumes. The result of
the third step of the algorithm, for −20o dip and 0o az-
imuth, is shown in Fig. 3(b). The final step is keeping
at each point the maximum directional LFE value, over
the tested set of dips and azimuths. This yields the LFE
volume (Fig. 4), containing all the fault surfaces in con-
formity with the presumed model (i.e., the dimensions of
the analysis cube, set of dips and azimuths, directional
filter, threshold, etc.).

Conclusion

Recently, there has been progress in visualizing strati-
graphic and structural discontinuities with the coherence
methods, which look at the similarity of a small num-
ber of neighboring traces to determine discontinuities.
However the efficiency of existing coherence methods for
extracting fault surfaces is inadequate. The proposed
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Fig. 3: Vertical cross-sections at y = 6 km through (a) the
Normalized Differential Entropy volume, and (b) the direc-
tional LFE volume, using an analysis cube of [7 7 21] samples
with dip γ = −20o and azimuth ϕ = 0o.

algorithm facilitates the extraction of the fault surfaces,
by identifying portions of the surfaces and combining
them into large fault surfaces. Specifically, the portions
of the fault surfaces are identified by analyzing tilted and
rotated subvolumes throughout the region of interest,
and subsequently 3-D contrast enhancement and direc-
tional filtering. Moreover, equipped with the dip and
azimuth arguments which yield maximum in (9), the LFE
method can be further enhanced by 3-D skeletonisation
and 3-D surface separation. The ultimate result of the
fault extraction computations are well defined, cleanly
separated, labelled fault surfaces, which can be readily
used for seismic interpretation.
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