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Introduction

We study the signal enhancement problem in the time domain with a
single sensor.

We show how to fully exploit the temporal information in order to
reduce the level of additive noise from the observations.

We study this fundamental problem from the classical Wiener filtering
perspective.
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Signal Model and Problem Formulation

We are concerned with the signal enhancement (or noise reduction)
problem, in which the time-domain desired signal, (), with ¢ being
the discrete-time index, needs to be recovered from the noisy
observation (sensor signal) [1], [2], [3]:

y(t) = 2(t) +v(t), (1)

where v(t) is the unwanted additive noise signal, which is assumed to
be uncorrelated with z(¢). All signals are considered to be real, zero
mean, stationary, and broadband.
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The signal model can be put into a vector form by considering the L
most recent successive time samples, i.e.,

y(t) = x(t) +v(t), )

where .
yt)=[y(t) ylt—1) - ylt—L+1) ] ©)

is a vector of length L, superscript 7 denotes transpose of a vector or
a matrix, and x(¢) and v(t) are defined in a similar way to y(¢).

Since z(t) and v(t) are uncorrelated by assumption, the correlation
matrix (of size L x L) of the noisy signal can be written as

Ry = E [y(t)y" (t)] (4)
=Ry + Rva
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where E[-] denotes mathematical expectation, and
Ry = F [x(t)xT(t)] and Ry = E [v(t)v” (t)] are the correlation
matrices of x(¢) and v(t), respectively.

We assume that the noise correlation matrix is full rank, i.e.,
rank (Ry) = L.

The objective of single-channel noise reduction in the time domain is
to find a “good” estimate of the sample z(t) from the vector y(t).

By good, we mean that the additive noise, v(t), is significantly
reduced while the desired signal, z(t), is not much distorted.
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Linear Filtering

We try to estimate the desired signal sample, x(¢), by applying a
real-valued linear filter to the observation signal vector, y(t), i.e.,

L
2(t) = hy(t+1-1) (5)
=1

=h'y(1),
where z(t) is the estimate of z(¢) and

h=[h hy - hy]" (6)

is a filter of length L (see Fig. 1).
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The estimate of z(t) can be expressed as

2(t) = h' [x(t) +v(1)] @)
= 254 (t) + vrn(t),
where
wra(t) = h'x(1) ®)
is the filtered desired signal and
ven (t) = hTv(t)
is the residual noise.
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Since the estimate of the desired signal at time ¢ is the sum of two
terms that are uncorrelated, the variance of z(t) is

ol = E[2*(t)] (10)
=h"Ryh
= O'?Cfd + ng,
where
o2 =h"Rxh (12)

is the variance of the filtered desired signal and
o2 =hTR,h (12)

Vrn

is the variance of the residual noise.
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Performance Measures

Signal-to-Noise Ratio

Signal-to-Noise Ratio

Noise Reduction Factor
Desired-Signal Reduction Factor
Desired-Signal Distortion Index
Mean-Squared Error

One of the most fundamental measures in all aspects of signal
enhancement is the signal-to-noise ratio (SNR).

The input SNR is a second-order measure, which quantifies the level
of the noise present relative to the level of the desired signal. It is

defined as

tr
GNR — £ )
iSNR tr (Ry)

(13)

where tr(-) denotes the trace of a square matrix, and 02 = E [22(t)]
and 02 = E [v?(t)] are the variances of the desired and noise signals,

respectively.
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The output SNR helps to quantify the level of the noise remaining at
the filter output signal. The output SNR is given by

2
0SNR (h) = 22 (14)

_ h"Rxh
" hTR,h’

The objective of the signal enhancement filter is to make the output
SNR greater than the input SNR.

Consequently, the quality of the filtered output signal, z(¢), may be
enhanced as compared to the noisy signal, y(t).
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For the particular filter of length L:

we have

0SNR (i;) = iSNR.

(16)
With the identity filter, i;, the SNR cannot be improved.
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Noise Reduction Factor

The noise reduction factor quantifies the amount of noise being
rejected by the filter. This quantity is defined as the ratio of the power
of the noise at the sensor over the power of the noise remaining at
the filter output, i.e.,

o2

v (17)

én (h):m'

The noise reduction factor is expected to be higher than 1; otherwise,
the filter amplifies the noise received at the sensor.

The higher the value of the noise reduction factor, the more noise that
is rejected.

While the output SNR is upper bounded, the noise reduction factor is
not.
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Desired-Signal Reduction Factor

Since the noise is reduced by the filtering operation, so is, in general,
the desired signal.

The desired-signal reduction (or cancellation) implies, in general,
distortion.

The desired-signal reduction factor is defined as the ratio of the
variance of the desired signal at the sensor over the variance of the
filtered desired signal, i.e.,

2

Zz (18)

§a(h) = TR

The closer the value of & (h) is to 1, the less distorted is the desired
signal.
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It is easy to verify that we have the following fundamental relation:

oSNR (h) &, (h)
iSNR & (h)’ (19)

This expression indicates the equivalence between gain/loss in SNR
and distortion (of both the desired and noise signals).

Suppressing noise (increasing the noise reduction factor) and
reducing desired-signal cancellation (decreasing the desired-signal
reduction factor) imply a gain in SNR.
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Desired-Signal Distortion Index

Another way to measure the distortion of the desired signal due to the
filtering operation is via the desired-signal distortion index.

The desired-signal distortion index is defined as the mean-squared
error between the desired signal and the filtered desired signal,
normalized by the variance of the desired signal, i.e.,

B {[oa(t) - 2]}
v ) = =) 20
_ (h—i)" R (h— i)

2
Oz

vq (h) is close to O if there is no distortion and expected to be greater
than 0 when distortion occurs.
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Mean-Squared Error

Error criteria play a critical role in deriving optimal filters. The
mean-squared error (MSE) [7] is, by far, the most practical one.

We define the error signal between the estimated and desired signals
as

e(t) = z(t) — x(¢) (21)
xa (t) + v (t) — z(t).

The error signal can be written as the sum of two uncorrelated error
signals:

e(t) = eq(t) + en(t), (22)
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where

eq (t)

xfd(t) — x(t)
(h— ;)" x(t)

is the desired-signal distortion due to the filter and

en(t)
represents the residual noise.
Therefore, the MSE criterion is
J(h) = E [é*(t)]

= vy (t)
hTv(t)

=02 — 2h"Ryi; + h"Ryh

Benesty, Cohen, and Chen

Ja(h) + Ju (h),

Single-Channel Enhancement: Time Domain 19\ 76

(23)

(24)

(25)



Signal-to-Noise Ratio

Noise Reduction Factor
Desired-Signal Reduction Factor
Desired-Signal Distortion Index
Mean-Squared Error

Ja (h) = B [e3(t)]
=(h—i)" Ry (h— 1))

= o7vq (h)
and
Jn (h) = B [e5(t)]
=h"R,h
_ o
n(h)’
We deduce that
1
J (h) = o2 [iSNR x vq (h) + ——

[m] = -

(26)
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and

)~ SR X & (h) x vq (h)

— 0SNR (h) x & (h) x vq (h).

(29)

We observe how the MSEs are related to the different performance
measures.
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Wiener Filter

The Wiener filter is derived by taking the gradient of the MSE, J (h)
[eq. (25)], with respect to h and equating the result to zero:

hy = Ry 'Ryi;. (30)

This optimal filter can also be expressed as
hy = (I, — Ry'Ry) ij, (31)

where I, is the identity matrix of size L x L.

The above formulation is more interesting in practice since it depends
on the second-order statistics of the observation and noise signals.
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The correlation matrix Ry, can be immediately estimated from the
observation signal while the other correlation matrix, R, is often
known or can be indirectly estimated.

In speech applications, for example, R, can be estimated during
silences.

Let us define the normalized correlation matrices:

Ry
Fv - —2,
O-’U
R«
Fx - —2,
01
Ry
Fy - —2
g,
Y
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Another interesting way to write the Wiener filter is

I, -1

hw = (SNR+F r ) T, Ty
=p (xay)r)_rlrxii
= [IL — p*(v,y)Ty ' Ty ] is,

where

pQ(ZL', y) -

~11iSNR

[m] = -

(32)

(33)
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is the squared Pearson correlation coefficient (SPCC) between z(t)
and y(t), and

E2 [v(t)y(t)]

2 = 34
p~(v,y) g (34)
0.2
T
_ 1
" 1+4iSNR
is the SPCC between v(t) and y(t).
We can see from (32) that
o MW T T (3
li hw =
iSNRoo W 0, (36)
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where 0 is the zero vector.

Clearly, the Wiener filter may have a disastrous effect at very low input
SNRs since it may remove everything (noise and desired signals).

The estimate of the desired signal with the Wiener filter is

2w (t) = hiyy(1). (37)
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Property

With the optimal Wiener filter given in (30), the output SNR is always
greater than or equal to the input SNR, i.e., oSNR (hw) > iSNR.

Proof. There are different ways to show this property. Here, we show
it with the help of the different SPCCs [8]. We recall that for any two
zero-mean random variables a(t) and b(t), we have

0 < p?(a,b) <1. (38)
It can be checked that
p* (z,2) = p* (x,21) X p* (w4, 2) < p° (w14, 2) , (39)
where
) _ 0SNR(h)
P~ (wa,2) = TSR (h) (40)
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As a result, we have

, oSNR (hW)
< oMW

Let us evaluate the SPCC between y(t) and zw(t):

. 2
(i Ryhw)
O'gh%;/Rth
o2 o2
=z Tz

o2 i’Rxhw
N
p2 (33, ZW)

p2(ya ZW) =

Therefore,

P (x,y) = p*(y, 2w) x p*(x, 2w) < p* (7, 2w).
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Substituting (33) and (41) into (42), we get

iSNR oSNR (hy)

1+iSNR ~ 1+ 0SNR (hw)’

which implies that

1 1
> .
iSNR ~ oSNR (hy)
Consequently, we have

0SNR (hy) > iSNR.

& =
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The minimum MSE (MMSE) is obtained by replacing (30) in (25):

J (hw) = 02 — if RxRy 'Ry (43)
=0} — il RyRy 'Ry;,

v

which can be rewritten as

J (hw) =03 [1 - p*(z, 2w)] (44)
= 012) [1 - pQ(va - ZW)] :

Clearly, we always have
J(hw) < J(h), Vh (45)
and, in particular,

J (hw) < J (ij) = o5 (46)
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The different performance measures with the Wiener filter are

i’ RyRy 'RyRy 'Rydi
oSNR (hw) = = -l = > iSNR,
i RxRy RyRy Rii;
0.2

L (hy) = v > 1,
& (Bw) i"RyRy 'RyRy 'Ry
& () % >4
W T TRLR, TRaRy Ry

RoIR, i — i) Ry (R Ryds — i
Ud(hW):(y )0_2(y )S]-
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Example 1

Suppose that the desired signal is a harmonic random process:
z(t) = Acos (27 fot + @),

with fixed amplitude A and frequency fy, and random phase ¢,
uniformly distributed on the interval from 0 to 2.

This signal needs to be recovered from the noisy observation
y(t) = z(t) + v(t), where v(¢) is additive white Gaussian noise, i.e.,
v(t) ~ N (0,02), that is uncorrelated with z(t).

The input SNR is

A2)2
iSNR = 101log 5 (dB).
JU

The correlation matrix of v(t) is Ry = 021, and the elements of the

correlation matrix of x(¢) are [Rx]; ; = 1A% cos 27 fo (i — 7)].
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Since the desired and noise signals are uncorrelated, the correlation
matrix of the observation signal vector y(¢) is Ry = Rx + R,.

The optimal filter hy is obtained from (30). The output SNR and the
MMSE are obtained by substituting hy into (14) and (25),
respectively.

To demonstrate the performance of the Wiener filter, we choose
A =0.5, fo =0.1,and o2 = 0.3. The input SNR is —3.80 dB.
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Figure 2 shows the effect of the filter length, L, on the gain in SNR,
i.e., G(hw) = oSNR (hw) /iSNR, and the MMSE, J(hw). As the
length of the filter increases, the Wiener filter better enhances the
harmonic signal, in terms of higher gain in SNR and lower MMSE.

1 " -1
..... 14
@ 10 o -14
c) s
z z -16
S &
5 ~ -1g
P S S i OO
o -2;
10 20 30 40 50 60 10 20 30 40 50 60
L L
(@ (b)

Figure 2: (a) The gain in SNR and (b) the MMSE of the Wiener filter as a function of
the filter length.

Benesty, Cohen, and Chen Single-Channel Enhancement: Time Domain 34\ 76



Introduction

Signal Model and Problem Formulation ieneyhiey
Linear Filtering Jladeaiiiiier
9 MVDR Filter

Performance Measures

Optimal Filters Maximum SNR Filter

If we choose a fixed filter length, L = 30, and change o2 so that iSNR
varies from 0 to 20 dB, then Fig. 3 shows plots of the output SNR and
the MMSE as a function of the input SNR.

3 -2
3 ; : -25
aQ —~
Z )
—~ 25 Z -30
E 20 é —35
@ ~

15 -40)

% 10 15 20 s 10 20

iSNR (dB) iSNR (dB)
(@ b

Figure 3: (a) The output SNR and (b) the MMSE of the Wiener filter as a function of
the input SNR.
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Figure 4 shows plots of the noise reduction factor, &, (hw), the
desired-signal reduction factor, &4 (hw ), and the desired-signal
distortion index, vq (hw), as a function of the input SNR.

o
12 o
a2 5 o9
= s
S = o4
£ 1 o
Rt 7 04
n o
u 5 10 0 10 15
iSNR (dB) iSNR (dB)
@ (b)
-
@
g
S
£
-6
) 5 0
iSNR (dB)
(©)
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Figure 5 shows a realization of the noise corrupted and filtered
sinusoidal signals for iSNR = 0 dB.

1
15
|‘ o5y
L o4 3
ERN| E|
= 0 IS o
£ £
< -0 <
] -o.
-1.!
“ 100 200 300 400 500 _]D 100 200 300 400 500
t t
(a) (b)

Figure 5: Example of (a) noise corrupted and (b) Wiener filtered sinusoidal signals.
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Tradeoff Filter

The objective of the Wiener filter is to minimize the MSE; therefore, it
leads to the MMSE.

However, this optimal filter does not show much flexibility since it is
not possible to compromise between desired-signal distortion and
noise reduction.

It is instructive to observe that the MSE as given in (25) is the sum of
two other MSEs. One depends on the desired-signal distortion while
the other one depends on the noise reduction.

Instead of minimizing the MSE with respect to h as we already did to
find the Wiener filter, we can minimize the distortion-based MSE
subject to the constraint that the noise-reduction-based MSE is equal
to some desired value.
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Mathematically, this is equivalent to
min Jg (h)  subject to Ju (h) = No?, (51)
where 0 < X < 1 to ensure that we have some noise reduction.

If we use a Lagrange multiplier, 1, to adjoin the constraint to the cost
function, (51) can be rewritten as

hy , = arg m&n L(h, p), (52)
with
L(h,p) = Ja () + p [Jo (h) — Ry ] (53)

and p > 0.
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From (52), we easily derive the tradeoff filter:

hr, = (Rx + pRy) ™" Ryi;
= [Ry + (N - 1)RV]71 (Ry - RV) i,

where the Lagrange multiplier, y, satisfies J, (hr,,) = RXoZ, which

implies that

1
gn (hT“u) - & > 1.

Benesty, Cohen, and Chen

Single-Channel Enhancement: Time Domain 40\ 76
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In practice it is not easy to determine the optimal ... Therefore, when
this parameter is chosen in a heuristic way, we can see that for

@ 1 =1, ht; = hw, which is the Wiener filter;
@ 1 =0, ht o = ij, which is the identity filter;

@ 1 > 1, results in a filter with low residual noise at the expense of
high desired-signal distortion; and

@ 1 < 1, results in a filter with low desired-signal distortion and
small amount of noise reduction.
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Property

With the tradeoff filter given in (54), the output SNR is always greater
than or equal to the input SNR, i.e., oSNR (ht ) > iSNR, Vu > 0.

Proof. The SPCC between z(t) and x(t) + /mv(t) is

4
T

o (07 + poy)
~iSNR
~ p+iSNR’

ag
P (@ + /lw) =
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The SPCC between x(t) and hf, x(t) + /zhT ,v(t) is

2

(W s g v) = )
e DY) T G R+ iRy ) B

T .
hT,quli

o3
Another way to write the same SPCC is the following:

(h%, Ryis)’ . _OSNR(br.,)

2 T T
h h =
P (x’ T,HX + \//_1' T,Hv) U%th“#Rth# L 4+ oSNR (hT,,u)

=p? (x, h%ux) X
P> (h%:’ux, h%ux + \/ﬁh%uv)
oSNR (hr,,)
TopF oSNR (hT,p) '
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Now, let us evaluate the SPCC between x(t) + ,/zv(t) and
b, x(t) + it ,v(t):

.12
[h%:,# (Rx + uRy) 1@
(02 + po?) b, (Rx + puRy) by
2 o2
xr X X .
o2 + po? h%MRxli
2 (@,2+ )
2 (x, hi x+ \/ﬁh%#v)

p* (z + /v, h%#x + \/ﬁh%:,#v) =

g
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Therefore,

P (z, 2+ /) = 111—1—81%
=p? (z 4+ v, h%_:,ux + \/ﬁh%:,uv) X
p* (z, haﬂx + \/ﬁhaﬂv)
< p2 (ac, h%_:,ux + \/ﬁh%:,uv)
oSNR (hr,,)
~ p+oSNR (hr,,)

As a result,

0oSNR (hr,,) > iSNR.

& =
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Example 2

Consider a desired signal, z(t), with the autocorrelation sequence:
Elz@®z)] =o'l —1<a<1,

which is corrupted by additive white Gaussian noise v(t) ~ A (0, 02)
that is uncorrelated with z(¢). The desired signal needs to be
recovered from the noisy observation y(t) = z(t) + v(t).

The input SNR is
1
iSNR = 10log —  (dB).
01)

The correlation matrix of v(t) is Ry = 021, and the elements of the
correlation matrix of x(¢) are [Rx]; ; = a!*=3l, Since the desired signal
and the noise signal are uncorrelated, the correlation matrix of
observation signal vector y(t) is Ry = Rx + R.. The tradeoff filter
hr , is obtained from (54) where the Lagrange multiplier, 4, satisfies
Jn (hT,u) = NO’%
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To demonstrate the performance of the tradeoff filter, we choose
a = 0.8, afilter length L = 30, and several values of X.

Figure 6 shows plots of the gain in SNR, G (hr ,), the MSE, J (hr,,),
the noise reduction factor, &, (hr ), and the desired-signal reduction
factor, &4 (hr ), as a function of the input SNR, for several values of
N. Figure 6(c) shows that the tradeoff filter satisfies

& (hr,,) = —101og(R) dB.
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Figure 6: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor of the tradeoff filter for several values of X: X = —12 dB
(solid line with circles), X = —13 dB (dashed line with asterisks), X = —14 dB (dotted
line with squares), and X = —15 dB (dash-dot line with triangles).
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MVDR Filter

Both Wiener and tradeoff filters always distort the desired signal since
&a(hr,) #1, Yu > 0. Itis fair to ask if it is possible to derive a
distortionless filter that can mitigate the level of the noise. The answer
is positive as long as the desired-signal correlation matrix is rank
deficient.

Let us assume that rank (Rx) = P < L. Using the well-known
eigenvalue decomposition [9], the desired-signal correlation matrix
can be diagonalized as

QszQx = AX7 (56)
where
Qx = [ Qdx,1 9x,2 ' Qx,L ] (57)

is an orthogonal matrix, i.e., QX Qx = Q.QL =1,
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and
Ax = dlag ()\x,la )\x,2a ceey )\x,L) (58)
is a diagonal matrix.

The orthonormal vectors qx 1, 4dx,2, - - - , Ox,z are the eigenvectors
corresponding, respectively, to the eigenvalues A« 1, Ax2, ..., Ax,r Of
the matrix Ry, where Ax 1 > Ax2 > --- > A p > 0 and

Ax,P+1 = Ax,py2 = = A = 0.

Let

Qx=[ Q. Q. (59)

where the L x P matrix Q) contains the eigenvectors corresponding
to the nonzero eigenvalues of Rx and the L x (L — P) matrix QX
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contains the eigenvectors corresponding to the null eigenvalues of
Rx.

It can be verified that

I = QLQ +QXQL". (60)

Notice that Q.. Q. and QZ Q%™ are two orthogonal projection
matrices of rank P and L — P, respectively. Hence, Q. Q' is the
orthogonal projector onto the desired-signal subspace (where all the
energy of the desired signal is concentrated) or the range of Ry and
Q’ QT is the orthogonal projector onto the null subspace of Ry.

Using (60), we can write the desired-signal vector as

X(t) = QxQEX(ﬂ (61)
= QLQYx(1).
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We deduce from (61) that the distortionless constraint is
hTQ/ _ iTQl
since, in this case,
h'x(t) = h" QL Q! x(1)

=i QL QY x(t)
= z(t).

Now, from the minimization of the criterion:

min Ju (h) subject to h"QL =il QL,

(62)

(63)

(64)

we find the minimum variance distortionless response (MVDR) filter:

hyvor = Ry QL (QFR'QL) T QUi
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It can be shown that (65) can also be expressed as

hyvor = Ry 'Q) (QITR QL) Q/Tlp (66)
It can be verified that, indeed, J4 (hyyvpr) = 0.

Of course, for P = L, the MVDR filter simplifies to the identity filter,
i.e., hyrvpr = i;. As a consequence, we can state that the higher is
the dimension of the nullspace of Ry, the more the MVDR filter is
efficient in terms of noise reduction. The best scenario corresponds
to P=1.

For a white noise signal, i.e., for R, = oI, the MVDR filter
simplifies to

havvor = QL QY i, (67)

which is the minimum-norm solution of (62).
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Property

With the MVDR filter given in (65), the output SNR is always greater
than or equal to the input SNR, i.e., oSNR (hpyvpr) > iSNR.

& =

PN G4
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Example 3

Consider a desired signal that is a sum of harmonic random
processes:

K
z(t) = Z Ay cos 27 fit + ox) ,

k=1

with fixed amplitudes {A;} and frequencies { f}, and independent
and identically distributed (1ID) random phases {¢y. }, uniformly
distributed on the interval from 0 to 2.

This signal needs to be recovered from the noisy observation

y(t) = z(t) + v(¢t), where v(¢) is additive white Gaussian noise, i.e.,
v(t) ~ N (0,02), that is uncorrelated with z(t).
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The input SNR is

. i A7
The correlation matrix of v(¢) is Ry = 021, and the elements of the
correlation matrix of x(¢) are [Rx]; ; = %Zfﬂ A2 cos 27 fr (i — j)).
The rank of this matrix is rank (Rx) = 2K. The MVDR filter, hyvpr,
for the case of white noise is obtained from (67).

To demonstrate the performance of the MVDR filter, we choose

A =05(k=1,...,K), fr =0.06k (k=1,..., K), afilter length of
L = 30, and several values of K. The dimension of the nullspace of
Ry is L — 2K.
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Figure 7 shows plots of the gain in SNR, G (hyivpr), the MSE,

J (hpvpr), the noise reduction factor, &, (hyvpr), and the
desired-signal reduction factor, &4 (hyvpr), as a function of the input
SNR, for several values of K.

Clearly, the desired-signal reduction factor is zero, and the higher is
the dimension of the nullspace of Rx (smaller K), the higher is the
noise reduction factor.
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Figure 7: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor of the MVDR filter for several desired signals with
different values of K: K = 1 (solid line with circles), K = 2 (dashed line with
asterisks), K = 4 (dotted line with squares), and K = 8 (dash-dot line with triangles).
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With the eigenvalue decomposition of Ry, the correlation matrix of
the observation signal vector can be written as

= QALQ[ + Ry, (68)
where
A; = dlag (Ax71, Ax72, ey Ax7p) . (69)

Determining the inverse of Ry, from (68) with the Woodbury’s identity,
we get

R, =R;'-R,'Q, (AL'+QLR,'Q,) QIR (70)

Substituting (70) into (30), leads to another interesting formulation of
the Wiener filter:

hW :R;lQl (A/ 1+Q/TR Q ) Q/Tll' (71)
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This formulation shows how the MVDR and Wiener filters are strongly
related.

In the same way, we can express the tradeoff filter as
hr, =R, Q) (1A + QT R1Q)) T Qs (72)

This filter is strictly equivalent to the tradeoff filter given in (54), except
for u = 0, where the two give different results when Ry is not full rank;
the one in (54) leads to the identity filter while the one in (72) leads to
the MVDR filter. In fact, the filter given in (54) is not defined for ;x = 0
and when Ry is not full rank.
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So far, we showed how to exploit the MSE criterion to derive all kind
of useful optimal filters. But we can also exploit the definition of the
output SNR to derive the so-called maximum SNR filter.

Let us denote by \; the maximum eigenvalue of the matrix Ry 'Ry
and by t; the corresponding eigenvector.

The maximum SNR filter, h,,., is obtained by maximizing the output
SNR as given in (14) from which we recognize the generalized
Rayleigh quotient [9].

It is well known that this quotient is maximized with the eigenvector
corresponding to the maximum eigenvalue of Ry !R.
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Therefore, We have
Doy = t1, (73)
where ¢ # 0 is an arbitrary real number. We deduce that
0SNR (hpax) = A1 (74)
Clearly, we always have
0SNR (humax) > iSNR (75)
and
0SNR (humax) > 0SNR (h), Vh. (76)

While the maximum SNR filter maximizes the output SNR, it leads to
large distortions of the desired signal.
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Let us consider the very particular case of a matrix Ry 'Ry that has a
maximum eigenvalue \; with multiplicity P < L.

We denote by tq,to, ..., tp the corresponding eigenvectors.

It is not hard to see that the maximum SNR filter is now

P
hmax = Z gpt;n (77)
p=1
since
0SNR (hpax) = A1, (78)

where ¢,, p=1,2,..., P are real numbers with at least one of them
different from 0.
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To summarize the performance of all the optimal filters derived in this
subsection, we can state that for u < 1,

0SNR (hpax) > 0SNR (hy) > oSNR (hT,#) > oSNR (hyypr), (79)

and for p > 1,

oSNR (hmax) 2 oSNR (hT#) Z oSNR (hw) 2 oSNR (hMVDR) . (80)

Benesty, Cohen, and Chen
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Table 1 summarizes all the optimal filters studied in this section.

Table 1: Optimal linear filters for single-channel signal enhancement in the time
domain.

Wiener: hy = R 'Rui;

Tradeoff: hr, = (Rx + pRy) ™ Rudi, 1> 0

MVDR: havor = Ry QL (QFRS'QL) ' Q74

Maximum SNR: hpax =<t1, ¢ #0
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Example 4

Consider a desired signal consisting of four harmonic random
processes:

4
z(t) = Z Ay cos (27 fit + ox) ,

k=1

with fixed amplitudes { A} and frequencies {fx}, and IID random
phases {¢y }, uniformly distributed on the interval from 0 to 27. This
signal needs to be recovered from the noisy observation

y(t) = z(t) + v(¢t), where v(¢) is additive white Gaussian noise, i.e.,
v(t) ~ N (0,02), that is uncorrelated with (t).

The input SNR is

4
: 1 A
iSNR = 101og % (dB).
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The correlation matrix of v(¢) is Ry = 021, and the elements of the
correlation matrix of x(¢) are [Rx]; ; = %Zizl A2 cos 27 fr (i — j)).
The rank of this matrix is rank (Ry) = 8

To demonstrate the performances of the optimal filters, we choose
Ay =05(k=1,...,4), ft =0.1+0.03(k —1) (k=1,...,4),and a
filter length of L = 20.

The value of ¢ in (73) is chosen to minimize the MSE. Substituting
(73) into (25) we have

J (Mpax) = 02 — 2ctT R, d; + §2tfRyt1.

Taking the derivative of the MSE with respect to ¢ and equating the
result to zero, we get

- t7 Ry i;
tTRyty
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Figures 8 and 9 show plots of the gain in SNR, G (h), the MSE, J (h),
the noise reduction factor, &, (h), and the desired-signal reduction
factor, & (h), as a function of the input SNR, for all the optimal filters
derived in this subsection: the maximum SNR, Wiener, MVDR, and
tradeoff filters.

In Fig. 8 the Lagrange multiplier of the tradeoff filter is u = 0.5,
whereas in Fig. 9, . = 5.

Clearly, (79) is satisfied in Fig. 8(a), whereas (80) is satisfied in
Fig. 9(a).
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Specifically, the maximum oSNR is obtained with h,,,,, the minimum
OoSNR is obtained with hyrvpr, and oSNR is larger when applying the
Wiener filter rather than the tradeoff filter if u < 1, while the opposite
is true if > 1.

Furthermore, the MSE is minimal for the Wiener filter, and the
desired-signal reduction factor is 0 dB for the MVDR filter, since the
desired-signal correlation matrix is rank deficient.
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Figure 8: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor as a function of the input SNR for different optimal
filters: hmax (solid line with circles), hyy (dashed line with asterisks), hyyvpr (dotted
line with squares), and h,,, with 4 = 0.5 (dash-dot line with triangles).
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Figure 9: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor as a function of the input SNR for different optimal
filters: hmax (solid line with circles), hyy (dashed line with asterisks), hyyvpr (dotted
line with squares), and h,,, with 4 = 5 (dash-dot line with triangles).
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Suppose that we wish to design a tradeoff filter, hr ,,, that satisfies
& (hr,,) =10 dB. Then, a plot of the Lagrange multiplier, p, that
satisfies this constraint is shown in Fig. 10.

Plots of the gain in SNR, the MSE, the noise reduction factor, and the
desired-signal reduction factor, under this constraint, are shown in
Fig. 11.

In this scenario, . < 1 for iSNR < —3.61 dB, and p > 1 for
iSNR > —3.61 dB.

Hence, oSNR (hw) > oSNR (hr,,) for iSNR < —3.61 dB, and
0SNR (hw) < oSNR (hr,,) for iSNR > —3.61 dB.
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Figure 10: The Lagrange multiplier, 4, of the tradeoff filter, hr ,,, as a function of the
input SNR, that yields a constant noise reduction factor &, (h,,,) = 10 dB.
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Figure 11: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d)
the desired-signal reduction factor for different optimal filters: hmax (solid line with
circles), hyy (dashed line with asterisks), hyryvpr (dotted line with squares), and hr ,,
with p that satisfies &, (hr,,) = 10 dB (dash-dot line with triangles).
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