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Multimodal data:

 𝑁 pairs of samples (data points):

𝒗𝑛, 𝒘𝑛 1
𝑁 , 𝒗𝑛 ∈ ℛ𝐿𝑣 , 𝒘𝑛 ∈ ℛ𝐿𝑤

• Problem setup

t



Multimodal data:

 𝑁 pairs of samples (data points):

𝒗𝑛, 𝒘𝑛 1
𝑁 , 𝒗𝑛 ∈ ℛ𝐿𝑣 , 𝒘𝑛 ∈ ℛ𝐿𝑤

 The data points are aligned

• Problem setup
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Different sources: 

Common 

Modality specific 

• Problem setup

𝒗𝑛 = 𝒗𝑛(𝒙, 𝒚)
𝒘𝑛 = 𝒘𝑛(𝒙, 𝒛)

t



• Example - sound source activity detection

 Given audio visual signals:

 Goal: for each frame, estimate the activity of the common source:

𝟏𝑛(𝒙) =
1 ; 𝑛 ∈ ℋ1

0 ; 𝑛 ∈ ℋ0

t
𝒗1, 𝒘1 , 𝒗2, 𝒘2 , … , 𝒗𝑁, 𝒘𝑁



• Example - sound source activity detection

 Given audio visual signals:

 Special case: voice activity detection

 Challenge: structured modality-specific interferences

 Head movements (we do no preprocessing)

 Acoustic noises and transients

t
𝒗1, 𝒘1 , 𝒗2, 𝒘2 , … , 𝒗𝑁, 𝒘𝑁

𝒗𝑛 = 𝒗𝑛(𝒙, 𝒚)
𝒘𝑛 = 𝒘𝑛(𝒙, 𝒛)



• Problem setup – cont’d

Any type of modality

Possibly, multiple modalities (more than two)

Unsupervised  setting – no labels

The signals is the data

 No external training datasets

Online/batch 



• Problem setup – cont’d

Goal:

Data fusion

Unified representation: 𝝓𝑛 𝟏
𝑵 ∈ ℛ𝐿

𝒗𝑛(𝒙, 𝒚), 𝒘𝑛(𝒙, 𝒛) → 𝝓𝑛(𝒙)

Reduce the effect of structured interferences



• Related open questions

Limited availability of sensors over time

𝒗𝑛(𝒙, 𝒚) → 𝝓𝑛(𝒙)

 Do I need the data from all of the modalities?

Multi-modal correspondence

 “Correlation”

Multimodal Signal Processing on Manifolds



• Manifold learning

We take the kernel based geometric 

approach

Multimodal Signal Processing on Manifolds



Geometric assumption: low dimensional structure

Goal: a representation that respects the geometric structure

Preserve local affinities

Background - the single modal case

𝒗𝑛
𝒗𝑚

𝜙𝑛 𝜙𝒎



Diffusion Maps (Coifman & Lafon 06):

 Construct an affinity matrix 𝑲 ∈ ℝ𝑁×𝑁: 𝐾(𝑛, 𝑚) = exp −
||𝒗𝑛−𝒗𝑚||2

𝜖𝑣

Manifold learning - the single modal case

…

…

𝒗𝑛
𝒗𝒎



Graph interpretation [Keller et al 10’]

 Each point is a vertex

 The weights of the edges:

𝐾𝑣 𝑛, 𝑚 = exp −
𝒗𝑛−𝒗𝑚

2

𝜖𝑣

 An edge exists between similar points

 ||𝒗𝑛 − 𝒗𝑚||2 < 𝜖𝑣 → 𝐾𝑣(𝑛, 𝑚) ≠ 0

Manifold learning - the single modal case

𝒗𝑛
𝒗𝒎

√𝜖𝑣



Graph interpretation [Coifman & Lafon 06, Keller et al 10’]

 Assumption: a single geometric structure

 A necessary condition: a connected graph 

 In particular: 

 each point is connected

(to at least one other point)

Manifold learning - the single modal case

𝒗𝑛
𝒗𝒎

√𝜖𝑣



The tradeoff  in kernel bandwidth (𝜖𝑣) selection trade-off

Manifold learning - the single modal case

Kernel Based Multimodal Signal Processing

𝐾𝑣 𝑛,𝑚 = exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑣

𝒗𝑛
𝒗𝒎

√𝜖𝑣

𝒗𝑛
𝒗𝒎

√𝜖𝑣

Too large kernel bandwidth

Wrong affinities

Too small kernel bandwidth

Disconnected graph



Diffusion Maps (Coifman & Lafon 06):

 Row Normalize : 𝑲 → 𝑴 = 𝑫−1𝑲

 Eigenvector decomposition of 𝑴

 𝝓𝑛 is the 𝑛th row:

Manifold learning - the single modal case

…

𝝓𝑛



• Related studies – multimodal case 

Kernel based approaches:

Construct an affinity kernel 𝑲𝑣 ∈ ℝ𝑁×𝑁:

𝐾𝑣 𝑛, 𝑚 = exp −
𝒗𝑛 − 𝒗𝑚

2

𝜖𝑣

Combine the data:

𝑲 = 𝑓 𝑲𝑣, 𝑲𝑤

[Wang 12’, Lindenbaum et al. 15’, Michaeli et al. 16’,  Vestner et al 17’]



• Related studies – multimodal case

Fusion by the product of kernels: 

𝑴 = 𝑴𝑣𝑴𝑤

𝑴𝑣, 𝑴𝑤 normalized versions (row stochastic) of 𝑲𝑣 , 𝑲𝑤

Analysis in [Lederman & Talmon 16’, Talmon & Wu 18’]:

 Representation according to common factors:

𝐯𝑛(𝒙, 𝒚), 𝐰𝑛(𝒙, 𝒛) → 𝝓𝑛 𝒙

 Alternating diffusion



• Limitations of the analysis

What is the roll of the affinity kernel in the fusion process?

𝐾𝑣 𝑛, 𝑚 = exp −
𝒗𝑛−𝒗𝑚

2

𝜖𝑣

How to select the kernel bandwidths 𝜖𝑣, 𝜖𝑤?

How the intensities of 𝐱, 𝐲, 𝐳 (“SNR”) effects the fusion?



• Main contributions

Graph theoretic analysis of the product of kernels: 

𝑴 = 𝑴𝑣𝑴𝑤

Improved fusion via proper selection of the kernel 

bandwidth

Address the task of sound source activity detection 

Online setting and missing data

The problem of multimodal correspondence

 Audio localization in video

𝐾𝑣 𝑛,𝑚 = exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑣



 The kernel product defines a multi-modal graph.

 Points 𝑛 and 𝑚 are connected if 𝑴𝑛,𝑚 ≠ 0

Modality 1 

Graph

Modality 2

Graph
Multi-modal

Graph

• Proposed graph interpretation – multi-modal case 

Kernel Based Multimodal Signal Processing

𝐾𝑣 𝑛,𝑚

= exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑣

𝐾𝑤 𝑛,𝑚

= exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑤

𝑴 = 𝑴𝑣𝑴𝑤



• Proposed graph interpretation – multi-modal case

A point in the multi-modal graph is connected iff it is 

connected at least  in one of the modalities

Proposition1 [Dov, Talmon, and Cohen IEEE TSP 16’]: 

∀𝑛, ∃𝑚 ≠ 𝑛 such that 𝑀 𝑛, 𝑚 ≠ 0 iff
∀𝑛, ∃𝑚 ≠ 𝑛 such that 𝑀𝑣(𝑛, 𝑚) ≠ 0 or 𝑀𝑤(𝑛, 𝑚) ≠ 0

Modality 1 Graph Modality 2 Graph Multi-modal Graph



 The multi-modal graph may be connected even if the single-

modal graphs are disconnected

 Previous studies require the same connectivity as in the single 

modal case

 The kernel bandwidth may be significantly reduced

• Proposed graph interpretation – multi-modal case

Modality 1 Graph Modality 2 Graph Multi-modal Graph

𝐾𝑣 𝑛,𝑚

= exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑣

𝐾𝑤 𝑛,𝑚

= exp −
𝑣𝑛−𝑣𝑚

2

𝜖𝑤

𝑴 = 𝑴𝑣𝑴𝑤



We relate between:

 The kernel bandwidth 

 Average number of connections to each point

• Proposed analysis of kernel bandwidth selection

√𝜖𝑣

√𝜖𝑣

√𝜖𝑣



Assume a statistical model:

 The connectivity between a pair of points:

𝟏𝑣(𝑛, 𝑚) =
1 w.p. 𝑝𝑣

0 otherwise

 IID

 Cross-modality independence

• Proposed analysis of kernel bandwidth selection



• Proposed analysis of kernel bandwidth selection

We study the relation between the average number of 

connections in the single & multi-modal graphs

Define the average number of connections: 

 𝑆𝑣 - modality 1 

 𝑆𝑤 - modality 2

 𝑆 - multi-modal

Proposition 2 [Dov, Talmon, and Cohen IEEE TSP 16’]: 

the average number of connections in the multi-modal 

case: 𝑆
𝑁→∞

𝑆𝑣𝑆𝑤



The tradeoff  in kernel bandwidth (𝜖𝑣) selection trade-off

The tradeoff

Kernel Based Multimodal Signal Processing

Too large kernel bandwidth

Wrong affinities

Too small kernel bandwidth

Disconnected graph

𝑆
𝑁→∞

𝑆𝑣𝑆𝑤



• Proposed algorithm for kernel bandwidth selection

Algorithm outline:

 Select the kernel bandwidth 𝜖𝑣 as in the single-modal case

 Estimate the average number of connections 𝛿 = 𝑆𝑣:

  𝛿 = 𝑁 − 1  𝑝𝑣 =
1

𝑁
 𝑚  𝑛≠𝑚 𝐾𝑣 𝑛, 𝑚

 Reduce the kernel bandwidth until:

𝛿AD =  𝛿

via an iterative search



• Sound source activity detection

 Given audio visual signals:

 Goal: for each frame, estimate the activity of the common source:

𝟏𝑛(𝒙) =
1 ; 𝑛 ∈ ℋ1

0 ; 𝑛 ∈ ℋ0

t
𝒗1, 𝒘1 , 𝒗2, 𝒘2 , … , 𝒗𝑁, 𝒘𝑁



• Proposed algorithm for sound source activity detection

Proposed algorithm outline:

 Construct the improved affinity kernels: 𝑴𝑣 and 𝑴𝑤

 Fuse the modalities: 𝑴 = 𝑴𝑣𝑴𝑤

 Use the leading eigenvector 𝝓1 ∈ 𝑅𝑁

 Activity indicator:

 1𝑛(𝒙) =
1 ; 𝜙1(𝑛) > 𝜏
0 ; otherwise



• Experimental Results

Voice activity detection. Transient type: 

hammering 



• Experimental Results

ROC curves. Transient type: hammering 



• Application – desired speaker activity detection

 Interfering source: speech of another speaker 

 Challenge: same acoustic characteristics to the 

desired and the interfering sources

[Dov, Talmon, and Cohen, ICSEE 16’]



ROC curves. 

Babble noise 

-5 dB SNR

Kernel bandwidth selection:

𝜖𝑣 = 𝐶 ⋅ max𝑚 min𝑛 ||𝒗𝑛 − 𝒗𝑚||2

• Experimental results: voice activity detection



 Modalities: 

 Classes: REM, shallow sleep (NREM 1,2), deep sleep (NREM 3,4)

• Sleep stages classification [joint with Jonas Laake]

A
c
c
u
ra

c
y

EEG_Fpz_Cz EEG_Pz_Oz EOG horizontal



Online

Limited availability of the sensors

Sound scene analysis

• Extending the fusion problem



• Fusion in an online setting

 A short calibration set: 𝒗𝑟 𝒙, 𝒚 , 𝒘𝑟 𝒙, 𝒛 𝟏
𝑅

Goal:

Unified representation:𝝓𝑛 ∈ ℛ𝐿

𝒗𝑛(𝒙, 𝒚) → 𝝓𝑛(𝒙)

Reduce the effect of structured interferences



Single-modal approach:

 Obtain a representation using the reference set:

𝝓1, 𝝓2, … , 𝝓𝐿

 Online extension (Nystrom method) [Fowlkes 04]:

𝜙𝑗(𝑛) =
1

𝜆𝑗
 

𝑟=1

𝑅

𝑀𝑣 (𝑛, 𝑟)𝜙𝑗(𝑟)

• Out of sample extension



Multi-modal approach:

 Obtain a representation using the reference set:

𝝓1, 𝝓2, … , 𝝓𝐿

 Online extension :

𝜙𝑗(𝑛) =
1

𝜆𝑗
 

𝑟=1

𝑅

𝑀 (𝑛, 𝑟)𝜙𝑗(𝑟)

=
1

𝜆𝑗
 

𝑚=1

𝑅

𝑀𝑣 𝑛, 𝑚 𝑓 𝑚

𝑓 𝑚 ≜  

𝑟=1

𝑅

𝑀𝑤 𝑚, 𝑟 𝜙𝑗 𝑟

• Out of sample extension



We take advantage of the limitation of the extension and show:

 Multimodal geometric structure can be learned from a short 

“calibration” set

 The common source can be extract from one modality:

𝑣𝑛(𝑥, 𝑦) → 𝜙𝑛(𝑥)

 Challenging interfering sources such as speech are reduced

• Extending the fusion problem



Point a video camera to a particular source of interest

Construct the multimodal representation via 𝑴 = 𝑴𝑣𝑴𝑤

Extend the representation to new frames using one

modality

[Dov, Talmon, Cohen ACM/IEEE TASLP 17’]

• Proposed algorithm for sound scene analysis



Results:

 Source of interest:

 Drums beats

 Interfering source:

 Speech

• Sound source activity detection



Results:

 Source of interest:

 Keyboard-taps

 Interfering event:

 Speech

• Sound source activity detection



Example1: audio localization in video

Which part of the video corresponds more to the audio?

Measuring multimodal correspondence



• Why the problem is challenging – example 2

Very “simple” case:

 Multi-view (not multi-modal)

 Almost the same view

View 1 View 2 View 2 shifted



• Why the problem is challenging

Application: synchronization

 Measure cross-correlation

View 2 is shifted by 5 frames

t

0−5View 1

𝑁 = 50 frames

0



• Why the problem is challenging

Application: synchronization

 Measure cross-correlation

View 2 is shifted by 5 frames

t

0−5



Apply cross-correlation to find the shift: 

• Why the problem is challenging

𝑁 = 200 frames

0

𝑁 = 50 frames

0



• Proposed measure of multimodal correspondence

Trace of the kernel product:

Tr 𝑴



• Proposed graph interpretation

Graph interpretation of:

Tr 𝑴

 Recall the graph interpretation of the affinity kernel:

 The statistical model for the connectivity:

𝟏𝑣(𝑛, 𝑚) =
1 w.p. 𝑝𝑣

0 otherwise

𝜖𝑣



• Proposed graph interpretation

Consider the extreme cases

 The modalities are uncorrelated (UC)

 The modalities are fully correlated (C)

Assume: 

𝑝𝑣 = 𝑝𝑤 ≜ 𝑝 ∈ (0,1)

Proposition 1 [Dov, Talmon, Cohen IEEE TSP 18’]:

𝐸UC Tr{𝑴} = 𝑝 ⋅ 𝐸C Tr{𝑴} < 𝐸C Tr{𝑴}



• Measuring multimodal correspondence

Fast online update of the proposed measure

𝑫 ≜ 𝑫𝑣
−1𝑫𝑤

−1, 𝑲 ≜ 𝑲𝑣𝑲𝑤

t

Proposition 2 [Dov, Talmon, Cohen IEEE TSP 18’]:



• Measuring multimodal correspondence

Fast online update of 𝐾 𝑛, 𝑛 :

 𝐾 𝑛, 𝑛 = 𝐾 𝑛, 𝑛

−𝐾𝑣 𝑛, 1 𝐾𝑤 𝑛, 1

  𝐾 𝑛, 𝑛 is the updated kernel 

Proposed measure

𝑲



• Measuring multimodal correspondence

Fast online update of 𝐾 𝑛, 𝑛 :

 𝐾 𝑛, 𝑛 = 𝐾 𝑛, 𝑛

−𝐾𝑣 𝑛, 1 𝐾𝑤 𝑛, 1

  𝐾 𝑛, 𝑛 is the updated kernel 

Proposed measure

𝑲



• Measuring multimodal correspondence

Fast online update of 𝐾 𝑛, 𝑛 :

 𝐾 𝑛, 𝑛 = 𝐾 𝑛, 𝑛

−𝐾𝑣 𝑛, 1 𝐾𝑤 𝑛, 1

+𝐾𝑣 𝑛, 𝑁 + 1 𝐾𝑤 𝑛, 𝑁 + 1

  𝐾 𝑛, 𝑛 is the updated kernel 

Complexity:

 𝑂(𝑁)

 No matrix product (> 𝑂(𝑁2))

Proposed measure

𝑲

 𝑲



• Measuring multimodal correspondence

Runtime simulations:



Example: audio localization in video

Which part of the video corresponds more to the audio?

Measuring multimodal correspondence



• Measuring multimodal correspondence

Audio localization in video

ProposedMotion in video



• Measuring multimodal correspondence

Eye fixation prediction

 Find the salient regions in the video



• Measuring multimodal correspondence

Eye fixation prediction

• True gaze

• [Min 16’]

• KCCA

• Proposed



• Measuring multimodal correspondence

Eye fixation prediction



 Transient reducing autoencoders + RNN for 

audio-visual VAD 

[Ariav, Dov, and Cohen, Signal Processing, 18’]

 Synchronization in audio-visual recordings

[Aides, Dov, and Aronowitz, ICASSP 2018]

• Note about neural networks



• Conclusions

Kernel based multi-modal fusion

 Missing data 

 Structured interferences

 No labels and external training datasets

Insights via discrete analysis using graph theory:

 Relation between connectivity within and between modalities

 Not as in the single modal case

Challenging audio-visual tasks



Learning modality specific (vs common) factors

Measuring an “SNR” style ratio between modality specific 

to common factors

Sensor selection

Going beyond 2 modalities

Fusion

Missing sensors

Sensor reliability and liveness

• Future work



• The End

Thank you!


