
KERNEL-BASED DETECTION OF DEFECTS ON SEMICONDUCTOR WAFERS

Maria Zontak and Israel Cohen

Department of Electrical Engineering, Technion - Israel Institute of Technology
Technion City, Haifa 32000, Israel

{zontakm@tx,icohen@ee}.technion.ac.il

ABSTRACT

Recent computational methods of wafer defect detection often rely
on the difference image between an inspected image and its refer-
ence image, and highly depend on registration accuracy. In this
paper, we present a novel method for defect detection in patterned
wafers, based on reconstruction of the inspected image from the ref-
erence image using anisotropic kernels. This method avoids regis-
tration between the inspected and reference image and compensates
for pattern variations, thus reducing the false detection rate. Ex-
perimental results demonstrate the advantages and robustness of the
proposed method. Efficient implementation of the algorithm makes
it be suitable for industrial use. We also demonstrate extension of the
kernel-based similarity concept to the multichannel Scanning Elec-
tron Microscope (SEM) images.

Index Terms— Semiconductor defect detection, anomaly de-
tection, anisotropic kernels, image reconstruction, similarity mea-
sure.

1. INTRODUCTION

Defect detection in wafers is a critical component of wafers manu-
facturing process. A common approach for automatic wafer defect
detection utilizes a reference image. A semiconductor wafer typi-
cally contains many copies of the same electrical component (de-
noted as “dies”) laid out in a matrix pattern. A reference image for
one die is obtained by acquiring an image of the neighboring die,
which is verified to be clear of defects. A common detection proce-
dure is based on the difference between the inspected image (further
referred to as the “source image”) and the reference image, which
are spatially aligned [1–3]. A major drawback of this approach is
that the detection performance is very sensitive to image registration
inaccuracies between the source and reference images [4, 5]. More-
over, printed patterns on the source and reference dies may differ
slightly, particularly in the neighborhood of their edges. These pat-
tern variations obscure the defects in the difference image and may
yield high false detection rate.

We propose a defect detection procedure, which avoids image
registration and is robust to pattern variations. The method is based
on anisotropic kernel reconstruction of the source image using its
reference image [6]. Anisotropic kernels were successfully used in
recent edge-preserving de-noising application [7]. The source and
reference images are mapped into a feature space, where every fea-
ture from the source image is estimated by a weighted sum of neigh-

boring features from the reference image. We use patches around
pixels as features and show that patches originating from defect re-
gions are not reconstructible from the reference image, and hence
can be identified [6]. Here, we demonstrate the advantages of the
kernel-based method over other methods and discuss the implemen-
tation issue. We also extend the kernel-based similarity to simulta-
neous detection in the multichannel Scanning Electron Microscope
(SEM) images, based on the consistency criterion developed in [8].

This paper is organized as follows. In Section 2, we explain
the procedure of the source image reconstruction from the reference
image, which is based on a novel kernel-based similarity measure.
In Section 3, we present experimental results that demonstrate the
advantage of our kernel-based detection over two other competi-
tive methods, and discuss computational complexity and efficient
implementation of the algorithm. Finally in Section 4, we briefly
describe a kernel-based detection using multichannel SEM images,
and demonstrate the advantage of the proposed method over simple
union or intersection of single channels results.

2. KERNEL-BASED RECONSTRUCTION

Let us pick a d-vector G = (g1, .., gd) of filters and map pixels of
source image, Isrc, and the reference image, Iref, into Rd features
space ξG:

s→ ξG(s) = {Isrc ∗ g1(s), ..., Isrc ∗ gd(s)}
s′ → ξG(s′) = {Iref ∗ g1(s′), ..., Iref ∗ gd(s′)} , (1)

where s, s′ ∈ Ω and Ω is a general set of indices in the image space,
the indices s are associated with features from the source image and
s′ are associated with features from the reference image. The con-
struction presented in (1) is flexible, and there are many interesting
choices for the filters. According to Szalm et al. [7], we construct G
from non local means filters (NL-means) of Morel [9], where gm,n
is an [sx × sy] matrix with one in (m,n) position and zeros else-
where. Thus, ξG is the set of overlapping patches of the source and
reference images embedded in d = sx × sy dimensions.

Given ξG(s′) for all s′ ∈ Ns, a reconstructed source image is
obtained by

Îsrc(s) =
1∑

s′∈Ns
W (s, s′)

∑
s′∈Ns

W (s, s′)Iref(s
′) , (2)

where Ns = {s′ | s′ ∈ nk(s)} and nk(s) is the set of k nearest
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Fig. 1. (a)-(c) Source, reference and difference images, respectively (images’ (!FOV) is equal to 4µ, arrows point at defects); Respective
detections are overlaid (light rectangles) on (d) Single Hypothesis Test (SHT) of the Mahalanobis distance of the difference image (c) (arrow
points at a missed defect); (e) Improved difference image, based on Onishi algorithm; (f) Kernel-based reconstructed source image, using
[29 × 29] patches. High false detection rate in (d) and (e) results from sensitivity to pattern variations, whereas the reconstruction in (f) is
robust to this disturbance.

neighbors of s in spatial domain. According to [7], we choose

W (s, s′) = exp−ρ(s,s
′)2/ε , (3)

where ρ is a metric in our feature space and ε is a similarity parame-
ter. The similarity W (s, s′) is measured as a decreasing function of
the Euclidean distance ρ2(s, s′) = ‖ξG(s) − ξG(s′)‖22. The simi-
larity parameter ε controls the decay of the exponential function and
therefore the decay of the weights as a function of the Euclidean
distances.

Let p(x) denote a probability density function of a random vari-
able X , and let {xi}mi=1 represent samples of X . A nonparametric
estimate of p(x) can be obtained by Parzen method [10] and is given
by

p̂ε(x) =
1

m

m∑
i=1

bε(‖x− xi‖) , (4)

where bε is a normal density with zero mean and variance ε. Denot-
ing x = ξG(s), xi = ξG(s′) for s′ ∈ Ns and k(x, xi) = W (s, s′)

(i.e. k(·, ·) is a Gaussian kernel function), a Parzen estimator can be
related [11] to the total similarity measure

∑
∀s′∈Ns

W (s, s′) be-

tween the source patch and representative reference patches by

p̂ε(x) = xTX ·~1m , (5)

where Xx = (k(x1, x), k(x2, x), ..., k(xm, x))T and ~1m denotes
anm-dimensional column vector with all components equal tom−1.

Hence, the kernel-based similarity measure can be considered as
the likelihood of the source feature to arise from the pattern statistics,
which is represented by reference features from the search region.
Features originated form defects will have low similarity to the pat-
tern and hence can be identified. That is, a pattern-originated patch
from the source image is reconstructible from similar patches from
the reference image. On contrary, there are no similar patches in
the reference image for a patch that contains a defect, and therefore
this patch cannot be reconstructed. Thus, the detection is obtained
according to the total similarity measure:∑

∀s′∈Ns

W (s, s′) 6= 0 ⇒ s /∈ A

∑
∀s′∈Ns

W (s, s′)→ 0 ⇒ s ∈ A . (6)

where A denotes a set of defect regions.
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Fig. 2. (a)-(b) Source and difference images (images’ (!FOV) is equal to 4µ, arrows point at defects); (c)-(d) Single Hypothesis Test (SHT)
and Onishi-based detection results (rectangles denote the detected region, arrows point at missed defects); (e)-(f) Kernel-based similarity
measure (in logarithmic representation) and respectively reconstructed source image ([29 × 29] patches are used). In case of (c) and (d)
detections, the defects could not be detected without additional false detections, due to the pattern variations. The kernel-based similarity
measure allows robustness to pattern variations and achieves high separation ability and ideal detection, compared to the other presented
methods.

3. EXPERIMENTAL RESULTS

In this section we demonstrate examples of the defect detection in
patterned wafers using the proposed algorithm and compare it to two
other methods. The first method applies generally anomaly detection
algorithm, Single Hypothesis Test (SHT) [12], on the difference im-
age D(s) = Iref(s)− Isrc(s), after spatial alignment of the images1.
Anomalies are often associated with localized groups of pixels,
hence it is common for the anomaly decision at a given pixel s to be
based on a small block of pixels in the neighborhood of s in the im-
age. Accordingly, a data set is constructed from overlapping patches
formed around every pixel in the difference image D(s). Given the
expected vector M and the covariance matrix Σ of the constructed
data set, the SHT, applied to the Mahalanobis distance of any vector

X from M , is given by d2(X) = (X −M)TΣ−1(X −M)
H0
≶
H1

η2,

whereH1 andH0 represent hypotheses of anomaly presence and ab-
sence, respectively. η is a distance threshold, which could be deter-

1The exact registration of the source and reference images is required only
for the SHT-based algorithm, however for convenience the same registered
reference image is used in all the three procedures.

mined statistically according to the desired false detection rate [13].

A simple pixel by pixel difference image handles only the trans-
lation differences between the images. However, the source and ref-
erence image patterns are not identical and pattern variations may
occur. These differences could be as intense as the differences
caused by defects, which violate the required assumption about
statistics of the data set, X and may cause false detections. Onishi
et al. [14] tried to overcome the problem of slight distortion or lo-
cal rotation misalignment between the source and reference patterns
by using gray-scale morphological dilation of the reference and in-
spected images. The difference image is calculated according to the
minimal distance between the reference and inspected images in the
dilation range. However, this technique can only manipulate slight
misregistration and pattern variations.

The first example is presented in Fig. 1: a source image (a) con-
tains two defects, marked by arrows: a big, conspicuous defect at the
right and smaller and less noticeable defect at the left of the image.
The detection results of the aforementioned SHT algorithm (based
on the difference image (c)) and Onishi algorithm are brought in (d)
and (e). These algorithms don’t succeed to handle existing pattern
variations, and the small defect could not be detected without false
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Fig. 3. (a)-(b) Source and difference images (images’ FOV is equal to 5µ, arrow point at defect); (c)-(d) SHT and Onishi-based detection
results (rectangles denote the detected region, arrows point at missed defect); (e)-(f) Kernel-based similarity measure (in logarithmic repre-
sentation) and respectively reconstructed source image ([11×11] patches are used). Detections presented in (c) and (d) demonstrate high false
detection rate and miss detection. The kernel-based similarity measure allows robustness for pattern variations and achieves high separation
ability and ideal detection, compared to the other presented methods.

detections. The kernel-based reconstruction, presented in Section 2,
is robust to the pattern variations and achieves ideal detection in (f).
Additional example is brought in Fig. 2, where one of the two de-
fects is missed and false detections occur in both SHT (c) and Onishi
(d) detection procedures. Fig. 2(e) presents a likelihood image (to-
tal similarity to the pattern of every pixel), which demonstrates high
separation ability of the kernel-based algorithm and ideal detection
of the defects. The third example in Fig. 3 presents less complicated
pattern with one defect. In this example the references image could
not be ideally registered to the source image, due to slight rotation.
The detection ability of the presented kernel-based algorithm outper-
forms other two methods in this case as well.

Finally, we discuss the computational efficiency of the proposed
algorithm. The computational complexity is O(n ·m · d) (n denotes
the number of pixels in the image, m denotes the number of refer-
ence patches and d is a column-stacked patch size), hence implemen-
tation on typical home computer results in high computational load.
In order to improve the performance a highly parallel Graphical Pro-
cessing Unit (GPU) implementation of the similarity measure cal-
culation was developed2. The implementation runs a grid of thread

2The authors thank Mr. Yuri Pekelny for providing a CUDA implementa-

blocks that perform parallel calculation for all pixels. Each block
has 16×16 threads and it calculates a single pixel result. To get best
performance, each block loads a source patch, which represents a
specific pixel, and corresponding reference search region into block
shared memory and performs parallel exponents calculation and sum
up in the block shared memory. Generally the block shared memory
is smaller than the size of source patch and reference search region,
the data is loaded and processed in several steps and each block per-
forms a number of load-calculate iterations. The computation rate of
the implementation of the detection procedure for d = 11× 11 and
m = 49×49 (sizes used in our third example) executed on GeForce
8800 GT [15] was ∼ 75 KPPS (Kilo Pixels per Second). These re-
sults can be improved by implementation optimization and by using
state of the art hardware like GeForce 200 Series which has x4 pro-
cessor cores and almost x4 memory bandwidth than the hardware we
have used.

tion of the algorithm.
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Fig. 4. (a)-(c) Source images in different channels : External1, External2, Internal respectively; The external images indicate the topography
of the sample by light and shadows as if a “light source” is directed to a sample from top-left (External1) or top-right (External2). The internal
image provides information about edges and material of the sample. In the presented sample the defect is more salient in the Internal channel.

4. MULTI-CHANNEL EXTENSION

Novel SEM tool, manufactured by Applied Materials, can simulta-
neously produce three different images for a given sample, namely
External1, External2 and Internal images, as for example demon-
strated in Fig. 4. The external images indicate the topography of
the sample by light and shadows as if a “light source” is directed
to a sample from top-left (External1) or top-right (External2). The
internal image provides information about edges and material of the
sample. Spatial alignment between images from the three channels is
a byproduct of the capturing process. Defects may look more salient
in one channel than in others. However, given an arbitrary defect,
it is impossible to know in which channel the detection should be
hold. Hence, the detection results from all the channels should be
incorporated. We propose to use a consistency criterion [8], which
allows simultaneous detection based on the information from all the
channels. We assume that if a pattern-originated region in the source
wafer is similar to certain regions in the reference wafer, then this
similarity is maintained across the three SEM images. Accordingly,
the similarity between a source patch and its reference patches in
the three channels is constrained by a consistency criterion that the
locations of reference patches, which are most similar to the source
patch, are identical in the three channels. Reader is referred to [8]
for more profound explanation of the consistency criterion and its
statistical interpretation.

Let us denote by x, y, z corresponding features of the pixel s

in the three channels (External1, External2 and Internal), the joint
similarity measure of the three channels then is

p̂(x, y, z) =
1

m

m∑
i=1

k(xi, x)k(yi, y)k(zi, z) . (7)

Using Gaussian kernel the above joint similarity measure could be
viewed as a single similarity measure with a combined feature:

s→ v =

 √εyεzx√
εxεzy√
εxεyz

 (8)

and combined similarity parameter ε = εxεyεz Figure 5 demon-
strates that combing the single channel detection results (overlaid on
single similarity measures in Fig. 5(a)-(c)) by ’AND’ or ’OR’ opera-
tions over the three channels may either decrease the detection rate or
increase the false detection rate, whilst the multi-channel algorithm
(Fig. 5(d)) enables perfect detection.

5. CONCLUSIONS

We have presented a kernel-based defect detection procedure, which
exploits the periodic nature of the wafer pattern and compensates for
pattern variations and miss-registration. Registration of a reference
image relative to the source image is not required, as long as ref-
erence patches are taken from a wide search region that covers at
least one pattern period. Furthermore, a source patch does not have
to be identical to one reference patch, but could be a combination
of several patches to overcome the problem of pattern variations.
The presented procedure not only compares the grey level in a sin-
gle point but also incorporates the information of the neighborhood,
using patches as features. Experimental results have demonstrated
the advantages of the presented method over competitive methods.
Efficient implementation of the proposed algorithm enables its use
in industrial applications.
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