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ABSTRACT

In this paper, we present an anomaly detection approach for three
dimensional data. We pre-process the 3D data using the Karhunen-
Loeve transform (KLT), to remove correlation between data layers.
Each layer is modeled as a Gauss Markov random field (GMRF).
We present an efficient least squares method for model estimation.
Anomaly detection is carried out in each data layer independently.
We assume the anomalies lie in a known signal subspace. A dif-
ferent subspace is assumed for each data layer, such that a-priori
knowledge about the sensors used to capture the data, or about the
anomalies can be incorporated into the subspace. A parametric
form of the model inverse covariance matrix is utilized to yield
a computationally efficient detection. We demonstrate the perfor-
mance of our approach by applying it to the detection of defects in
wafer images and to detection of faults in 3D seismic data.

1. INTRODUCTION

Anomaly detection in three dimensional data has many practical
applications including automatic target detection in multispectral
and hyperspectral images, defect detection, detecting of faults in
seismic data, etc. Statistical methods in this field assume distinct
statistical models for both the background and the anomalies [1, 2].
Statistical parameters for the background are estimated from the
3D data, while statistical parameters for the anomalies are esti-
mated based on some training set. Other methods assume a known
anomaly pattern in a random clutter background [3, 4], or assume
the anomalies are those portions of the data, which have the worst
fit to the background model [5, 6, 7]. Once statistical modeling is
accomplished, hypothesis testing is used for deciding which pixels
represent an anomaly and which represent the background.

A major limitation of these methods is the inefficient statistical
model for the anomalies. In real life the anomaly has an unknown
pattern and one searches for different anomalies within a given
data set. Estimating the statistical parameters for the anomalies
from a given training data set yields poor detection results when
the anomalies differ from the examples in the training set. Esti-
mating these parameters based on the data itself renders the esti-
mation unstable since the anomalies are sparse within the data and
their location is unknown. Detecting anomalies based on worst
fit to the background model does not allow utilization of a-priori
information about the anomaly, if such information is available.
An additional drawback of many of these methods is their high
computational complexity. The computational cost comes from
inefficient parameter estimation techniques and from the need to
find inverse covariance matrices for the hypothesis testing stage.

In this paper, we present an anomaly detection approach for
three dimensional data. In a pre-processing stage, we de-correlate
the data layers using the Karhunen-Loeve transform (KLT). After
de-correlating the data layers, each layer is modeled as a Gauss
Markov random field (GMRF). The GMRF accounts for spatial
correlation between neighboring image pixels. We present an ef-
ficient least squares model estimation, and present a parametric
form of the model inverse covariance matrix. The inverse co-
variance matrix is later used in the anomaly detection stage, thus
saving the computational burden of covariance matrix inversion.
Anomaly detection is performed by utilizing a set of matched sub-
space detectors. Our matched subspace detector (MSD) detects
anomalies in colored Gaussian noise, and interference subspace.
We use a different MSD for each data layer. This approach allows
us to incorporate into the anomaly subspace a-priori knowledge
about the sensors used to capture the data, or a-priori information
about the anomalies. Using such information would yield better
detection rates, and lower false alarm rates. However, if such in-
formation is not available, detection is carried out based on a gen-
eral subspace. The robustness of the proposed detection approach
is demonstrated on real life data from two different applications:
detection of defects in wafer images and detection of faults in 3D
seismic data.

The structure of the paper is as follows: In Section 2, we
present the GMRF model and develop an efficient estimation method
of its parameters. In Section 3, we propose our anomaly detection
approach. Finally, in Section 4 we demonstrate the performance
of our approach by applying it to the detection of defects in wafer
images and to the detection of faults in 3D seismic data.

2. GAUSS MARKOV RANDOM FIELD

In this section we first present our pre-processing layer de-correlation
stage. We then model each transformed data layer as a GMRF,
and introduce an efficient model estimation method based on least
squares.

2.1. Clutter Modeling

A 3D data set of sizeN ×M ×K can be regarded asK, 2D im-
ages stacked one on top of the other. We assume that the layers are
uncorrelated. Since this assumption is generally incorrect, we use
a KLT of the data in the depth direction to create the uncorrelated
layers. LetY represent a 3D data set, and letYij be a column vec-
tor (of sizeK × 1) representing all data layers at spatial location
(i, j) in Y . Let B denote a matrix whose columns are the eigen-
vectors of the covariance matrix ofYi,j . The 3D dataW whose



layers are independent is given by:

Wij = BT Yij . (1)

Each independent data layer is modeled as a zero mean, homoge-
nous, first order, GMRF. The GMRF accounts for spatial correla-
tion between neighboring image pixels. Letwij be an image pixel
at location(i, j). Let βh andβv be the minimum mean square
error (MMSE) estimation parameters ofwij from its four nearest
neighbors, and letεij be the estimation error. A first-order GMRF
model is given by:

wij = βh

(
wi(j−1) + wi(j+1)

)
+ (2)

+βv

(
w(i−1)j + w(i+1)j

)
+ εij .

We assume a first order GMRF with zero boundary conditions for
simplicity. Discussion of higher order fields and different bound-
ary conditions can be found in [8, 9]. We now turn to the paramet-
ric representation of the inverse covariance matrix of the GMRF
model. All pixels within an image (data layer) of sizeN ×M are
row stacked into a column vectorw. The estimation error pixels
εij are arranged into a column vectorε in a similar manner. Using
this vector notation we can write (2) as:

Aw = ε . (3)

The matrixA is structured and can be written in Kronecker nota-
tion:

A = IN ⊗B + HN ⊗ C (4)

where

B = −βhHM + IM

C = −βvIM . (5)

IN , IM are identity matrices of sizeN , M respectively. HN ,
HM have ones on the first upper and lower diagonals and zeros
everywhere else. It is shown in [10] that the error vectorε is a col-
ored Gaussian random vector with covariance matrixΣε = σ2A
(whereσ2 is a positive constant). Using (3) the inverse covariance
matrix ofw is given by:

Σ−1
w =

1

σ2
A . (6)

The three parametersβh, βv, σ2 fully represent the inverse covari-
ance matrix ofw. These parameters are to be estimated for each
data layer, based on the data at hand as described in the following
section.

2.2. Model Estimation

We now address the problem of model estimation. Let us note that
due to the sparse presence of anomalies in the data, the influence of
anomalies on the parameter estimation is insignificant and there-
fore can be neglected. Much work has been done on the subject
of GMRF model estimation (see for example [6, 8, 10]). Here we
present an MMSE estimator, which is computationally and statis-
tically efficient. Statistical efficiency is measured in Cramer Rao
bound sense. In a first order GMRF model every pixelwij has four
neighboring pixels. Arranging these pixels in a row vector:

ηij =
[

wi(j−1) + wi(j+1) w(i−1)j + w(i+1)j

]
(7)

and lexicographically setting these vectors as rows in a matrix:
X =

[
η11 η12 · · · ηIJ

]T
yields the following represen-

tation of (2):
w = Xθ + ε (8)

whereθ =
[

βh βv

]T
is a vector of the unknown GMRF pa-

rameters. Our goal is to findθ which minimizes the mean square
error:εT ε. The MMSE estimation ofθ is given by:

θ̂ =
(
XT X

)−1

XT w . (9)

It is shown in [10] that the third GMRF model parameterσ2 can
be estimated using the two correlation coefficients, by:

σ̂2 =
1

NM
wT Aw =

1

NM
(Sw − 2βhχh − 2βvχv) (10)

where

Sw =

N∑
i=1

M∑
j=1

(wij)
2

χh =

N∑
i=1

M−1∑
j=1

wijwi(j+1)

χv =

N−1∑
i=1

M∑
j=1

wijw(i+1)j . (11)

Our parameter estimation experiments included Monte-Carlo sim-
ulations and have shown that our model estimation technique is
superior to the least squares approach found in [10]. These results
are not presented here to save space.

3. ANOMALY DETECTION

In this section we present our anomaly detection method. We deve-
lope a MSD, operating in a colored noise environment. A separate
MSD is used for each data layer. Our MSD uses a different sig-
nal subspace for each layer and utilizes the parametric form of the
clutter inverse covariance matrix.

Since we deal with 3D data, the anomalies are also three di-
mensional with a spatial sizeNn×Nm which is much smaller than
N×M but larger than the GMRF neighborhood. The anomaly has
the same depth dimension as the data (K layers).

We assume the anomalies lie within a known subspace spanned
by G image chipshg, g = 1, 2, · · · , G, each of size (Nn ×Nm ×
K). This 3D anomaly model allows us to represent a different pat-
tern for the anomaly in every layer. Each 3D image chip is passed
through the same KLT transform used for the 3D data. For each
layer we create a matrixHl, whose columns span the anomaly
subspace in that layer. This is done by row stacking layerl of ev-
ery image chip into a column vector and setting these vectors as
columns in a matrix:Hl, l = 1, 2, · · · , K.

We model the interference subspace in a similar manner. We
useT image chipsst, t = 1, 2, · · · , T each of size (Nn ×Nm ×
K). These image chips are passed through the KLT transform and
a matrix spanning the interference subspace of each layerSl, l =
1, 2, · · · , K is created.

In [11] a MSD is developed for the detection of subspace sig-
nals in subspace interference and white Gaussian noise. Here, we
introduce a matched subspace detector for the detection of signals
in subspace interference and colored Gaussian noise.



Letyl represent layerl, and letyl(s) represent a pixel at spatial
locations in yl. For each pixelyl(s) we create a column vector
nl(s) by row stacking an image chip of sizeNn × Nm centered
arounds.

Let vl(s) be a GMRF vector of sizeNn ×Nm, and letφl(s),
ψl(s) be the weight vectors for the interference and anomaly sub-
spaces respectively. We define two hypothesis:

H0 : nl(s) = Slφl(s) + vl(s)

H1 : nl(s) = Hlψl(s) + Slφl(s) + vl(s) .

Under the two hypothesisnl is distributed as:

H0 : nl(s) ∼ N(Slφl(s), Σvl)

H1 : nl(s) ∼ N(Hlψl(s) + Slφl(s), Σvl) .

GMRF parameter estimation (as described in Section 2) is per-
formed for each layer. The inverse covariance matrix ofvl is
calculated using the estimated GMRF parameters. The vectors
ψl(s) andφl(s) are estimated from the data based on maximum
likelihood (ML) and are given by (see appendix):

H0 : φl(s) = P0Σ
−1/2
vl

nl(s) (12)

H1 : [φl(s)
T , ψl(s)

T ]T = P1Σ
−1/2
vl

nl(s) (13)

where

P0 = (ST
l Σ−1

vl
Sl)

−1ST
l Σ

−1/2
vl

(14)

P1 = ([Sl, Hl]
T Σ−1

vl
[Sl, Hl])

−1[Sl, Hl]
T Σ

−1/2
vl

. (15)

Following the above notation we have:

H0 : v̂
(0)
l (s) = (I − SlP0Σ

−1/2
vl

)nl(s) (16)

H1 : v̂
(1)
l (s) = (I − [Sl, Hl]P1Σ

−1/2
vl

)nl(s) . (17)

Sincevl is a Gaussian vector with zero mean and a known struc-
tured inverse covariance matrixΣ−1

vl
, the log generalized likeli-

hood ratio (GLR) (log GLR) is:

Ll(s) = 2 ln

[
Pr (v̂l (s) |H0 )

Pr (v̂l (s) |H1 )

]
=

= v̂
(0)
l (s)

T
Σ−1

vl
v̂
(0)
l (s)− v̂

(1)
l (s)

T
Σ−1

vl
v̂
(1)
l (s) =

= (Σ
−1/2
vl

nl(s))
T (Σ

−1/2
vl

[Sl, Hl]P1 −
−Σ

−1/2
vl

SlP0)(Σ
−1/2
vl

nl(s)) =

= (Σ
−1/2
vl

nl(s))
T (B1 −B0)(Σ

−1/2
vl

nl(s)) (18)

where

B0 = Σ
−1/2
vl

SlP0

B1 = Σ
−1/2
vl

[Sl, Hl]P1 (19)

are the projections into the subspaces spanned by the columns of
Σ
−1/2
vl

Sl andΣ
−1/2
vl

[Sl, Hl] respectively. Due to the fact that the
layers are uncorrelated, the log GLR based onK image layers is:

L(s) =

K∑

l=1

Ll(s) (20)

(a) (b)

Fig1: (a) One of the layers of the original image;
(b) Anomaly detection.

L(s) is a sum of squared independent normally distributed vari-
ables. ThereforL(s) is chi-square distributed withq = K·rank(H)
degrees of freedom [12]:

H0 : L(s) ∼ χ2
q(0)

H1 : L(s) ∼ χ2
q(λ)

where:

λ =

K∑

l=1

(Σ
−1/2
vl

Hlψl)
T (B1 −B0)(Σ

−1/2
vl

Hlψl) =

=

K∑

l=1

(Σ
−1/2
vl

Hlψl)
T (I −B0)(Σ

−1/2
vl

Hlψl) . (21)

The decision at every spatial location is performed by thresholding
L(s). The thresholdγ is chosen such that it would satisfy the
desired detection and false alarm probabilities:

PFA = 1− P [χ2
q(0) ≤ γ]

PD = 1− P [χ2
q(λ) ≤ γ] .

4. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of our anomaly
detection approach by applying it to the detection of of defects in
wafer images, and to the detection of discontinuities in 3D seismic
data.

4.1. Wafer Defects

The wafer 3D data is composed of 3 layers. Each layer is taken
from a different perspective (right angle, left angle, and top). The
three layers are perfectly aligned. The 3D data is of size128 ×
128 × 3. The defect size is approximately3 × 3 pixels. We use
Nn = Nm = 3. The anomaly subspace is constructed from 3
image chips. We did not use real defects for the anomaly image
chips, but rather simple bar shape structures in each layer. Figure
1 shows one of the layers of the wafer image, and the results of
the anomaly detection algorithm (without thresholding). Correct
detection is apparent from the image. To increase contrast in the
detection image, we performed gamma correction on the displayed
detection image.

4.2. Seismic

We use real life seismic data (from the Gulf of Mexico). The data
is a 3D lattice of size201×201×226. We pre-process the data in



(a) (b)

Fig2: (a) Horizontal slice of the 3D seismic data;
(b) Anomaly detection.

a similar manner to [13]: A small analysis cube of size4× 4× 15
moves through every spatial location in every data layer. At each
location, the analysis cube is partitioned into 4 sub-cubes each of
size2×2×15. The sub-cubes are arranged in a consistent fashion
into 4 column vectors. A correlation matrix of the 4 vectors is
calculated. The lower triangle coefficients of the correlation matrix
are formed into a column vector of size6× 1. In this manner each
data layer of size201 × 201 × 1 is turned into a201 × 201 × 6
lattice. Detection is performed independently on each such lattice.
We first perform the KLT transform described in Section 2. The 6
layers are highly correlated, therefor after the KLT transform has
been applied, we only use the layer corresponding to the largest
eigenvector, and neglect all other layers (K = 1). We use the
detection method described in Section 3 on the single layer data.
The signal subspace is constructed from a single image chip of size
1 × 5, which describes a bar shape. Figure 2 shows a horizontal
slice of the original data, and the results of the anomaly detection
algorithm (without thresholding).

5. CONCLUSION

In this paper, we have presented an anomaly detection approach
for three dimensional data. We used the KLT, to remove correla-
tion between data layers. We presented a MSD which works in a
colored noise environment modeled as a GMRF. This MSD was
utilized to perform anomaly detection in each layer independently.
The MSD allows us to incorporate into the signal subspace a-prior
information about the sensors used to capture the data, or about
the anomalies. We used a different MSD for each data layer, thus
allowing for maximal use of a-priory information. Incorporating
such information potentially produces improved detection results.
We demonstrated the proposed approach on two applications: de-
tection of defects in wafer images, and detection of faults in real
life seismic data.

6. APPENDIX

We prove the ML estimation ofφl underH0. The ML solution of
φl, ψl underH1 is easily proved by analogy. UnderH0 we have:

d

dφl

{log [P (nl)]} =
d

dφl

[
(nl − Slφl)

T Σ−1
vl

(nl − Slφl)
]

.

Opening the parenthesis on the right side, recalling thatnT
l Σ−1

vl
nl

is independent ofφl and rearranging terms yields:

d

dφl

{log [P (nl)]} =
d

dφl

[
φT

l ST
l Σ−1

vl
Slφl − 2nT

l Σ−1
vl

Slφl

]
.

Setting the derivative to zero we have:

2ST
l Σ−1

vl
Slφl − 2(nT

l Σ−1
vl

Sl)
T = 0 .

Solving forφl yields:

φl = (ST
l Σ−1

vl
Sl)

−1ST
l Σ−1

vl
nl .
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