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Introduction

We study the signal enhancement problem in the time domain with
multiple sensors.

Compared to the single-channel case, better filters can be derived in
terms of reduction of the additive noise and distortion of the desired
signal.

Specifically, we have much more flexibility to compromise between
noise reduction and desired-signal distortion thanks to the space-time
processing.
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Signal Model and Problem Formulation

We consider the conventional signal model in which an array of M
sensors with an arbitrary geometry captures a convolved desired
source signal in some noise field.

The received signals, at the discrete-time index t, are expressed as

ym(t) = gm(t) ∗ x(t) + vm(t) (1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the acoustic impulse response from the unknown
desired source, x(t), location to the mth sensor, ∗ stands for linear
convolution, and vm(t) is the additive noise at sensor m.

We assume that the signals xm(t) = gm(t) ∗ x(t) and vm(t) are
uncorrelated, zero mean, stationary, real, and broadband.
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By definition, the convolved signals, xm(t), m = 1, 2, . . . ,M , are
coherent across the array while the noise terms,
vm(t), m = 1, 2, . . . ,M , are typically only partially coherent across
the array.

By processing the data by blocks of L successive time samples, the
signal model can be put into a vector form as

ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M, (2)

where

ym(t) =
[

ym(t) ym(t− 1) · · · ym(t− L+ 1)
]T

(3)

is a vector of length L, and xm(t) and vm(t) are defined similarly to
ym(t).
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It is more convenient to concatenate the M vectors {ym(t)} together

y(t) =
[

yT
1 (t) yT

2 (t) · · · yT
M (t)

]T

= x(t) + v(t), (4)

where the vectors x(t) and v(t) of length ML are defined in a similar
way to y(t).

Since xm(t) and vm(t) are uncorrelated by assumption, the
correlation matrix (of size ML×ML) of the observations is

Ry = E
[

y(t)yT (t)
]

(5)

= Rx +Rv,

where Rx = E
[

x(t)xT (t)
]

and Rv = E
[

v(t)vT (t)
]

are the
correlation matrices of x(t) and v(t), respectively.
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In the rest, unless stated otherwise, it is assumed that
rank

(

Rx

)

= P < ML while rank
(

Rv

)

= ML. In other words, Rx is
rank deficient while Rv is full rank.

We consider the first sensor as the reference, so everything will be
defined with respect to this sensor.

In this case, the desired signal is the whole vector x1(t) of length L.

Our problem then may be stated as follows: given M mixtures of two
uncorrelated signals xm(t) and vm(t), our aim is to preserve x1(t)
while minimizing the contribution of the noise signal vector, v(t), at
the array output.
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Joint Diagonalization

Since Rv has full rank, the two symmetric matrices Rx and Rv can
be jointly diagonalized as follows [4]:

TTRxT = Λ, (6)

TTRvT = IML, (7)

where T is a full-rank square matrix (of size ML×ML), Λ is a
diagonal matrix whose main elements are real and nonnegative, and
IML is the ML×ML identity matrix.

Furthermore, Λ and T are the eigenvalue and eigenvector matrices,
respectively, of R−1

v Rx, i.e.,

R−1
v RxT = T Λ. (8)
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The eigenvalues of R−1
v Rx can be ordered as

λ1 ≥ λ2 ≥ · · · ≥ λP > λP+1 = · · · = λML = 0. We denote by
t1, t2, . . . , tML, the corresponding eigenvectors.

Therefore, the noisy signal correlation matrix can also be
diagonalized as

TTRyT = Λ+ IML. (9)

It can be verified from (6) and (7) that

tTi x(t) = 0, i = P + 1, P + 2, . . . ,ML (10)

and

R−1
v =

ML
∑

i=1

tit
T
i . (11)
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Linear Filtering

Since we want to estimate the desired-signal vector, x1(t), of length
L, from the observation signal vector, y(t), of length ML, a
real-valued rectangular filtering matrix, H, of size L×ML should be
used as follows:

+

v(t)

Hx(t)
y(t)

z(t)

Figure 1: Block diagram of multichannel linear filtering in the time domain.
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where z(t), a vector of length L, is the estimate of x1(t),

z(t) = H y(t) (12)

= xfd(t) + vrn(t),

the filtered desired signal is given by

xfd(t) = H x(t) (13)

and the residual noise is given by

vrn(t) = H v(t) . (14)
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We can always express H as

H = A TT , (15)

where A is the transformed rectangular filtering matrix also of size
L×ML.

Instead of manipulating H directly, we can, equivalently, manipulate
A, since T (or TT ) is a full-rank square matrix.

So when A is estimated, we can easily find H from (15).

We can write (12) as

z(t) = A TTy(t). (16)
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We deduce that the correlation matrix of z(t) is

Rz = E
[

z(t)zT (t)
]

(17)

= A (Λ+ IML)A
T

= Rxfd
+Rvrn

,

where

Rxfd
= A Λ AT (18)

is the correlation matrix of the filtered desired signal and

Rvrn
= A AT (19)

is the correlation matrix of the residual noise.
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Performance Measures
Signal-to-Noise Ratio

The input SNR is defined as

iSNR =
tr (Rx1

)

tr (Rv1
)
, (20)

where Rx1
= E

[

x1(t)x
T
1 (t)

]

and Rv1
= E

[

v1(t)v
T
1 (t)

]

are the
correlation matrices of x1(t) and v1(t), respectively.

The output SNR is given by

oSNR (H) =
tr (Rxfd

)

tr (Rvrn
)

(21)

=
tr
(

A Λ AT
)

tr
(

A AT
)

= oSNR(A) .
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It is clear that we always have

oSNR (A) ≤ λ1, (22)

showing how the output SNR is always upper bounded as long as Rv

has full rank.
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Noise Reduction Factor

The noise reduction factor is given by

ξn (H) =
tr (Rv1

)

tr
(

A AT
) (23)

= ξn (A) .

For optimal filtering matrices, we should have ξn (A) ≥ 1.
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Desired-Signal Reduction Factor

Since the desired signal may be distorted by the filtering matrix, we
define the desired-signal reduction factor as

ξd (H) =
tr (Rx1

)

tr
(

A Λ AT
) (24)

= ξd (A) .

For optimal filtering matrices, we generally have ξd (A) ≥ 1. The
closer the value of ξd (A) is to 1, the less distorted is the desired
signal.

Obviously, we have the fundamental relationship:

oSNR (A)

iSNR
=

ξn (A)

ξd (A)
, (25)

which, basically, states that nothing comes for free.
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Desired-Signal Distortion Index

We can also evaluate distortion via the desired-signal distortion index:

υd (H) =
E
{

[xfd(t)− x1(t)]
T
[xfd(t)− x1(t)]

}

tr (Rx1
)

(26)

= υd (A) .

For optimal filtering matrices, we should have υd (A) ≤ 1.
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Mean-Squared Error

We define the error signal vector between the estimated and desired
signals as

e(t) = z(t) − x1(t) (27)

= A TTy(t)− x1(t)

= ed(t) + en(t),

where

ed(t) = xfd(t)− x1(t) =
(

A TT − Ii

)

x(t) (28)

is the desired-signal distortion due to the filtering matrix with

Ii =
[

IL 0L×(M−1)L

]

(29)

being the identity filtering matrix of size L×ML, Iix(t) = x1(t), and

en(t) = vrn(t) = A TTv(t) (30)

is the residual noise.
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We deduce that the MSE criterion is

J (A) = tr
{

E
[

e(t)eT (t)
]}

(31)

= tr
[

Rx1
− 2A TTRxI

T
i +A (Λ+ IML)A

T
]

= Jd (A) + Jn (A) ,

where

Jd (A) = tr
{

E
[

ed(t)e
T
d (t)

]}

(32)

= tr
(

Rx1
− 2A TTRxI

T
i +A Λ AT

)

= tr (Rx1
) υd (A)
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and

Jn (A) = tr
{

E
[

en(t)e
T
n (t)

]}

(33)

= tr
(

A AT
)

=
tr (Rv1

)

ξn (A)
.

As a result, we have

Jd (A)

Jn (A)
= iSNR× ξn (A)× υd (A) (34)

= oSNR (A)× ξd (A)× υd (A) ,

showing how the different performance measures are related to the
MSEs.

Benesty, Cohen, and Chen Multichannel Enhancement: Time Domain 21\53



Introduction
Signal Model and Problem Formulation

Joint Diagonalization
Linear Filtering

Performance Measures
Optimal Filtering Matrices

Wiener Filtering Matrix
Variable Span Wiener Filtering
MVDR Filtering Matrix
Controlled Distortion Filtering Matrix
Tradeoff Filtering Matrix
General Subspace Filtering Matrix

Optimal Filtering Matrices
Wiener Filtering Matrix

The Wiener filtering matrix is derived from the minimization of the
MSE criterion, J (A).

From this optimization, we obtain

AW = IiRxT (Λ+ IML)
−1 (35)

= IiT
−TΛ (Λ+ IML)

−1 .

We deduce that the Wiener filtering matrix is

HW = AWTT (36)

= IiRx

ML
∑

i=1

tit
T
i

1 + λi

= IiRv

ML
∑

i=1

λi

1 + λi

tit
T
i .
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Obviously, we can also express HW as

HW = IiRxR
−1
y . (37)

Property

With the optimal Wiener filtering matrix given in (37), the output SNR
is always greater than or equal to the input SNR, i.e.,
oSNR (HW) ≥ iSNR.
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Example 1

Consider an array of M sensors located on a line with a uniform
spacing d, as shown in Fig. 2. Such an array is known as a uniform
linear array (ULA).

d

12M

x
(t)

y1(t)y2(t)yM (t)

θ

vM (t) v1(t)

P
lane

w
avefront(M
–1)d

cos
θ

Figure 2: Illustration of a uniform linear array for signal capture in the farfield.
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Suppose that a desired signal impinges on the ULA from the
broadside direction (θ = 90◦), and that an interference impinges on
the ULA from the endfire direction (θ = 0◦).

Assume that the desired signal is a harmonic random process:

x(t) = A cos (2πf0t+ φ) ,

with fixed amplitude A and frequency f0, and random phase φ,
uniformly distributed on the interval from 0 to 2π.

Assume that the interference u(t) is white Gaussian noise, i.e.,
u(t) ∼ N

(

0, σ2
u

)

, uncorrelated with x(t).

In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(

0, σ2
w

)

, that are mutually uncorrelated.
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The desired signal needs to be recovered from the noisy received
signals, ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.

Since the desired source is at the broadside direction and the
interference source is at the endfire direction, we have for
i = 2, . . . ,M :

xi(t) = x1(t), (38)

ui(t) = u1 (t− τi) , (39)

where

τi =
(i − 1)d

cTs
(40)
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is the relative time delay in samples between the ith sensor and the
first sensor for an endfire source, c is the speed of wave propagation,
and Ts is the sampling interval.

Assuming that the sampling interval satisfies Ts =
d
c
, then the delay

τi = i− 1 becomes an integer and, therefore, (38) and (39) can be
written as

[x(t)]l+(m−1)L = [x(t)]l , (41)

[u(t)]l+(m−1)L = [u(t)]l+m−1 , (42)

for l = 1, . . . , L, m = 1, . . . ,M , and l +m− 1 ≤ L.

Hence, the correlation matrix of x(t) is

Rx = 1M ⊗Rx1
,
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where ⊗ is the Kronecker product, 1M is an M ×M matrix of all
ones, and the elements of the correlation matrix of x1(t) are
[Rx1

]i,j =
1
2A

2 cos [2πf0(i − j)].

The correlation matrix of v(t) is Rv = Ru + σ2
wILM , where the

elements of the LM × LM matrix Ru are
[

Ru

]

i+(m1−1)L,j+(m2−1)L
= σ2

u δ (i+m1 − j −m2) ,

i, j = 1, . . . , L, m1,m2 = 1, . . . ,M.

The input SNR is

iSNR = 10 log
A2/2

σ2
u + σ2

w

(dB).

The optimal filter HW is obtained from (36).
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To demonstrate the performance of the Wiener filtering matrix, we
choose A = 0.5, f0 = 0.1, σ2

u = 0.5, and σ2
w = 0.01σ2

u. The input SNR
is −6.06 dB.

Figure 3 shows the effect of the filter length, L, and the number of
sensors, M , on the gain in SNR, i.e., G (HW) = oSNR (HW) /iSNR,
and the MMSE per sample, J (HW) /L.

As the length of the filter increases, or as the number of sensors
increases, the Wiener filtering matrix better enhances the harmonic
signal, in terms of higher gain in SNR and lower MMSE per sample.
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Figure 3: (a) The gain in SNR and (b) the MMSE per sample of the Wiener filtering
matrix as a function of the filter length, L, for different numbers of sensors, M : M = 1
(circles), M = 2 (asterisks), M = 5 (squares), and M = 10 (triangles).
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If we choose a fixed filter length, L = 30, and change σ2
u so that iSNR

varies from −5 to 15 dB, then Fig. 4 shows plots of the gain in SNR,
the MMSE, the noise reduction factor, and the desired-signal
reduction factor, as a function of the input SNR for different numbers
of sensors, M .

For a given input SNR, as the number of sensors increases, the gain
in SNR and the noise reduction factor increase, while the MMSE and
the desired-signal reduction factor decrease.
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Figure 4: (a) The gain in SNR, (b) the MMSE, (c) the noise reduction factor, and (d)
the desired-signal reduction factor of the Wiener filtering matrix for different numbers of
sensors, M : M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 5
(dotted line with squares), and M = 10 (dash-dot line with triangles).
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Figure 5 shows a realization of the noise corrupted signal received at
the first sensor, y1(t), and filtered signals for iSNR = −5 dB and
different numbers of sensors.

The filtered signal, z(t), is obtained by taking at each t the first
element of z(t) = HW y(t).

Obviously, as the number of sensors increases, the Wiener filtering
matrix better enhances the harmonic signal.
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Figure 5: Example of noise corrupted and filtered sinusoidal signals for different
numbers of sensors, M : (a) noise corrupted signal received at the first sensor, y1(t)
(iSNR = −5 dB), and filtered signals for (b) M = 1 [oSNR (H

W
) = 6.76 dB], (c)

M = 2 [oSNR (H
W
) = 19.68 dB], and (d) M = 5 [oSNR (H

W
) = 31.09 dB].
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Variable Span Wiener Filtering

From the formulation given in (36), we propose a variable span (VS)
Wiener filtering matrix [5], [6]:

HW,Q = IiRx

Q
∑

q=1

tqt
T
q

1 + λq

, (43)

where 1 ≤ Q ≤ ML. We see that HW,ML = HW and for Q = 1, we
obtain the maximum SNR filtering matrix with minimum MSE:

Hmax,1 = IiRx

t1t
T
1

1 + λ1

, (44)

since

oSNR
(

Hmax,1

)

= λ1. (45)
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Example 2

Returning to Example 1, we now assume a desired signal, x(t), with
the autocorrelation sequence:

E [x(t)x(t′)] = α|t−t′|, −1 < α < 1.

The desired signal needs to be recovered from the noisy observation,
y(t) = x(t) + v(t).

Since the desired source is at the broadside direction, the correlation
matrix of x(t) is

Rx = 1M ⊗Rx1
,

where [Rx1
]i,j = α|i−j|.
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The input SNR is

iSNR = 10 log
1

σ2
u + σ2

w

(dB).

The optimal filter HW,Q is obtained from (43).

To demonstrate the performance of the VS Wiener filtering matrix, we
choose α = 0.8, L = 10, and M = 5.

Figure 6 shows plots of the gain in SNR, G
(

HW,Q

)

, the MSE,
J
(

HW,Q

)

, the noise reduction factor, ξn
(

HW,Q

)

, and the
desired-signal reduction factor, ξd

(

HW,Q

)

, as a function of the input
SNR for several values of Q.

For a given input SNR, the higher is the value of Q, the lower are the
MSE and the desired-signal reduction factor, but at the expense of
lower gain in SNR and lower noise reduction factor.
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Figure 6: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor of the VS Wiener filtering matrix for several values of Q:
Q = 1 (solid line with circles), Q = 2 (dashed line with asterisks), Q = 5 (dotted line
with squares), and Q = 9 (dash-dot line with triangles).
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MVDR Filtering Matrix

We can also try to minimize the distortion-based MSE. Taking the
gradient of Jd (A) with respect to A and equating the result to zero,
we get

A Λ = IiRxT. (46)

Since Λ is not invertible, we can take its pseudo-inverse. Then, a
solution to (46) is

AMVDR = IiRxT Λ′−1, (47)

where

Λ′−1 = diag
(

λ−1
1 , λ−1

2 , . . . , λ−1
P , 0, . . . , 0

)

. (48)
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Therefore, the MVDR filtering matrix is

HMVDR = AMVDRT
T (49)

= IiRx

P
∑

p=1

tpt
T
p

λp

= IiRv

P
∑

p=1

tpt
T
p .

Now, let us show that (49) is the MVDR filtering matrix:
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With HMVDR, the filtered desired-signal vector is

xfd(t) = IiRv

P
∑

p=1

tpt
T
p x(t) (50)

= Ii

(

IML −Rv

ML
∑

i=P+1

tit
T
i

)

x(t)

= x1(t)− IiRv

ML
∑

i=P+1

tit
T
i x(t) = x1(t),

where we have used (10) and (11). Then, it is clear that

υd (HMVDR) = 0, (51)

proving that, indeed, HMVDR is the MVDR filtering matrix.

Benesty, Cohen, and Chen Multichannel Enhancement: Time Domain 41\53



Introduction
Signal Model and Problem Formulation

Joint Diagonalization
Linear Filtering

Performance Measures
Optimal Filtering Matrices

Wiener Filtering Matrix
Variable Span Wiener Filtering
MVDR Filtering Matrix
Controlled Distortion Filtering Matrix
Tradeoff Filtering Matrix
General Subspace Filtering Matrix

Property

With the MVDR filtering matrix given in (49), the output SNR is always
greater than or equal to the input SNR, i.e., oSNR (HMVDR) ≥ iSNR.
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Controlled Distortion Filtering Matrix

From the MVDR filtering matrix, we can propose the controlled
distortion (CD) filtering matrix:

HCD,P ′ = IiRx

P ′
∑

p′=1

tp′tTp′

λp′

, (52)

where 1 ≤ P ′ ≤ P . We observe that HCD,P = HMVDR and for P ′ = 1,
we obtain the maximum SNR filtering matrix with minimum distortion:

Hmax,0 = IiRx

t1t
T
1

λ1

, (53)

since

oSNR
(

Hmax,0

)

= λ1. (54)
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Example 3

Returning to Example 2, we now employ the CD filtering matrix,
HCD,P ′ , given in (52).

Figure 7 shows plots of the gain in SNR, G
(

HCD,P ′

)

, the MSE,
J
(

HCD,P ′

)

, the noise reduction factor, ξn
(

HCD,P ′

)

, and the
desired-signal reduction factor, ξd

(

HCD,P ′

)

, as a function of the input
SNR for several values of P ′.

For a given input SNR, the higher is the value of P ′, the lower are the
MSE and the desired-signal reduction factor, but at the expense of
lower gain in SNR and lower noise reduction factor.
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Figure 7: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor of the CD filtering matrix as a function of the input SNR
for several values of P ′: P ′ = 1 (solid line with circles), P ′ = 2 (dashed line with
asterisks), P ′ = 3 (dotted line with squares), and P ′ = 4 (dash-dot line with triangles).
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Tradeoff Filtering Matrix

Another practical approach that can compromise between noise
reduction and desired-signal distortion is the tradeoff filtering matrix
obtained by

min
A

Jd (A) subject to Jn (A) = ℵtr (Rv1
) , (55)

where 0 < ℵ < 1 to ensure that filtering achieves some degree of
noise reduction.

We find that the optimal filtering matrix is

HT,µ = IiRx

ML
∑

i=1

tit
T
i

µ+ λi

, (56)

where µ ≥ 0 is a Lagrange multiplier.

For µ = 1, we get the Wiener filtering matrix.
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Property

With the tradeoff filtering matrix given in (56), the output SNR is
always greater than or equal to the input SNR, i.e.,
oSNR

(

HT,µ

)

≥ iSNR, ∀µ ≥ 0.
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Example 4

Returning to Example 2, we now employ the tradeoff filtering matrix,
HT,µ, given in (56).

Figure 8 shows plots of the gain in SNR, G
(

HT,µ

)

, the MSE,
J
(

HT,µ

)

, the noise reduction factor, ξn
(

HT,µ

)

, and the
desired-signal reduction factor, ξd

(

HT,µ

)

, as a function of the input
SNR for several values of µ.

For a given input SNR, the higher is the value of µ, the higher are the
gain in SNR and the noise reduction factor, but at the expense of
higher desired-signal reduction factor.
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Figure 8: (a) The gain in SNR, (b) the MSE, (c) the noise reduction factor, and (d) the
desired-signal reduction factor of the tradeoff filtering matrix as a function of the input
SNR for several values of µ: µ = 0.5 (solid line with circles), µ = 1 (dashed line with
asterisks), µ = 2 (dotted line with squares), and µ = 5 (dash-dot line with triangles).
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General Subspace Filtering Matrix

From what we have seen so far, we can propose a very general
subspace (GS) noise reduction filtering matrix [7]:

Hµ,Q = IiRx

Q
∑

q=1

tqt
T
q

µ+ λq

, (57)

where 1 ≤ Q ≤ ML.

This form encompasses most known optimal filtering matrices.

Indeed, it is clear that
H1,ML = HW H1,Q = HW,Q H1,1 = Hmax,1

H0,P = HMVDR H0,P ′ = HCD,P ′ H0,1 = Hmax,0

Hµ,ML = HT,µ
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Table 1: Optimal linear filtering matrices for multichannel signal enhancement in the
time domain.

Wiener: H
W

= I
i
Rx

ML∑

i=1

tit
T
i

1 + λi

VS Wiener: H
W,Q = I

i
Rx

Q∑

q=1

tqt
T
q

1 + λq

, 1 ≤ Q ≤ ML

MVDR: H
MVDR

= I
i
Rx

P∑

p=1

tpt
T
p

λp

CD: H
CD,P ′ = I

i
Rx

P ′∑

p′=1

tp′t
T
p′

λp′
, 1 ≤ P ′ ≤ P

Maximum SNR: H
max,µ = I

i
Rx

t
1
t
T
1

µ+ λ
1

, µ ≥ 0

Tradeoff: H
T,µ = I

i
Rx

ML∑

i=1

tit
T
i

µ+ λi

, µ ≥ 0

GS: Hµ,Q = I
i
Rx

Q∑

q=1

tqt
T
q

µ+ λq

, µ ≥ 0, 1 ≤ Q ≤ ML
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