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I\/Iultimodal Signal Processing on Manifolds
* Problem setup

Multimodal data:

d N pairs of samples (data points):

v, w,} v, e Rlv,w, € Rlw
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* Problem setup

Multimodal data:

1 N pairs of samples (data points):

v, wa}l v, € Rlv, w, € Rtw

s

 The data points are aligned
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* Problem setup

Different sources:

dCommon v, = v, (xY)

W, (X,Z)

I
3
1

Jd Modality specific
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 Example - sound source activity detection

1 Given audio visual signals:

1 Goal: for each frame, estimate the activity of the/lcommon source:
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Example - sound source activity detection
1 Given audio visual signals:

(v, wy), (v, wy),

1 Special case: voice activity detection
1 Challenge: structured modality-specific interferences

= Head movements (we do no preprocessing) vV, = U, (X, ¥)

o . w, =w,(X/Z)
= Acoustic noises and transients n "( .
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* Problem setup — cont’d

J Any type of modality

d Possibly, multiple modalities (more than two)
d Unsupervised setting — no labels

dThe signals is the data

= No external training datasets

(J Online/batch
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* Problem setup — cont’d

Goal:

(dData fusion

QUnified representation: {¢,,}Y € R-
{Un '(x' y)' Wh (x" Z)} — ¢n (X)

(JReduce the effect of structured interferences
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 Related open questions

dLimited availability of sensors over time

vn(XY) = Pr(x)

= Do | need the data from all of the modalities?

JdMulti-modal correspondence

= “Correlation”
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_Multimodal Signal Processing on Manifolds
 Manifold learning

We take the kernel based geometric

approach
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Vultimodal Signal Processing on Manifolds
Background - the single modal case

J Geometric assumption: low dimensional structure

L Goal: a representation that respects the geometric structure

JPreserve local affinities

A “'
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Manifold learning - the single modal case
Diffusion Maps (Coifman & Lafon 06):

- 2
Q Construct an affinity matrix K € RV*N? K(n,m) = exp (_ 190 =Vm]| )

€p
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Manifold learning - the single modal case
Graph interpretation [Keller et al 10’]

 Each point is a vertex

[ The weights of the edges: %
®
[V —vmll? ®
Kv(n,m)=exp(— "6 U ) ®
’ ®
L An edge exists between similar points ® m
®
EI”vn_vm”2<ev - Kv(n:m):'to ®
®
@
>




Multimodal Signal Processing on Manifolds

Manifold learning - the single modal case

Graph interpretation [Coifman & Lafon 06, Keller et al 10’]

d Assumption: a single geometric structure

3 A necessary condition: a connected grapht

d In particular: o

= each point is connected

(to at least one other point)
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Manifold learning - the single modal case

dThe tradeoff in kernel bandwidth (¢,,) selection trade-off

_ 2
K,(n,m) = exp (— L Evmll )

A

P
°
P
P Un
® Vm
o S0
. :
o
o
>

Too small kernel bandwidth
Disconnected graph

A

>
Too large kernel bandwidth
Wrong affinities
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Vultimodal Signal Processing on Manifolds
Manifold learning - the single modal case

Diffusion Maps (Coifman & Lafon 06):

O Row Normalize: K > M = D™1K

 Eigenvector decomposition of M I I I

d ¢, is the nth row: » @ o Py
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e Related studies — multimodal case

Kernel based approaches:

Qd Construct an affinity kernel K, € RV*V:

”vn _ vm”2>

€

K,(n,m) = exp (—

(J Combine the data:
K = f(KvJ Kw)

[Wang 12’, Lindenbaum et al. 15, Michaeli et al. 16’, Vestner et al 17’]
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e Related studies — multimodal case

J Fusion by the product of kernels:
M=M,M,

M,, M, normalized versions (row stochastic) of K,,, K,,

EIAnaIysis In [Lederman & Talmon 16’, Talmon & Wu 18’].

= Representation according to common factors:

(Vo (X, ¥), Wi (%, 2)) — ¢ ()

" Alternating diffusion
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e Limitations of the analysis

JWhat is the roll of the affinity kernel in the fusion process?

_ 2
Kv(n, m) = exp (_ lvn—vmll )

€p

dHow to select the kernel bandwidths €, €,,?

JHow the intensities of X,y,z (“SNR”) effects the fusion?
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 Main contributions

d Graph theoretic analysis of the product of kernels:
M=MM,,

JImproved fusion via proper selection of the kernel

bandwidth K,(n,m) = exp (— ||vn—6vm||2)
(Jd Address the task of sound source activity detection
dOnline setting and missing data

JThe problem of multimodal correspondence

» Audio localization in video




+

d The kernel product defines a multi-modal graph.

Kernel Based Multimodal Signal Processing

* Proposed graph interpretation — multi-modal case

 Points n and m are connected if My, ,,, # 0

K,(n,m)

£

"o
o o

||vn_”m||2

€y

Modality 1
Graph

)

+

’Z‘ K, (n,m)
I — exp (_ ||vn;:im||2)

O

>

Modality 2
Graph

*

M= M,M,

o

Multi-modal
Graph
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* Proposed graph interpretation — multi-modal case

Propositionl [Dov, Talmon, and Cohen IEEE TSP 16’]:

vn, 3m # nsuch that M(n,m) # 0 iff
vn, 3m # nsuchthat M,(n,m) # 0or M,,(n,m) # 0

J A point in the multi-modal graph is connected iff it is

connected at
t t

s

"o
e o

east in one of the modalities

"

l

i

>
Modality 1 Graph

>
Modality 2 Graph

+

o

Multi-modal Graphlz>
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* Proposed graph interpretation — multi-modal case

J The multi-modal graph may be connected even if the single-

+

modal graphs are disconnected

1 Previous studies require the same connectivity as in the single

modal case

 The kernel bandwidth may be significantly reduced

K,(n,m)
= exp (

"o
o

€y

_ ”vn_vm”2

Modality 1 Graph

>

)

+

"

l

i

K, (n,m)
_ ( ||vn_vm||2)
=exp| ———2—

Ew

—

>
Modality 2 Graph

+

M=M,M,

{

L

>

Multi-modal Graph
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Proposed analysis of kernel bandwidth selection

(] We relate between:
= The kernel bandwidth

= Average number of connections to each point

SR
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| Multimodal Signal Processing on Manifolds
* Proposed analysis of kernel bandwidth selection

(JAssume a statistical model:

* The connectivity between a pair of points:

1 w.p.p }
1 = v
»(1,m) {O otherwise

= |ID

" Cross-modality independence
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* Proposed analysis of kernel bandwidth selection

JWe study the relation between the average number of

connections in the single & multi-modal graphs

d Define the average number of connections:
= 5, - modality 1
= S, - modality 2

= § - multi-modal

Proposition 2 [Dov, Talmon, and Cohen IEEE TSP 16]:

the average number of connections in the multi-modal
. —

case SN_)Oo S,Sw
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| Kernel Based Multimodal Signal Processing |
The tradeoff

dThe tradeoff in kernel bandwidth (¢,,) selection trade-off

t t S——S,S,
®
® N—>oo
.
® |
®
®
o Fop
® .
©
O
—> >
Too small kernel bandwidth Too large kernel bandwidth

Disconnected graph Wrong affinities
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Proposed algorithm for kernel bandwidth selection

Algorithm outline:

[ Select the kernel bandwidth €, as in the single-modal case

(] Estimate the average number of connections § = S,,:

= 5= (N — 1)131) - %Zm Znim K, (n, m)

(] Reduce the kernel bandwidth until:

5AD:\/§

via an iterative search
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 Sound source activity detection

1 Given audio visual signals:

1 Goal: for each frame, estimate the activity of the/lcommon source:
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* Proposed algorithm for sound source activity detection

Proposed algorithm outline:

 Construct the improved affinity kernels: M, and M,,
 Fuse the modalities: M = M ,M,,
O Use the leading eigenvector ¢p; € RV

 Activity indicator:

1 (x) = {1 ;o p1(n) > T}

0 : otherwise
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* Experimental Results

d Voice activity detection. Transient type: W3

hammering

— ST

= s L
| T |
Input Signal
0.5 o True speech
#*  True transients
# Tamura
O Proposed
L AL LA WIL

f

-10
-20
-30
-40
-50

] Bl g v .
E g b | ok 3 - 3 - = |1 " |

} N N o o o el ol B S R NN

= o = S s o 2y o F L I

5 6 7 8 9 10 11 12 13 14 15
Time [s]




Multimodal Signal Processing on Manifolds

* Experimental Results

(A ROC curves. Transient type: hammering
1

0.8
=
S
5 0.6
3
L
-
S 0.4fF f7:
s {77 ====Audio, AUC: 0.8
Video, AUC: 0.8
0.2 i ——Hadamard, AUC: 0.83
ll ——Sum, AUC: 0.84
L T Tamura, AUC: 0.86
—Proposed, AUC: 0.95
0 3 I I 1 I ]
0 0.2 0.4 0.6 0.8 1

Prob. False Alarm
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* Application — desired speaker activity detection

[ Interfering source: speech of another speaker (T D)

 Challenge: same acoustic characteristics to the

desired and the interfering sources

WL i

Input Signal
o True Desired Speech
*  True Interfering Speech

Prob. Detection
(=]
Lh

04
£ Hadamard
0.3 Proposed
0
0.2 - Agdio. AUC: 0.77 10
' Video, AUC: 0.74
=t Hadamard, AUC: 0.77 =20
0.1y —— Sum. AUC: 0.78 .30
= Proposed. AUC: 0.87
0 I 1 I 1 I 1 1 1 1 | -40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50

18 20 22 24 26

Prob. False Alanm 10 12 14 16
Time [s]

[Dov, Talmon, and Cohen, ICSEE 16’]
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* Experimental results: voice activity detection

(A ROC curves. 0861

Babble noise
0.84 -

U .
=
<083k

-5 dB SNR

0.82r

0.81F / —cC
. CAD

0.8

0 O.IS i 115 é
dKernel bandwidth selection: ©

€, = C - maXm[minn(”vn — vm”z)]
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* Sleep stages classification [joint with Jonas Laake]

EEG_Pz Oz

EOG_horizontal

30

O Modalities: .

EEG| Fpz Cz

EEG_Pz Oz

EOG harizontal

[ Classes: REM, shallow sleep (NREM 1,2), deep sleep (NREM 3,4)

Accuracy

070

085 |

060 4

055 1

050 1

045 -

040 4

035

0.30
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* Extending the fusion problem

JOnline

 Limited availability of the sensors

JSound scene analysis

o
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* Fusion in an online setting

A A short calibration set:{v,.(x, y), w, (x, 2) }§

Goal:

Unified representation:¢,, € R”
v, (X)y) = ¢ (X)

(JReduce the effect of structured interferences
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* QOut of sample extension

Single-modal approach:

J Obtain a representation using the reference set:
(¢1, ¢2! "'1¢L)

 Online extension (Nystrom method) [Fowlkes 04]:

R
1
AOESOWACHING
r=1
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* QOut of sample extension

Multi-modal approach:

J Obtain a representation using the reference set:
(¢1, ¢2! "'1¢L)

1 Online extension :

R
1
$(n) = ZZ M (n, 7)b;(r)

R
1
= A_fmz:l M, (n.m) f(m)

R
FOm) & ) My (m, 1)y ()
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| Multimodal Signal Processing on Manifolds
* Extending the fusion problem

We take advantage of the limitation of the extension and show:

J Multimodal geometric structure can be learned from a short

“calibration” set

[ The common source can be extract from one modality:

Un(X,Y) = Pn(x)

 Challenging interfering sources such as speech are reduced
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* Proposed algorithm for sound scene analysis

d Point a video camera to a particular source of interest
[ Construct the multimodal representationvia M = M ,M

J Extend the representation to new frames using one

modality

[Dov, Talmon, Cohen ACM/IEEE TASLP 17’]
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e Sound source activity detection

Results: BRE RS GBEE B Bisiogy o
True speech
Lk True transients
O Source of interest: % Audio OM)
O Proposed
®* Drums beats 4o
O Interfering source: —3 o fet L_L..J..LMLJ,“LL ALt L) luL“ SN
L6
= _
= Speech oy 1t H

40 IIP .

QCount [, nd 2 anE & ‘md 4 and
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e Sound source activity detection

Results: I
 Source of interest: 0.8
= Keyboard-taps
5
O Interfering event: £ 0.6
[}
= Speech E
£04} _
o & . === Audio, AUC: 0.77
Fae = = Video, AUC: 0.59
0217 - ——CCA, AUC: 0.64
—— MMI, AUC: 0.7
= Proposed, AUC: (.83
D | | | | |
0 0.2 0.4 0.6 0.8 1

Prob. False Alarm
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Measuring multimodal correspondence

J Examplel: audio localization in video

JWhich part of the video corresponds more to the audio?
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e Why the problem is challenging — example 2

dVery “simple” case:

= Multi-view (not multi-modal)

= Almost the same view

View 1 View 2 View 2 shifted
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| Multimodal Signal Processing on Manifolds
* Why the problem is challenging

J Application: synchronization

= Measure cross-correlation

View 2 Is shifte
g e " W

d by 5 frames
s PR Py P
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* Why the problem is challenging

J Application: synchronization

= Measure cross-correlation

View 2 Is shifte

d by 5 frames
s PR Py P




Multimodal Signal Processing on Manifolds

| Multimodal Signal Processing on Manifolds
* Why the problem is challenging

J Apply cross-correlation to find the shift:

=, "=

| C 0.95 1

0.90 - O/7~& OO/}.G

- O/O’ /\ /\”J 0.90 - Ofa

0.80 - G/@o/’ oas | @/&0 '

\/ o, | \’/}o,, /

I
0
Y
0

N = 50 frames N = 200 frames
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* Proposed measure of multimodal correspondence

A Trace of the kernel product:

Tr{M}
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* Proposed graph interpretation

Graph interpretation of:
Tr{M}

[ Recall the graph interpretation of the affinity kernel:

2
K,(n,m) = exp ( [V = Vim )

€y

1 The statistical model for the connectivity:

1,(n,m) = {1 W-P- Py }

0 otherwise
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| Multimodal Signal Processing on Manifolds
* Proposed graph interpretation

J Consider the extreme cases

* The modalities are uncorrelated (UC)

* The modalities are fully correlated (C)
J Assume:

Py =bw =p € (0,1)

Proposition 1 [Dov, Talmon, Cohen IEEE TSP 187:
EV{Tr{M}} = p - EY{Tr{M}} < E“{Tr{M}}




Multimodal Signal Processing on Manifolds

 Measuring multimodal correspondence

Fast online update of the proposed measure

Proposition 2 [Dov, Talmon, Cohen IEEE TSP 18]:

N
Tr{M} =Tr{D;'D,'K,K,,} = Tr{DK} £ ) " D(n.n)K(n.n)

n=1

D2D,'D;}K 2 K K,
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 Measuring multimodal correspondence

(d Fast online update of K(n, n):
K(n,n) = K(n,n)
—K,(n, DK, (n, 1)

= K(n,n) is the updated kernel

Proposed measure

N
Tr{M} = ZD(n,n)K(n,n)
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 Measuring multimodal correspondence

(d Fast online update of K(n, n):
K(n,n) = K(n,n)
—K,(n, DK, (n, 1)

= K(n,n) is the updated kernel

Proposed measure

N
Te{M} = ¥ D(n,n)K(n.n)
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 Measuring multimodal correspondence

(d Fast online update of K(n, n):

K(n,n) = K(n,n)
—K,(n,1)K,,(n,1)
+K,(n,N + 1)K, (n,N + 1)

K

= K(n,n) is the updated kernel

J Complexity:

Proposed measure

N
" O(N) Tr{M} = ZD(n,n)K(n,n)
= No matrix product (> O(N?)) "
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 Measuring multimodal correspondence

Runtime simulations:

5 L] T T T T
,' - Proposed -
;l = = Single modal update
4 L ' nnnnni SVD i
,' - = KCCA
[
]
]
3+ I 1
= ¥ &
ﬂ ' i!
u [ v 4
B ] ’
= 2L ; . ,a' i
' l‘
:f ’J -
-
ih] Lo’ -
-
0.25 .=
) I - ..—F‘ P
0.15F L -lll" g s -
= |
0.05 100 150 200 250 300
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Measuring multimodal correspondence

J Example: audio localization in video

JWhich part of the video corresponds more to the audio?
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 Measuring multimodal correspondence

Audio localization in video

Motion in video Proposed
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 Measuring multimodal correspondence
Eye fixation prediction

U Find the salient regions in the video
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 Measuring multimodal correspondence

Eye flxatlon predlctlon

.
L

?
W\
l
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 Measuring multimodal correspondence

Eye fixation prediction

Algorithm SAUC CC NSS
Video only 0.7292 | 0.3612 | 1.4295
KCCA 0.7628 | 0.4362 | 1.7904
Empirical HSIC 0.7530 | 0.4197 | 1.7229
Zhang et al. 2016 0.7235 | 0.3725 | 1.4667
Izadinia et al. 2013 | 0.6915 | 0.3519 | 1.5165
Min et al. 2016 0.7556 | 04182 | 1.6941
Proposed 0.7660 | 0.4432 | 1.8309
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e Note about neural networks

lll 1II \

n LT

1 Transient reducing autoencoders + RNN for

audio-visual VAD

[Ariav, Dov, and Cohen, Signal Processing, 18’]

Passphrase | [12] (I2) Sprw
(proposed)
My voice... 0.7 1.68
: : : f A/l : Please verify... 3 2.84
 Synchronization in audio-visual recordings Average o o
) ) Passphrase [12] (I2) Sprw
[Aides, Dov, and Aronowitz, ICASSP 2018] (proposed)
My voice... 32.71 2.98
Please verify... 31.07 4.39
Average 31.89 3.69
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e Conclusions

JKernel based multi-modal fusion

= Missing data
= Structured interferences
= No labels and external training datasets

dInsights via discrete analysis using graph theory:

= Relation between connectivity within and between modalities

= Not as in the single modal case

d Challenging audio-visual tasks
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d Learning modality specific (vs common) factors

J Measuring an “SNR” style ratio between modality specific

to common factors
dSensor selection

J Going beyond 2 modalities
JFusion

dMissing sensors

JSensor reliabiliti and liveness
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\Multimodal Signal Processing on Manifolds
* The End

Thank you!




