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Introduction

We study the signal enhancement problem in the frequency domain
with multiple sensors.

We explain the signal model and state the problem we wish to solve
with the conventional linear filtering technique.

We then derive performance measures and show how to obtain the
most well-known optimal linear filters.
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Signal Model and Problem Formulation

We consider the conventional signal model in which an array of M
sensors with an arbitrary geometry captures a convolved desired
source signal in some noise field.

The received signals, at the discrete-time index t, are expressed as

ym(t) = gm(t) ∗ x(t) + vm(t) (1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the acoustic impulse response from the unknown
desired source, x(t), location to the mth sensor, ∗ stands for linear
convolution, and vm(t) is the additive noise at sensor m.

We assume that the signals xm(t) = gm(t) ∗ x(t) and vm(t) are
uncorrelated, zero mean, stationary, real, and broadband.
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In the frequency domain, at the frequency index f , (1) can be
expressed as [1], [2], [3]

Ym(f) = Gm(f)X(f) + Vm(f) (2)

= Xm(f) + Vm(f), m = 1, 2, . . . ,M,

where Ym(f), Gm(f), X(f), Vm(f), and Xm(f) = Gm(f)X(f) are the
frequency-domain representations of ym(t), gm(t), x(t), vm(t), and
xm(t) = gm(t) ∗ x(t), respectively.

Sensor 1 is the reference, so the objective of multichannel noise
reduction in the frequency domain is to estimate the desired signal,
X1(f), from the M observations Ym(f), m = 1, 2, . . . ,M , in the best
possible way.
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It is more convenient to write the M frequency-domain sensors’
signals in a vector notation:

y(f) = g(f)X(f) + v(f) (3)

= x(f) + v(f)

= d(f)X1(f) + v(f),

where

y(f) =
[
Y1(f) Y2(f) · · · YM (f)

]T
,

x(f) =
[
X1(f) X2(f) · · · XM (f)

]T

= X(f)g(f),

g(f) =
[
G1(f) G2(f) · · · GM (f)

]T
,

v(f) =
[
V1(f) V2(f) · · · VM (f)

]T
,
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and

d(f) =

[
1

G2(f)

G1(f)
· · ·

GM (f)

G1(f)

]T
(4)

=
g(f)

G1(f)
.

The vector d(f) can be seen as the steering vector for noise
reduction [4] since the acoustic impulse responses ratios from the
broadband source to the aperture convey information about the
position of the source.

There is another interesting way to write (3). First, it is easy to see
that

Xm(f) = γ∗

X1Xm
(f)X1(f), m = 1, 2, . . . ,M, (5)
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where

γX1Xm
(f) =

E [X1(f)X
∗

m(f)]

E
[
|X1(f)|

2
] (6)

=
G∗

m(f)

G∗

1(f)
, m = 1, 2, . . . ,M

is the partially normalized [with respect to X1(f)] coherence function
between X1(f) and Xm(f).

Using (5), we can rewrite (3) as

y(f) = γ
∗

X1x
(f)X1(f) + v(f), (7)
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where

γX1x
(f) =

[
1 γX1X2

(f) · · · γX1XM
(f)

]T
(8)

=
E [X1(f)x

∗(f)]

E
[
|X1(f)|

2
] = d∗(f)

is the partially normalized [with respect to X1(f)] coherence vector
(of length M ) between X1(f) and x(f).

In the rest, γ∗

X1x
(f) and d(f) will be used interchangeably.

By definition, the signal X1(f) is completely coherent across all
sensors [see eq. (5)]; however, V1(f) is usually partially coherent with
the noise components, Vm(f), at the other sensors.
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Therefore, any noise term Vm(f) can be easily decomposed into two
orthogonal components, i.e.,

Vm(f) = γ∗

V1Vm
(f)V1(f) + V ′

m(f), m = 1, 2, . . . ,M, (9)

where γV1Vm
(f) is the partially normalized [with respect to V1(f)]

coherence function between V1(f) and Vm(f) and

E [V ∗

1 (f)V
′

m(f)] = 0, m = 1, 2, . . . ,M. (10)

The vector v(f) can then be written as the sum of two other vectors:
one coherent with V1(f) and the other incoherent with V1(f), i.e.,

v(f) = γ
∗

V1v
(f)V1(f) + v′(f), (11)
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where

γV1v
(f) =

[
1 γV1V2

(f) · · · γV1VM
(f)

]T
(12)

is the partially normalized [with respect to V1(f)] coherence vector (of
length M ) between V1(f) and v(f) and

v′(f) =
[
0 V ′

2(f) · · · V ′

M (f)
]T

.

If V1(f) is incoherent with Vm(f), where m 6= 1, then γV1Vm
(f) = 0.

Another convenient way to write the sensors’ signals vector is

y(f) = γ
∗

X1x
(f)X1(f) + γ

∗

V1v
(f)V1(f) + v′(f). (13)

We see that y(f) is the sum of three mutual incoherent components.
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Therefore, the correlation matrix of y(f) is

Φy(f) = E
[
y(f)yH (f)

]
(14)

= φX1
(f)d(f)dH(f) +Φv(f)

= φX1
(f)γ∗

X1x
(f)γT

X1x
(f) + φV1

(f)γ∗

V1v
(f)γT

V1v
(f) +Φv′(f),

where the superscript H is the conjugate-transpose operator,

φX1
(f) = E

[
|X1(f)|

2
]

and φV1
(f) = E

[
|V1(f)|

2
]

are the variances of

X1(f) and V1(f), respectively, and Φv(f) = E
[
v(f)vH(f)

]
and

Φv′(f) = E
[
v′(f)v′H(f)

]
are the correlation matrices of v(f) and

v′(f), respectively.

The matrix Φy(f) is the sum of three other matrices: the first two are
of rank equal to 1 and the last one (correlation matrix of the
incoherent noise) is assumed to be of rank equal to M − 1.
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Linear Filtering

In the frequency domain, conventional multichannel noise reduction is
performed by applying a complex weight to the output of each sensor,
at frequency f , and summing across the aperture (see Fig. 1):

Z(f) =

M∑

m=1

H∗

m(f)Ym(f) (15)

= hH(f)y(f),

where Z(f) is the estimate of X1(f) and

h(f) =
[
H1(f) H2(f) · · · HM (f)

]T
(16)

is a filter of length M containing all the complex gains applied to the
sensors’ outputs at frequency f .
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+

V1(f)

H∗

1 (f)

+

VM (f)

H∗

M (f)

+... ...

X1(f)

XM (f)

Z(f)

Y1(f)

YM (f)

Figure 1: Block diagram of multichannel linear filtering in the frequency domain.
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We can express (15) as a function of the steering vector, i.e.,

Z(f) = hH(f)
[
γ
∗

X1x
(f)X1(f) + v(f)

]
(17)

= Xfd(f) + Vrn(f),

where

Xfd(f) = X1(f)h
H(f)γ∗

X1x
(f) (18)

is the filtered desired signal and

Vrn(f) = hH(f)v(f) (19)

is the residual noise. This procedure is called the multichannel signal
enhancement problem in the frequency domain.
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The two terms on the right-hand side of (17) are incoherent. Hence,
the variance of Z(f) is also the sum of two variances:

φZ(f) = hH(f)Φy(f)h(f) (20)

= φXfd
(f) + φVrn

(f),

where

φXfd
(f) = φX1

(f)
∣∣hH(f)γ∗

X1x
(f)

∣∣2 , (21)

φVrn
(f) = hH(f)Φv(f)h(f). (22)
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Performance Measures
Signal-to-Noise Ratio

The input SNR gives an idea on the level of the noise as compared to
the level of the desired signal at the reference sensor.

The narrowband input SNR is

iSNR(f) =
φX1

(f)

φV1
(f)

. (23)

The broadband input SNR:

iSNR =

∫
f
φX1

(f)df
∫
f φV1

(f)df
. (24)

Notice that

iSNR 6=

∫

f

iSNR(f)df. (25)
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The output SNR quantifies the SNR after performing noise reduction.
From (20), we deduce the narrowband output SNR:

oSNR [h(f)] =
φXfd

(f)

φVrn
(f)

(26)

=
φX1

(f)
∣∣hH(f)d(f)

∣∣2

hH(f)Φv(f)h(f)

and the broadband output SNR:

oSNR (h) =

∫
f φX1

(f)
∣∣hH(f)d(f)

∣∣2 df
∫
f h

H(f)Φv(f)h(f)df
. (27)

It is clear that

oSNR (h) 6=

∫

f

oSNR [h(f)] df. (28)
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Assume that the matrix Φv(f) is nonsingular. In this case, for the two
vectors h(f) and d(f), we have

∣∣hH(f)d(f)
∣∣2 ≤

[
hH(f)Φv(f)h(f)

] [
dH(f)Φ−1

v (f)d(f)
]
, (29)

with equality if and only if h(f) ∝ Φ−1
v (f)d(f).

Using the inequality (29) in (26), we deduce an upper bound for the
narrowband output SNR:

oSNR [h(f)] ≤ φX1
(f)× dH(f)Φ−1

v (f)d(f), ∀h(f). (30)

For the particular filter of length M :

h(f) = ii =
[
1 0 · · · 0

]T
, (31)
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we have

oSNR [ii(f)] = iSNR(f), (32)

oSNR (ii) = iSNR. (33)

With the identity filter, ii, the output SNRs cannot be improved and

oSNR [ii(f)] ≤ φX1
(f)× dH(f)Φ−1

v (f)d(f), (34)

which implies that

φV1
(f)× dH(f)Φ−1

v (f)d(f) ≥ 1. (35)

Our objective is then to find the filter, h(f), within the design
constraints, in such a way that oSNR [h(f)] > iSNR(f).
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While the narrowband output SNR is important when we deal with
narrowband and broadband signals, the broadband output SNR is
even more important when we deal with broadband signals such as
speech.

Therefore, we also need to make sure finding h(f) in such a way that
oSNR (h) > iSNR.
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Noise Rejection Factor

The noise reduction factor or noise rejection factor quantifies the
amount of noise being rejected by the filter.

This quantity is defined as the ratio of the power of the noise at the
reference sensor over the power of the noise remaining at the filter
output. Specifically:

the broadband noise reduction factor,

ξn (h) =

∫
f
φV1

(f)df
∫
f
hH(f)Φv(f)h(f)df

(36)

and the narrowband noise reduction factor,

ξn [h(f)] =
φV1

(f)

hH(f)Φv(f)h(f)
. (37)
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The broadband noise reduction factor is expected to be lower
bounded by 1; otherwise, the filter amplifies the noise received at the
senors.

The higher the value of the noise reduction factor, the more noise that
is rejected.
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Desired-Signal Reduction Factor

In order to quantify the level of this distortion, we define the
desired-signal reduction factor or desired-signal cancellation factor as
the ratio of the variance of the desired signal at the reference sensor
over the variance of the filtered desired signal at the filter output.
Specifically:

the broadband desired-signal reduction factor,

ξd (h) =

∫
f
φX1

(f)df
∫
f φX1

(f) |hH(f)d(f)|
2
df

(38)

and the narrowband desired-signal reduction factor,

ξd [h(f)] =
1

|hH(f)d(f)|
2 . (39)
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Once again, note that

ξn (h) 6=

∫

f

ξn [h(f)] df, (40)

ξd (h) 6=

∫

f

ξd [h(f)] df. (41)

Another key observation is that the design of filters that do not cancel
the broadband desired signal requires the constraint:

hH(f)d(f) = 1. (42)

Thus, the desired-signal reduction factor is equal to 1 if there is no
cancellation and expected to be greater than 1 when cancellation
happens.
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Lastly, by making the appropriate substitutions, one can derive the
following relationships between the output and input SNRs, noise
reduction factor, and desired-signal reduction factor:

oSNR (h)

iSNR
=

ξn (h)

ξd (h)
, (43)

oSNR [h(f)]

iSNR(f)
=

ξn [h(f)]

ξd [h(f)]
. (44)
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Desired-Signal Distortion Index

Another useful way to measure the distortion of the desired signal is
via the desired-signal distortion index, which is defined as the MSE
between the desired signal and its estimate, normalized by the power
of the desired signal. Specifically:

the broadband desired-signal distortion index,

υd (h) =

∫
f
φX1

(f)
∣∣hH(f)γ∗

X1x
(f)− 1

∣∣2 df
∫
f
φX1

(f)df
(45)

and the narrowband desired-signal distortion index,

υd [h(f)] =
E
[
|Xfd(f)−X1(f)|

2
]

φX1
(f)

(46)

=
∣∣hH(f)γ∗

X1x
(f)− 1

∣∣2 .
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It is interesting to point out that the broadband desired-signal
distortion index is a linear combination of the narrowband
desired-signal distortion indices as the denominator is simply a
scaling factor, i.e.,

υd (h) =

∫
f
φX1

(f)υd [h(f)] df∫
f
φX1

(f)df
. (47)

The distortionless constraint implies that υd [h(f)] = 0, ∀f .

Benesty, Cohen, and Chen Multichannel Enhancement: Frequency Domain 28\123



Introduction
Signal Model and Problem Formulation

Linear Filtering
Performance Measures

Optimal Filters
Implementation with the STFT

Signal-to-Noise Ratio
Noise Rejection Factor
Desired-Signal Reduction Factor
Desired-Signal Distortion Index
Mean-Squared Error

Mean-Squared Error

We define the error signal between the estimated and desired signals
at frequency f as

E (f) = Z(f)−X1(f) (48)

= hH(f)y(f)−X1(f)

= Xfd(f) + Vrn(f)−X1(f).

This error can also be expressed as

E (f) = Ed (f) + En (f) , (49)

where

Ed (f) =
[
hH(f)γ∗

X1x
(f)− 1

]
X1(f) (50)

is the desired-signal distortion due to the complex filter and

En (f) = hH(f)v(f) (51)

represents the residual noise.
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The error signals Ed (f) and En (f) are incoherent.

The narrowband MSE is then

J [h(f)] = E
[
|E (f)|2

]
(52)

= φX1
(f) + hH(f)Φy(f)h(f)− φX1

(f)hH(f)γ∗

X1x
(f)

− φX1
(f)γT

X1x
(f)h(f),

which can be rewritten as

J [h(f)] = E
[
|Ed (f)|

2
]
+ E

[
|En (f)|

2
]

(53)

= Jd [h(f)] + Jn [h(f)] ,
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where

Jd [h(f)] = φX1
(f)

∣∣hH(f)γ∗

X1x
(f)− 1

∣∣2 (54)

= φX1
(f)υd [h(f)]

and

Jn [h(f)] = hH(f)Φv(f)h(f) (55)

=
φV1

(f)

ξn [h(f)]
.
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Sometimes, it is also important to examine the MSE from the
broadband point of view. We define the broadband MSE as

J (h) =

∫

f

J [h(f)] df (56)

=

∫

f

Jd [h(f)] df +

∫

f

Jn [h(f)] df

= Jd (h) + Jn (h) .

It is easy to show the relations between the broadband MSEs and the
broadband performance measures:

Jd (h)

Jn (h)
= iSNR× ξn (h)× υd (h)

= oSNR (h)× ξd (h)× υd (h) . (57)
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Optimal Filters
Maximum SNR

Let us rewrite the narrowband output SNR:

oSNR [h(f)] =
φX1

(f)hH(f)γ∗

X1x
(f)γT

X1x
(f)h(f)

hH(f)Φv(f)h(f)
. (58)

The maximum SNR filter, hmax(f), is obtained by maximizing the
output SNR as given above.

In (58), we recognize the generalized Rayleigh quotient [5].

It is well known that this quotient is maximized with the maximum
eigenvector of the matrix φX1

(f)Φ−1
v (f)γ∗

X1x
(f)γT

X1x
(f).
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Let us denote by λ1(f) the maximum eigenvalue corresponding to
this maximum eigenvector.

Since the rank of the mentioned matrix is equal to 1, we have

λ1(f) = tr
[
φX1

(f)Φ−1
v (f)γ∗

X1x
(f)γT

X1x
(f)

]
(59)

= φX1
(f)γT

X1x
(f)Φ−1

v (f)γ∗

X1x
(f).

As a result,

oSNR [hmax(f)] = λ1(f) (60)

= oSNRmax(f),

which corresponds to the maximum possible narrowband output SNR.
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Obviously, we also have

hmax(f) = ς(f)Φ−1
v (f)γ∗

X1x
(f), (61)

where ς(f) is an arbitrary frequency-dependent complex number
different from zero.

While this factor has no effect on the narrowband output SNR, it has
on the broadband output SNR and on the desired-signal distortion.

In fact, all the filters (except for the LCMV) derived in the rest of this
section are equivalent up to this complex factor.

These filters also try to find the respective complex factors at each
frequency depending on what we optimize.
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It is important to understand that while the maximum SNR filter
maximizes the narrowband output SNR, it certainly does not
maximize the broadband output SNR whose value depends quite a
lot on ς(f).

Let us denote by oSNR(m)
max(f) the maximum narrowband output SNR

of an array with m sensors.

By virtue of the inclusion principle [5] for the matrix
φX1

(f)Φ−1
v (f)γ∗

X1x
(f)γT

X1x
(f), we have

oSNR(M)
max(f) ≥ oSNR(M−1)

max (f) ≥ · · · ≥ oSNR(2)
max(f) ≥

oSNR(1)
max(f) = iSNR(f). (62)

This shows that by increasing the number of sensors, we necessarily
increase the narrowband output SNR.
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Example 1

Consider a ULA of M sensors. Suppose that a desired signal
impinges on the ULA from the direction θ0, and that an interference
impinges on the ULA from the endfire direction (θ = 0◦).

Assume that the desired signal is a harmonic pulse of T samples:

x(t) =

{
A sin (2πf0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed, but unknown, amplitude A and frequency f0, and random
phase φ, uniformly distributed on the interval from 0 to 2π.

Assume that the interference u(t) is white Gaussian noise, i.e.,
u(t) ∼ N

(
0, σ2

u

)
, uncorrelated with x(t).

In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(
0, σ2

w

)
, that are mutually uncorrelated.
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The desired signal needs to be recovered from the noisy received
signals, ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.

For simplicity, we choose a sampling interval Ts that satisfies Ts =
d
c .

Hence, the desired signal at sensor m is a delayed version of the
desired signal at the first sensor:

xm(t) = x1 (t− τm) ,

where

τm =
(m− 1)d cos θ0

cTs

= (m− 1) cos θ0, m = 1, 2, . . . ,M
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is the relative time delay in samples (not necessarily an integer
number) between the mth sensor and the first one.

The frequency-domain representation of the desired signal received
at the first sensor is given by

X1(f) =

∞∑

t=−∞

x1(t)e
2πft

=
A

2
eφ+π(f+f0)(T−1)DT [π (f + f0)] +

A

2
e−φ+π(f−f0)(T−1)DT [π (f − f0)] ,

where

DT (x) =
sin (Tx)

sin (x)
.
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Therefore, the variance of X1(f) is

φX1
(f) =

A2

4
D2

T [π (f + f0)] +
A2

4
D2

T [π (f − f0)] .

Using the vector notation (3), we have

x(f) = d(f)X1(f),

Φx(f) = φX1
(f)d(f)dH(f),

where

d(f) =
[
1 e− 2πfτ2 e− 2πfτ3 · · · e− 2πfτM

]T
.
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The interference signal at sensor m is also a delayed version of the
interference signal at the first sensor:

um(t) = u1 (t−m+ 1) .

The frequency-domain representation of the interference signal
received at the first sensor is given by

U1(f) =

T−1∑

t=0

u1(t)e
2πft.

Hence, the variance of U1(f) is φU1
(f) = Tσ2

u.

Using the vector notation (13), we have

v(f) = γ
∗

U1u
(f)U1(f) +w(f),

Φv(f) = φU1
(f)γ∗

U1u
(f)γT

U1u
(f) + Tσ2

wIM ,
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where

γ
∗

U1u
(f) =

[
1 e− 2πf e− 2πf2 · · · e− 2πf(M−1)

]T

and IM is the M ×M identity matrix.

The narrowband and broadband input SNRs are, respectively,

iSNR(f) =
φX1

(f)

φV1
(f)

=
A2

4T (σ2
u + σ2

w)
D2

T [π (f + f0)] +

A2

4T (σ2
u + σ2

w)
D2

T [π (f − f0)]
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and

iSNR =

∫
f
φX1

(f)df
∫
f
φV1

(f)df

=

∑
t E

[
|x1(t)|

2
]

∑
t E

[
|v1(t)|

2
]

=
A2

2 (σ2
u + σ2

w)
,

where we have used Parseval’s identity.

The maximum SNR filter, hmax(f), is obtained from (61).

Benesty, Cohen, and Chen Multichannel Enhancement: Frequency Domain 43\123



Introduction
Signal Model and Problem Formulation

Linear Filtering
Performance Measures

Optimal Filters
Implementation with the STFT

Maximum SNR
Wiener
MVDR
Tradeoff
LCMV
Generalized Sidelobe Canceller Structure

Using (60), we can write the narrowband gain in SNR as

G [hmax(f)] =
oSNR [hmax(f)]

iSNR(f)

= dH(f)

[
σ2
u

σ2
u + σ2

w

γ
∗

U1u
(f)γT

U1u
(f) +

σ2
w

σ2
u + σ2

w

IM

]−1

d(f).

To demonstrate the performance of the maximum SNR filter, we
choose σ2

w = 0.01σ2
u.

Figure 2 shows the effect of the number of sensors, M , on the
narrowband gain in SNR, G [hmax(f)], for different incidence angles of
the desired signal and different frequencies.

For a single sensor (M = 1), there is no narrowband gain in SNR. As
the number of sensors increases, the narrowband gain in SNR
increases.
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Figure 2: Narrowband gain in SNR of the maximum SNR filter for different incidence
angles of the desired signal and different frequencies: θ0 = 30◦ (circles), θ0 = 50◦

(asterisks), θ0 = 70◦ (squares), and θ0 = 90◦ (triangles); (a) f = 0.01, (b) f = 0.05,
(c) f = 0.1, and (d) f = 0.2.
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Wiener

The Wiener filter is found by minimizing the narrowband MSE,
J [h(f)] [eq. (52)]. We get

hW(f) = φX1
(f)Φ−1

y (f)γ∗

X1x
(f). (63)

Let

Γy(f) =
Φy(f)

φY1
(f)

(64)

be the pseudo-coherence matrix of the observations, we can rewrite
(63) as

hW(f) =
iSNR(f)

1 + iSNR(f)
Γ−1
y (f)γ∗

X1x
(f) (65)

= HW(f)Γ−1
y (f)γ∗

X1x
(f),
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where

HW(f) =
iSNR(f)

1 + iSNR(f)
(66)

is the (single-channel) Wiener gain and Γ−1
y (f)γ∗

X1x
(f) is the spatial

information vector.

The decomposition in (65) is very interesting; it shows separately the
influence of the spectral and spatial processing on multichannel
signal enhancement.
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We can express (63) differently, i.e.,

hW(f) = Φ−1
y (f)E [x(f)X∗

1 (f)] (67)

= Φ−1
y (f)Φx(f)ii

=
[
IM −Φ−1

y (f)Φv(f)
]
ii.

In this form, the Wiener filter relies on the second-order statistics of
the observation and noise signals.

We can write the general form of the Wiener filter in another way that
will make it easier to compare to other optimal filters. We know that

Φy(f) = φX1
(f)γ∗

X1x
(f)γT

X1x
(f) +Φv(f). (68)
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Determining the inverse of Φy(f) from the previous expression with
the Woodbury’s identity, we get

Φ−1
y (f) = Φ−1

v (f)−
Φ−1

v (f)γ∗

X1x
(f)γT

X1x
(f)Φ−1

v (f)

φ−1
X1

(f) + γ
T
X1x

(f)Φ−1
v (f)γ∗

X1x
(f)

. (69)

Substituting (69) into (63) gives

hW(f) =
φX1

(f)Φ−1
v (f)γ∗

X1x
(f)

1 + φX1
(f)γT

X1x
(f)Φ−1

v (f)γ∗

X1x
(f)

, (70)

that we can rewrite as

hW(f) =
Φ−1

v (f) [Φy(f)−Φv(f)]

1 + tr
{
Φ−1

v (f) [Φy(f)−Φv(f)]
} ii (71)

=
Φ−1

v (f)Φy(f)− IM

1−M + tr
[
Φ−1

v (f)Φy(f)
] ii.
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Comparing (67) with (71), we see that in the former, we invert the
correlation matrix of the observations, while in the latter, we invert the
correlation matrix of the noise.

It is interesting to see that the two filters hW(f) and hmax(f) differ
only by a real-valued factor. Indeed, taking

ς(f) =
φX1

(f)

1 + λ1(f)
(72)

in (61) (maximum SNR filter), we find (70) (Wiener filter).

We can express hW(f) as a function of the narrowband input SNR
and the pseudo-coherence matrices, i.e.,

hW(f) =
[1 + iSNR(f)]Γ−1

v (f)Γy(f)− IM

1−M + [1 + iSNR(f)] tr
[
Γ−1
v (f)Γy(f)

] ii, (73)
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where

Γv(f) =
Φv(f)

φV1
(f)

. (74)

From (70), we deduce that the narrowband output SNR is

oSNR [hW(f)] = λ1(f) (75)

= tr
[
Φ−1

v (f)Φy(f)
]
−M

and, obviously,

oSNR [hW(f)] ≥ iSNR(f), (76)

since the Wiener filter maximizes the narrowband output SNR.
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The desired-signal distortion indices are

υd [hW(f)] =
1

[1 + λ1(f)]
2 , (77)

υd (hW) =

∫
f φX1

(f) [1 + λ1(f)]
−2

df
∫
f φX1

(f)df
. (78)

The higher the value of λ1(f) (and/or the number of sensors), the
less the desired signal is distorted.

It is also easy to find the noise reduction factors:

ξn [hW(f)] =
[1 + λ1(f)]

2

iSNR(f)× λ1(f)
, (79)

ξn (hW) =

∫
f
φX1

(f)iSNR−1(f)df
∫
f φX1

(f)λ1(f) [1 + λ1(f)]
−2

df
, (80)
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and the desired-signal reduction factors:

ξd [hW(f)] =
[1 + λ1(f)]

2

λ2
1(f)

, (81)

ξd (hW) =

∫
f
φX1

(f)df
∫
f φX1

(f)λ2
1(f) [1 + λ1(f)]

−2
df

. (82)

The broadband output SNR of the Wiener filter is

oSNR (hW) =

∫

f

φX1
(f)

λ2
1(f)

[1 + λ1(f)]
2 df

∫

f

φX1
(f)

λ1(f)

[1 + λ1(f)]
2 df

. (83)
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Property

With the frequency-domain multichannel Wiener filter given in (63),
the broadband output SNR is always greater than or equal to the
broadband input SNR, i.e., oSNR (hW) ≥ iSNR.
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Example 2

Returning to Example 1, we now employ the Wiener filter, hW(f),
given in (63).

To demonstrate the performance of the Wiener filter, we choose
A = 0.5, f0 = 0.1, T = 500, θ0 = 70◦, and σ2

w = 0.01σ2
u.

Figure 3 shows plots of the broadband gain in SNR, G (hW), the
broadband MSE, J (hW), the broadband noise reduction factor,
ξn (hW), and the broadband desired-signal reduction factor, ξd (hW),
as a function of the broadband input SNR, for different numbers of
sensors.

For a given broadband input SNR, as the number of sensors
increases, the broadband gain in SNR and the broadband noise
reduction factor increase, while the broadband MMSE and the
broadband desired-signal reduction factor decrease.
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Figure 3: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and (d)
desired-signal reduction factor of the Wiener filter for different numbers of sensors, M :
M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 5 (dotted line
with squares), and M = 10 (dash-dot line with triangles).
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Figure 4 shows a realization of the frequency-domain noise corrupted
signal received at the first sensor, |Y1(f)|, and the error signals
|E (f)| = |Z(f)−X1(f)| for iSNR = −5 dB and different numbers of
sensors.

Figure 5 shows the corresponding time-domain observation signal at
the first sensor, y1(t), and the time-domain estimated signals, z(t).

Obviously, as the number of sensors increases, the Wiener filter
better enhances the desired signal.
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Figure 4: Example of frequency-domain noise corrupted and error signals of the
Wiener filter for different numbers of sensors, M : (a) |Y1(f)| (iSNR = −5 dB), and
|E (f)| = |Z(f)−X1(f)| for (b) M = 1 [oSNR (hW) = 14.2 dB], (c) M = 2
[oSNR (hW) = 19.2 dB], and (d) M = 5 [oSNR (hW) = 25.5 dB].
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Figure 5: Example of time-domain noise corrupted and Wiener filtered sinusoidal
signals for different numbers of sensors, M : (a) y1(t) (iSNR = −5 dB), and z(t), for
(b) M = 1 [oSNR (hW) = 14.2 dB], (c) M = 2 [oSNR (hW) = 19.2 dB], and (d)
M = 5 [oSNR (hW) = 25.5 dB].
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MVDR

The well-known MVDR filter proposed by Capon [6], [7] is easily
derived by minimizing the narrowband MSE of the residual noise,
Jn [h(f)], with the constraint that the desired signal is not distorted.

Mathematically, this is equivalent to

min
h(f)

hH(f)Φv(f)h(f) subject to hH(f)γ∗

X1x
(f) = 1, (84)

for which the solution is

hMVDR(f) =
Φ−1

v (f)γ∗

X1x
(f)

γ
T
X1x

(f)Φ−1
v (f)γ∗

X1x
(f)

. (85)
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Using the fact that Φx(f) = φX1
(f)γ∗

X1x
(f)γT

X1x
(f), the explicit

dependence of the above filter on the steering vector is eliminated to
obtain the following forms:

hMVDR(f) =
Φ−1

v (f)Φx(f)

λ1(f)
ii (86)

=
Φ−1

v (f)Φy(f)− IM

tr
[
Φ−1

v (f)Φy(f)
]
−M

ii

=
[1 + iSNR(f)]Γ−1

v (f)Γy(f)− IM

[1 + iSNR(f)] tr
[
Γ−1
v (f)Γy(f)

]
−M

ii.
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Alternatively, we can also write the MVDR as

hMVDR(f) =
Φ−1

y (f)γ∗

X1x
(f)

γ
T
X1x

(f)Φ−1
y (f)γ∗

X1x
(f)

(87)

=
Γ−1
y (f)γ∗

X1x
(f)

γ
T
X1x

(f)Γ−1
y (f)γ∗

X1x
(f)

.

Taking

ς(f) =
φX1

(f)

λ1(f)
(88)

in (61) (maximum SNR filter), we find (85) (MVDR filter), showing how
the maximum SNR and MVDR filters are equivalent up to a
real-valued factor.
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The Wiener and MVDR filters are simply related as follows:

hW(f) = CW(f)hMVDR(f), (89)

where

CW(f) = hH
W(f)γ∗

X1x
(f) (90)

=
λ1(f)

1 + λ1(f)

can be seen as a single-channel frequency-domain Wiener gain.

In fact, any filter of the form:

h(f) = C(f)hMVDR(f), (91)
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where C(f) is a real number, with 0 < C(f) < 1, removes more noise
than the MVDR filter at the price of some desired-signal distortion,
which is

ξd [h(f)] =
1

C2(f)
(92)

or

υd [h(f)] = [C(f)− 1]2 . (93)

It can be verified that we always have

oSNR [hMVDR(f)] = oSNR [hW(f)] , (94)

υd [hMVDR(f)] = 0, (95)

ξd [hMVDR(f)] = 1, (96)
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and

ξn [hMVDR(f)] ≤ ξn [hW(f)] , (97)

ξn (hMVDR) ≤ ξn (hW) . (98)

The MVDR filter rejects the maximum level of noise allowable without
distorting the desired signal at each frequency.

While the narrowband output SNRs of the Wiener and MVDR are
strictly equal, their broadband output SNRs are not.
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The broadband output SNR of the MVDR is

oSNR (hMVDR) =

∫
f
φX1

(f)df
∫
f
φX1

(f)λ−1
1 (f)df

(99)

and

oSNR (hMVDR) ≤ oSNR (hW) . (100)

Property

With the frequency-domain MVDR filter given in (85), the broadband
output SNR is always greater than or equal to the broadband input
SNR, i.e., oSNR (hMVDR) ≥ iSNR.

Benesty, Cohen, and Chen Multichannel Enhancement: Frequency Domain 66\123



Introduction
Signal Model and Problem Formulation

Linear Filtering
Performance Measures

Optimal Filters
Implementation with the STFT

Maximum SNR
Wiener
MVDR
Tradeoff
LCMV
Generalized Sidelobe Canceller Structure

Example 3

Returning to Example 2, we now employ the MVDR filter, hMVDR(f),
given in (85).

Figure 6 shows plots of the broadband gain in SNR, G (hMVDR), the
broadband MSE, J (hMVDR), the broadband noise reduction factor,
ξn (hMVDR), and the broadband desired-signal reduction factor,
ξd (hMVDR), as a function of the broadband input SNR, for different
numbers of sensors.

For a given broadband input SNR, as the number of sensors
increases, the broadband gain in SNR and the broadband noise
reduction factor increase, while the broadband MSE decreases.
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Figure 6: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and (d)
desired-signal reduction factor of the MVDR filter for different numbers of sensors, M :
M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 5 (dotted line
with squares), and M = 10 (dash-dot line with triangles).
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Tradeoff

In many practical situations, we wish to control the compromise
between noise reduction and desired-signal distortion, and one
possible way to do this is via the so-called tradeoff filter.

In the tradeoff approach, we minimize the narrowband desired-signal
distortion index with the constraint that the narrowband noise
reduction factor is equal to a positive value that is greater than 1.

Mathematically, this is equivalent to

min
h(f)

Jd [h(f)] subject to Jn [h(f)] = ℵφV1
(f), (101)

where 0 < ℵ < 1 to insure that we get some noise reduction.
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By using a Lagrange multiplier, µ > 0, to adjoin the constraint to the
cost function, we easily deduce the tradeoff filter:

hT,µ(f) = φX1
(f) [Φx(f) + µΦv(f)]

−1
γ
∗

X1x
(f) (102)

=
φX1

(f)Φ−1
v (f)γ∗

X1x
(f)

µ+ φX1
(f)γT

X1x
(f)Φ−1

v (f)γ∗

X1x
(f)

=
Φ−1

v (f)Φy(f)− IM

µ−M + tr
[
Φ−1

v (f)Φy(f)
] ii,

where the Lagrange multiplier, µ, satisfies

Jn [hT,µ(f)] = ℵφV1
(f). (103)

However, in practice it is not easy to determine the optimal µ.
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Therefore, when this parameter is chosen in a heuristic way, we can
see that for

µ = 1, hT,1(f) = hW(f), which is the Wiener filter;

µ = 0, hT,0(f) = hMVDR(f), which is the MVDR filter;

µ > 1, results in a filter with low residual noise at the expense of
high desired-signal distortion (as compared to Wiener); and

µ < 1, results in a filter with high residual noise and low
desired-signal distortion (as compared to Wiener).
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Note that the MVDR cannot be derived from the first line of (102)
since by taking µ = 0, we have to invert a matrix that is not full rank.

It can be observed that the tradeoff, Wiener, and maximum SNR
filters are equivalent up to a real-valued number.

As a result, the narrowband output SNR of the tradeoff filter is
independent of µ and is identical to the narrowband output SNR of
the maximum SNR filter, i.e.,

oSNR [hT,µ(f)] = oSNR [hmax(f)] , ∀µ ≥ 0. (104)
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We have

υd [hT,µ(f)] =

[
µ

µ+ λ1(f)

]2
, (105)

ξd [hT,µ(f)] =

[
1 +

µ

λ1(f)

]2
, (106)

ξn [hT,µ(f)] =
[µ+ λ1(f)]

2

iSNR(f)× λ1(f)
. (107)

The tradeoff filter is interesting from several perspectives since it
encompasses both the Wiener and MVDR filters.

It is then useful to study the broadband output SNR and the
broadband desired-signal distortion index of the tradeoff filter.
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It can be verified that the broadband output SNR of the tradeoff filter
is

oSNR (hT,µ) =

∫

f

φX1
(f)

λ2
1(f)

[µ+ λ1(f)]
2 df

∫

f

φX1
(f)

λ1(f)

[µ+ λ1(f)]
2 df

. (108)

Property

The broadband output SNR of the tradeoff filter is an increasing
function of the parameter µ.

From this property we deduce that the MVDR filter gives the smallest
broadband output SNR.
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While the broadband output SNR is upper bounded, it is easy to see
that the broadband noise reduction factor and broadband
desired-signal reduction factor are not.

So when µ goes to infinity, so are ξn (hT,µ) and ξd (hT,µ).

The broadband desired-signal distortion index is

υd (hT,µ) =

∫

f

φX1
(f)

µ2

[µ+ λ1(f)]
2 df

∫
f φX1

(f)df
. (109)

Property

The broadband desired-signal distortion index of the tradeoff filter is
an increasing function of the parameter µ.
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It is clear that

0 ≤ υd (hT,µ) ≤ 1, ∀µ ≥ 0. (110)

Therefore, as µ increases, the broadband output SNR increases at
the price of more distortion to the desired signal.

Property

With the frequency-domain tradeoff filter given in (102), the
broadband output SNR is always greater than or equal to the
broadband input SNR, i.e., oSNR (hT,µ) ≥ iSNR, ∀µ ≥ 0.
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From the previous results, we deduce that for µ ≥ 1,

iSNR ≤ oSNR (hMVDR) ≤ oSNR(hW) ≤ oSNR (hT,µ) , (111)

0 = υd (hMVDR) ≤ υd (hW) ≤ υd (hT,µ) , (112)

and for 0 ≤ µ ≤ 1,

iSNR ≤ oSNR (hMVDR) ≤ oSNR(hT,µ) ≤ oSNR (hW) , (113)

0 = υd (hMVDR) ≤ υd (hT,µ) ≤ υd (hW) . (114)
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Example 4

Returning to Example 2, we now employ the tradeoff filter, hT,µ(f),
given in (102). We assume M = 5 sensors.

Figure 7 shows plots of the broadband gain in SNR, G (hT,µ), the
broadband desired-signal distortion index, υd (hT,µ), the broadband
noise reduction factor, ξn (hT,µ), and the broadband desired-signal
reduction factor, ξd (hT,µ), as a function of the broadband input SNR,
for several values of µ.

For a given broadband input SNR, the higher is the value of µ, the
higher are the broadband gain in SNR and the broadband noise
reduction factor, but at the expense of higher broadband
desired-signal distortion index and higher broadband desired-signal
reduction factor.
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Figure 7: The broadband (a) gain in SNR, (b) desired-signal distortion index, (c) noise
reduction factor, and (d) desired-signal reduction factor of the tradeoff filter for several
values of µ: µ = 0.5 (solid line with circles), µ = 1 (dashed line with asterisks), µ = 2
(dotted line with squares), and µ = 5 (dash-dot line with triangles).
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LCMV

With the linearly constrained minimum variance (LCMV) filter [9], [10],
[11], [12], we wish to perfectly recover our desired signal, X1(f), and
completely remove the coherent components, γ∗

V1v
(f)V1(f) [see eq.

(11)].

The two constraints can be put together in a matrix form as

CH
X1V1

(f)h(f) =

[
1
0

]
, (115)

where

CX1V1
(f) =

[
γ
∗

X1x
(f) γ

∗

V1v
(f)

]
(116)

is our constraint matrix of size M × 2.
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Then, our optimal filter is obtained by minimizing the energy at the
filter output, with the constraints that the coherent noise components
are cancelled and the desired signal is preserved, i.e.,

hLCMV(f) = argmin
h(f)

hH(f)Φy(f)h(f) subject to

CH
X1V1

(f)h(f) =

[
1
0

]
. (117)

The solution to (117) is given by

hLCMV(f) = Φ−1
y (f)CX1V1

(f)
[
CH

X1V1
(f)Φ−1

y (f)CX1V1
(f)

]−1
[

1
0

]
.

(118)
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We always have

oSNR (hLCMV) ≤ oSNR (hMVDR) , (119)

υd (hLCMV) = 0, (120)

ξd (hLCMV) = 1, (121)

and

ξn (hLCMV) ≤ ξn (hMVDR) ≤ ξn (hW) . (122)

The LCMV structure can be an interesting solution in practical
applications where the coherent noise is more problematic than the
incoherent one.
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Example 5

Returning to Example 2, we now employ the LCMV filter, hLCMV(f),
given in (118). We assume M = 5 sensors.

Figure 8 shows plots of the broadband gain in SNR, G (hLCMV), the
broadband MSE, J (hLCMV), the broadband noise reduction factor,
ξn (hLCMV), and the broadband desired-signal reduction factor,
ξd (hLCMV), as a function of the broadband input SNR, for several
values of α = σ2

w /σ2
u.

For a given broadband input SNR, as the ratio between the coherent
to incoherent noise increases (α decreases), the LCMV filter yields
higher broadband gain in SNR and higher broadband noise reduction
factor.
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Figure 8: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and (d)
desired-signal reduction factor of the LCMV filter for several values of α = σ2

w /σ2
u:

α = 0.03 (solid line with circles), α = 0.1 (dashed line with asterisks), α = 0.3 (dotted
line with squares), and α = 1 (dash-dot line with triangles).
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The LCMV filter shown above can, obviously, be extended to any
number of linear constraints Mc ≤ M .

The constraint equation, which includes the distortionless constraint,
can be expressed as

CH(f)h(f) = ic, (123)

where

C(f) =
[
d(f) c2(f) · · · cMc

(f)
]

(124)

is a matrix of size M ×Mc whose Mc columns are linearly
independent and ic is a vector of length Mc whose first component is
equal to 1 and the other components are some chosen real numbers
to satisfy the constraints on the filter.
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Generally, these constraints are null ones where it is desired to
completely cancel some interference sources.

Following the same steps as above, we easily find the LCMV filter:

hLCMV(f) = Φ−1
y (f)C(f)

[
CH(f)Φ−1

y (f)C(f)
]−1

ic. (125)

For Mc = 1, hLCMV(f) simplifies to hMVDR(f).
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In Table 1, we summarize all the optimal filters studied in this section.

Table 1: Optimal linear filters for multichannel signal enhancement in the frequency
domain.

Maximum SNR: hmax(f) = ς(f)Φ−1
v (f)d(f), ς(f) 6= 0

Wiener: hW(f) =
Φ−1

v (f)Φy(f)− IM

1−M + tr
[
Φ−1

v (f)Φy(f)
] ii

MVDR: hMVDR(f) =
Φ−1

v (f)Φy(f)− IM

tr
[
Φ−1

v (f)Φy(f)
]
−M

ii

Tradeoff: hT,µ =
Φ−1

v (f)Φy(f)− IM

µ−M + tr
[
Φ−1

v (f)Φy(f)
] ii, µ ≥ 0

LCMV: hLCMV(f) = Φ−1
y (f)C(f)

[
CH(f)Φ−1

y (f)C(f)
]−1

ic
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Generalized Sidelobe Canceller Structure

The generalized sidelobe canceller (GSC) structure solves exactly
the same problem as the LCMV approach by dividing the filter vector
hLCMV(f) into two components operating on orthogonal subspaces
[13], [14], [15], [16]:

hLCMV(f) = hMN(f)−BC(f)wGSC(f), (126)

where

hMN(f) = C(f)
[
CH(f)C(f)

]−1
ic (127)

is the minimum-norm solution of (123), BC(f) is the so-called
blocking matrix that spans the nullspace of CH(f), i.e.,

CH(f)BC(f) = 0Mc×(M−Mc), (128)

and wGSC(f) is a weighting vector derived as explained below.
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A block diagram of the GSC is illustrated in Fig. 9.

+

v(f)

hH
MN(f) +

BH
C(f) wH

GSC(f)

x(f)
y(f)

X̂1(f)
−

• •

Figure 9: Block diagram of the generalized sidelobe canceller.
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The size of BC(f) is M × (M −Mc), where M −Mc is the dimension
of the nullspace of CH(f).

Therefore, the length of the vector wGSC(f) is M −Mc.

The blocking matrix is not unique and the most obvious choice is the
following:

BC(f) = PC(f)

[
IM−Mc

0Mc×(M−Mc)

]
, (129)

where

PC(f) = IM −C(f)
[
CH(f)C(f)

]−1
CH(f) (130)

is a projection matrix whose rank is equal to M −Mc and IM−Mc
is

the (M −Mc)× (M −Mc) identity matrix.
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To obtain the filter wGSC(f), the GSC approach is used, which is
formulated as the following unconstrained optimization problem:

min
w(f)

[hMN(f)−BC(f)w(f)]
H
Φy(f) [hMN(f)−BC(f)w(f)]

H
, (131)

for which the solution is

wGSC(f) =
[
BH

C(f)Φy(f)BC(f)
]−1

BH
C(f)Φy(f)hMN(f). (132)

Define the error signal, which is also the estimate of the desired
signal, between the outputs of the two filters hMN(f) and BC(f)w(f):

X̂1(f) = hH
MN(f)y(f)−wH(f)BH

C(f)y(f). (133)

It is easy to see that the minimization of E
[∣∣∣X̂1(f)

∣∣∣
2
]

with respect to

w(f) is equivalent to (131).
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Now, we need to check if indeed the two filters LCMV and GSC are
equivalent, i.e.,

iTc
[
CH(f)Φ−1

y (f)C(f)
]−1

CH(f)Φ−1
y (f) =

hH
MN(f)

{
IM −Φy(f)BC(f)

[
BH

C(f)Φy(f)BC(f)
]−1

BH
C(f)

}
.

(134)

For that, we are going to follow the elegant proof given in [17].

The matrix in brackets in the second line of (134) can be rewritten as

IM −Φy(f)BC(f)
[
BH

C(f)Φy(f)BC(f)
]−1

BH
C(f) =

Φ1/2
y (f) [IM −P1(f)]Φ

−1/2
y (f), (135)
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where

P1(f) = Φ1/2
y (f)BC(f)

[
BH

C(f)Φy(f)BC(f)
]−1

BH
C(f)Φ1/2

y (f) (136)

is a projection operator onto the subspace spanned by the columns of
Φ

1/2
y (f)BC(f).

We have

BH
C(f)C(f) = BH

C(f)Φ1/2
y (f)Φ−1/2

y (f)C(f)

= 0(M−Mc)×Mc
. (137)

This implies that the rows of BH
C(f) are orthogonal to the columns of

C(f) and the subspace spanned by the columns of Φ1/2
y (f)BC(f) is

orthogonal to the subspace spanned by the columns of
Φ

−1/2
y (f)C(f).
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Since BC(f) has a rank equal to M −Mc where Mc is the rank of
C(f), then the sum of the dimensions of the two subspaces is M and
the subspaces are complementary.

This means that

P1(f) +P2(f) = IM , (138)

where

P2(f) = Φ−1/2
y (f)C(f)

[
CH(f)Φ−1

y (f)C(f)
]−1

CH(f)Φ−1/2
y (f).

(139)
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When this is substituted and the constraint iTc = hH
MN(f)C(f) is

applied, (134) becomes

iTc
[
CH(f)Φ−1

y (f)C(f)
]−1

CH(f)Φ−1
y (f) =

hH
MN(f)Φ

1/2
y (f)P2(f)Φ

−1/2
y (f) =

hH
MN(f)Φ

1/2
y (f) [IM −P1(f)]Φ

−1/2
y (f) =

hH
MN(f)

{
IM −Φy(f)BC(f)

[
BH

C(f)Φy(f)BC(f)
]−1

BH
C(f)

}
.

(140)

Hence, the LCMV and GSC filters are strictly equivalent.
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Implementation with the STFT

In this section, we show how to implement the optimal filters in the
STFT domain.

The signal model given in (1) can be put into a vector form by
considering the L most recent successive time samples, i.e.,

ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M, (141)

where

ym(t) =
[
ym(t) ym(t− 1) · · · ym(t− L+ 1)

]T
(142)

is a vector of length L, and xm(t) and vm(t) are defined in a similar
way to ym(t) from (142).
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A short-time segment of the observation [i.e., ym(t)], is multiplied with
an analysis window of length L:

ga =
[
ga(0) ga(1) · · · ga(L− 1)

]T
(143)

and transformed into the frequency domain by using the discrete
Fourier transform (DFT).

Let W denote the DFT matrix of size L× L, with

[W]i,j = exp

(
−
2πij

L

)
, i, j = 0, . . . , L− 1. (144)

Then, the STFT representation of the observation is defined as [18]

Ym(t) = Wdiag (ga)ym(t), (145)
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where

Ym(t) =
[
Ym(t, 0) Ym(t, 1) · · · Ym(t, L− 1)

]T
. (146)

In practice, the STFT representation is decimated in time by a factor
R (1 ≤ R ≤ L) [19]:

Ym(rR) = Ym(t) |t=rR (147)

=
[
Ym(rR, 0) Ym(rR, 1) · · · Ym(rR, L− 1)

]T
, r ∈ Z.
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Figure 10 shows the STFT representation of the measured signal at
the mth sensor.

+

vm(t)

diag (ga) W ↓ Rxm(t)
ym(t) Ym(t)

Ym(rR)

Figure 10: STFT representation of the measured signal at the mth sensor.
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Therefore, in the STFT domain, (1) can be written as

Ym(rR, k) = Xm(rR, k) + Vm(rR, k), (148)

where k = 0, . . . , L− 1 denotes the frequency index, and Xm(rR, k)
and Vm(rR, k) are the STFT representations of xm(t) and vm(t),
respectively.

Assuming that L, the length of the analysis window ga, is sufficiently
larger than the effective support of the acoustic impulse response
gm(t) [20], we can apply the multiplicative transfer function (MTF)
approximation [20] and write the convolved desired signal at the mth
sensor as

Xm(rR, k) = Gm(k)X(rR, k), (149)

where X(rR, k) is the STFT representation of the desired signal, x(t),
and Gm(k) is the DFT of gm(t).
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Writing the M STFT representations of the sensors’ signals in a
vector notation, we have

y(rR, k) = g(k)X(rR, k) + v(rR, k) (150)

= x(rR, k) + v(rR, k)

= d(k)X1(rR, k) + v(rR, k),

where

y(rR, k) =
[
Y1(rR, k) Y2(rR, k) · · · YM (rR, k)

]T
,

x(rR, k) =
[
X1(rR, k) X2(rR, k) · · · XM (rR, k)

]T

= X(rR, k)g(k),

g(k) =
[
G1(k) G2(k) · · · GM (k)

]T
,

v(rR, k) =
[
V1(rR, k) V2(rR, k) · · · VM (rR, k)

]T
,
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and

d(k) =

[
1

G2(k)

G1(k)
· · ·

GM (k)

G1(k)

]T
(151)

=
g(k)

G1(k)
.

The correlation matrix of y(rR, k) is

Φy(rR, k) = E
[
y(rR, k)yH (rR, k)

]
(152)

= φX1
(rR, k)d(k)dH(k) +Φv(rR, k),

where φX1
(rR, k) = E

[
|X1(rR, k)|2

]
is the variance of X1(rR, k) and

Φv(rR, k) = E
[
v(rR, k)vH (rR, k)

]
is the correlation matrix of v(f).

Benesty, Cohen, and Chen Multichannel Enhancement: Frequency Domain 102\123



Introduction
Signal Model and Problem Formulation

Linear Filtering
Performance Measures

Optimal Filters
Implementation with the STFT

In the STFT domain, conventional multichannel noise reduction is
performed by applying a complex weight to the output of each sensor,
at time-frequency bin (rR, k), and summing across the aperture (see
Fig. 11):

Z(rR, k) =

M∑

m=1

H∗

m(rR, k)Ym(rR, k) (153)

= hH(rR, k)y(rR, k),

where Z(rR, k) is the estimate of X1(rR, k) and

h(rR, k) =
[
H1(rR, k) H2(rR, k) · · · HM (rR, k)

]T
(154)

is a filter of length M containing all the complex gains applied to the
sensors’ outputs at time-frequency bin (rR, k).
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+

V1(rR, k)

H∗

1 (rR, k)

+

VM (rR, k)

H∗

M (rR, k)

+... ...

X1(rR, k)

XM (rR, k)

Z(rR, k)

Y1(rR, k)

YM (rR, k)

Figure 11: Block diagram of multichannel linear filtering in the STFT domain.
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We can express (153) as a function of the steering vector, i.e.,

Z(rR, k) = hH(rR, k) [d(k)X1(rR, k) + v(rR, k)] (155)

= Xfd(rR, k) + Vrn(rR, k),

where

Xfd(rR, k) = X1(rR, k)hH(rR, k)d(k) (156)

is the filtered desired signal and

Vrn(rR, k) = hH(rR, k)v(rR, k) (157)

is the residual noise.

This procedure is called multichannel signal enhancement in the
STFT domain.
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The two terms on the right-hand side of (155) are incoherent.

Hence, the variance of Z(rR, k) is the sum of two variances:

φZ(rR, k) = hH(rR, k)Φy(rR, k)h(rR, k) (158)

= φXfd
(rR, k) + φVrn

(rR, k),

where

φXfd
(rR, k) = φX1

(rR, k)
∣∣hH(rR, k)d(k)

∣∣2 , (159)

φVrn
(rR, k) = hH(rR, k)Φv(rR, k)h(rR, k). (160)

In a similar way to the frequency-domain input SNR, we define the
narrowband input SNR as

iSNR(rR, k) =
φX1

(rR, k)

φV1
(rR, k)

. (161)
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The broadband input SNR is obtained by summing over all
time-frequency indices the numerator and denominator of
iSNR(rR, k).

We get

iSNR =

∑
r,k φX1

(rR, k)
∑

r,k φV1
(rR, k)

. (162)

Similarly, the broadband output SNR is

oSNR(h) =

∑
r,k φXfd

(rR, k)
∑

r,k φVrn
(rR, k)

(163)

=

∑
r,k φX1

(rR, k)
∣∣hH(rR, k)d(k)

∣∣2
∑

r,k h
H(rR, k)Φv(rR, k)h(rR, k)

,
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the broadband noise reduction and desired-signal reduction factors
are, respectively,

ξn (h) =

∑
r,k φV1

(rR, k)
∑

r,k h
H(rR, k)Φv(rR, k)h(rR, k)

(164)

and

ξd (h) =

∑
r,k φX1

(rR, k)
∑

r,k φX1
(rR, k) |hH(rR, k)d(k)|

2 , (165)

the broadband desired-signal distortion index is

υd (h) =

∑
r,k φX1

(rR, k)
∣∣hH(rR, k)d(k) − 1

∣∣2
∑

r,k φX1
(rR, k)

, (166)
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and the broadband MSE is defined as

J (h) =
∑

r,k

J [h(rR, k)] (167)

=
∑

r,k

[
φX1

(rR, k)
∣∣hH(rR, k)d(k)− 1

∣∣2 +

hH(rR, k)Φv(rR, k)h(rR, k)
]
.

The optimal filters, summarized in Table 1, are employed in the STFT
domain by replacing Φy(f), Φv(f), and d(f) with Φy(rR, k),
Φv(rR, k), and d(k), respectively.
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Example 6

Consider a ULA of M sensors. Suppose that a desired speech
signal, x(t), impinges on the ULA from the direction θx, and that an
interference u(t) impinges on the ULA from the direction θu.

Assume that the interference u(t) is white Gaussian noise, i.e.,
u(t) ∼ N

(
0, σ2

u

)
, uncorrelated with x(t).

In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(
0, σ2

w

)
, that are mutually uncorrelated.

The desired speech signal needs to be recovered from the noisy
received signals, ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.
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Assume that the sampling frequency is 16 kHz, and that the sampling
interval Ts satisfies Ts =

d
c . We have

xm(t) = x1 (t− τx,m) ,

um(t) = u1 (t− τu,m) ,

where

τx,m =
(m− 1)d cos θx

cTs
= (m− 1) cos θx,

τu,m =
(m− 1)d cos θu

cTs
= (m− 1) cos θu.

In the STFT domain, we obtain

x(rR, k) = X1(rR, k)d(k),

u(rR, k) = U1(rR, k)γ∗

U1u
(k),
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where

d(k) =
[
1 e− 2πkτx,2/L e− 2πfτx,3/L · · · e− 2πfτx,M/L

]T
,

γ
∗

U1u
(k) =

[
1 e− 2πkτu,2/L e− 2πfτu,3/L · · · e− 2πfτu,M/L

]T
.

To demonstrate noise reduction, we choose θx = 70◦, θu = 20◦,
σ2
w = 0.1σ2

u, a Hamming window of length L = 512 as the analysis
window, a decimation factor R = L/4 = 128, and Wiener filter:

hW(rR, k) = φX1
(rR, k)

[
φX1

(rR, k)d(k)dH(k) +Φv(rR, k)
]−1

d(k).
(168)
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An estimate for the correlation matrix of v(rR, k) can be obtained by
averaging past cross-spectral power values of the noisy
measurement during speech inactivity:

Φ̂v(rR, k) =
{

αΦ̂v [(r − 1)R, k] + (1 − α)y(rR, k)yH (rR, k), X(rR, k) = 0

Φ̂v [(r − 1)R, k] , X(rR, k) 6= 0
,

(169)

where α (0 < α < 1) denotes a smoothing parameter.

This method requires a voice activity detector (VAD), but there are
also alternative and more efficient methods that are based on
minimum statistics [22], [23].

Finding an estimate for φX1
(rR, k) is a much more challenging

problem [24], [25].
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In this example, for simplicity, we smooth |Y1(rR, k)|2 in both time and
frequency axes and subtract an estimate of the noise, i.e.,

φ̂X1
(rR, k) = max

{
φ̂Y1

(rR, k)− φ̂V1
(rR, k), 0

}
,

where φ̂Y1
(rR, k) is obtained as a two-dimensional convolution

between |Y1(rR, k)|2 and a smoothing window w(rR, k).

Here, the smoothing window is a two-dimensional Hamming window
of size 3× 11, normalized to

∑
r,k w(rR, k) = 1.

Figure 12 shows the spectrogram and waveform of the clean speech
signal received at the first sensor, x1(t).

Figure 13 shows a realization of the observation signal at the first
sensor, y1(t), and the estimated signals, z(t), for different numbers of
sensors, M .
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Figure 12: Speech spectrogram and waveform of a clean speech signal received at
the first sensor, x1(t): “Draw every outer line first, then fill in the interior.”
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Figure 13: Speech spectrograms and waveforms of (a) noisy speech signal received
at the first sensor, y1(t) (iSNR = −5 dB), and the estimated signal, z(t), for (b) M = 1
[oSNR (hW) = 6.64 dB], (c) M = 2 [oSNR (hW) = 8.72 dB], and (d) M = 5
[oSNR (hW) = 13.34 dB].
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Figure 14 shows plots of the broadband gain in SNR, G (hW), the
broadband MSE, J (hW), the broadband noise reduction factor,
ξn (hW), and the broadband desired-signal reduction factor, ξd (hW),
as a function of the broadband input SNR, for different numbers of
sensors, M .

Clearly, as the number of sensors increases, the Wiener filter better
enhances the desired speech signal in terms of higher SNR and
noise reduction, and lower MSE and desired-signal reduction.

Note that more useful algorithms for enhancing noisy speech signals
in the STFT domain are presented in [2], [26], [27].
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Figure 14: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and
(d) desired-signal reduction factor of the Wiener filter for different numbers of sensors,
M : M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 5 (dotted
line with squares), and M = 10 (dash-dot line with triangles).
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