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Introduction

Fixed beamformers do not depend on the statistics of the array data.

Fixed beamformers use a model for the noise field, and can work
pretty well in different scenarios.

However, in very challenging acoustic environments, the performance
of these algorithms, in terms of noise reduction, may be limited.

Therefore, in this talk we present adaptive beamformers, i.e., optimal
linear filters that take into consideration the statistics of the incoming
data.
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Signal Model and Problem Formulation

We consider a plane wave, in the farfield that propagates in an
anechoic acoustic environment at the speed of sound, i.e.,
c = 340 m/s, and impinges on a uniform linear sensor array consisting
of M omnidirectional microphones (see Fig. 1).
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Figure 1: A uniform linear array with M sensors.
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The signal model is given by

y(f) = x(f) + v(f)

= d (f, cos θd)X(f) + v(f), (1)

where y(f) is observation signal vector (of length M ), d (f, cos θd) is
the steering vector associated with the desired signal, X(f),
impinging on the array from the direction θd, and v(f) is the noise
signal vector.

The correlation matrix of y(f) is

Φy(f) = Φx(f) +Φv(f) (2)

= φX(f)d (f, cos θd)d
H (f, cos θd) +Φv(f),

where Φx(f) and Φv(f) are the correlation matrices of x(f) and
v(f), respectively, and φX(f) is the variance of X(f).
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Beamforming or linear filtering [1] consists of applying a
complex-valued linear filter, h(f), of length M to y(f), i.e.,

Z(f) = hH(f)y(f) (3)

= hH(f) [x(f) + v(f)]

= Xfd(f) + Vrn(f),

where Z(f) is, in general, the estimate of the desired signal, and
Xfd(f) and Vrn(f) are the filtered desired signal and residual noise,
respectively.

Assuming that Xfd(f) and Vrn(f) are uncorrelated, the variance of
Z(f) is

φZ(f) = φXfd
(f) + φVrn

(f) (4)

= φX(f)
∣∣hH(f)d (f, cos θd)

∣∣2 + hH(f)Φv(f)h(f).
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Our objective is to design and study beamformers that do depend on
the statistics of the signals as well as the knowledge of the direction
of the desired signal.

These so-called adaptive beamformers can usually adapt pretty
quickly to changes in the environments in which they operate and do
not rely on some model of the noise field such as in fixed
beamformers.
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Performance Measures
Signal-to-Noise Ratio

The narrowband and broadband input SNRs are, respectively,

iSNR(f) =
φX(f)

φV1
(f)

(5)

and

iSNR =

∫
f
φX(f)df

∫
f
φV1

(f)df
, (6)

where φV1
(f) is the variance of V1(f), which is the first element of the

vector v(f).
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From (4), we deduce the narrowband output SNR:

oSNR [h(f)] =
φXfd

(f)

φVrn
(f)

(7)

=
φX(f)

∣∣hH(f)d (f, cos θd)
∣∣2

hH(f)Φv(f)h(f)

and the broadband output SNR:

oSNR(h) =

∫
f
φX(f)

∣∣hH(f)d (f, cos θd)
∣∣2 df

∫
f
hH(f)Φv(f)h(f)df

. (8)
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It follows from the definitions of the input and output SNRs that the
narrowband and broadband array gains are, respectively,

G [h(f)] =
oSNR [h(f)]

iSNR(f)
, (9)

G (h) =
oSNR (h)

iSNR
. (10)

Adaptive beamformers should be designed in such a way that
G [h(f)] > 1 and G (h) > 1.
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Noise Rejection Factor

Other useful definitions to quantify noise reduction are the
narrowband noise reduction factor:

ξn [h(f)] =
φV1

(f)

hH(f)Φv(f)h(f)
(11)

and the broadband noise reduction factor:

ξn (h) =

∫
f
φV1

(f)df
∫
f
hH(f)Φv(f)h(f)df

. (12)

In the distortionless case, i.e.,

hH(f)d (f, cos θd) = 1, (13)

the noise reduction factor coincides with the array gain for both the
narrowband and broadband measures.
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Desired-Signal Reduction Factor

In order to quantify distortion of the desired signal due to the
beamforming operation, we define the narrowband desired-signal
reduction factor:

ξd [h(f)] =
1

|hH(f)d (f, cos θd)|
2 (14)

and the broadband desired-signal reduction factor:

ξd (h) =

∫
f
φX(f)df

∫
f
φX(f) |hH(f)d (f, cos θd)|

2
df

. (15)

In the distortionless case, we have ξd = 1, but when distortion occurs,
we have ξd > 1.
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Desired-Signal Distortion Index

An alternative measure to the desired-signal reduction factor is the
desired-signal distortion index.

We have the following definitions:

the narrowband desired-signal distortion index,

υd [h(f)] =
∣∣hH(f)d (f, cos θd)− 1

∣∣2 (16)

and the broadband desired-signal distortion index,

υd (h) =

∫
f
φX(f)

∣∣hH(f)d (f, cos θd)− 1
∣∣2 df

∫
f
φX(f)df

. (17)
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Mean-Squared Error

The error signal between the estimated and desired-signals at the
frequency f is given by

E (f) = Z(f)−X(f) (18)

= Xfd(f) + Vrn(f)−X(f)

= Ed (f) + En (f) ,

where

Ed (f) =
[
hH(f)d (f, cos θd)− 1

]
X(f) (19)

is the desired-signal distortion due to the beamformer and

En (f) = hH(f)v(f) (20)

represents the residual noise.
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Assuming that Ed (f) and En (f) are incoherent, the narrowband MSE
can be expressed as

J [h(f)] = E
[
|E (f)|2

]
(21)

= E
[
|Ed (f)|

2
]
+ E

[
|En (f)|

2
]

= Jd [h(f)] + Jn [h(f)]

= φX(f) + hH(f)Φy(f)h(f)− φX(f)hH(f)d (f, cos θd)−

φX(f)dH (f, cos θd)h(f),

where

Jd [h(f)] = φX(f)
∣∣hH(f)d (f, cos θd)− 1

∣∣2 (22)

= φX(f)υd [h(f)]
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and

Jn [h(f)] = hH(f)Φv(f)h(f) (23)

=
φV1

(f)

ξn [h(f)]
.

We have the following classical relationships:

Jd [h(f)]

Jn [h(f)]
= iSNR(f)× ξn [h(f)]× υd [h(f)] (24)

= oSNR [h(f)]× ξd [h(f)]× υd [h(f)] .
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Adaptive Beamformers
Wiener

In this section, we show how to design different kinds of adaptive
beamformers.

For each one of them, we give several equivalent formulations,
depending on what (second-order) statistics we want or need to
estimate.

The Wiener beamformer is found by minimizing the narrowband MSE,
J [h(f)] [eq. (21)].

We easily obtain

hW (f, cos θd) = φX(f)Φ−1
y (f)d (f, cos θd) . (25)
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In the Wiener beamformer, we need to estimate φX(f) and Φy(f).

The latter quantity is easy to estimate from the observations, but the
former is not.

Let

Γy(f) =
Φy(f)

φY1
(f)

(26)

be the pseudo-coherence matrix of the observations, where φY1
(f) is

the variance of Y1(f), we can rewrite (25) as

hW (f, cos θd) =
iSNR(f)

1 + iSNR(f)
Γ−1
y (f)d (f, cos θd) (27)

= HW(f)Γ−1
y (f)d (f, cos θd) ,
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where

HW(f) =
iSNR(f)

1 + iSNR(f)
(28)

is the single-channel Wiener gain.

Now, instead of estimating φX(f) as in (25), we need to estimate the
narrowband input SNR, iSNR(f) or, equivalently, HW(f).

The Wiener filter can also be expressed as a function of the statistics
of the observation and noise signals, i.e.,

hW (f, cos θd) =
[
IM −Φ−1

y (f)Φv(f)
]
ii, (29)

where ii is the first column of IM .
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Determining the inverse of Φy(f) from (2) with the Woodbury’s
identity, we get

Φ−1
y (f) = Φ−1

v (f)−
Φ−1

v (f)d (f, cos θd)d
H (f, cos θd)Φ

−1
v (f)

φ−1
X (f) + dH (f, cos θd)Φ

−1
v (f)d (f, cos θd)

. (30)

Substituting (30) into (25) gives

hW (f, cos θd) =
φX(f)Φ−1

v (f)d (f, cos θd)

1 + φX(f)dH (f, cos θd)Φ
−1
v (f)d (f, cos θd)

=
Φ−1

v (f)Φy(f)− IM

1−M + tr
[
Φ−1

v (f)Φy(f)
] ii. (31)

In the second equation of (31), hW (f, cos θd) depends on the
statistics of the observation and noise signals and the matrix Φv(f) is
inverted, while in the formulaton given in (29), hW (f, cos θd) depends
on the same statistics but the matrix Φy(f) is inverted.
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The Wiener beamformer maximizes the narrowband array gain but
does not necessarily maximize the broadband array gain.

Distortion is obviously expected and is increased when the input SNR
is decreased.

However, if we increase the number of sensors, we decrease
distortion.
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Example 1

Consider a ULA of M sensors.

Suppose that a desired signal impinges on the ULA from the direction
θd, and that two statistically independent interferences impinge on the
ULA from directions θ1 and θ2.

Assume that the desired signal is a harmonic pulse of T samples:

x(t) =

{
A sin (2πf0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed, but unknown, amplitude A and frequency f0, and random
phase φ, uniformly distributed on the interval from 0 to 2π.

Assume that the interferences u1(t) and u2(t) are IID white Gaussian
noise, i.e., u1(t), u2(t) ∼ N

(
0, σ2

u

)
, uncorrelated with x(t).
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In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(
0, σ2

w

)
, that are mutually uncorrelated.

The noisy received signals are given by
ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.

For simplicity, we choose a sampling interval Ts that satisfies
Ts = δ/c.

The variance of X(f) is given by

φX(f) =
A2

4
D2

T [π (f + f0)] +
A2

4
D2

T [π (f − f0)] ,
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where

DT (x) =
sin (Tx)

sin (x)
.

The correlation matrices of x(f) and v(f) are given by

Φx(f) = φX(f)d (f, cos θd)d
H (f, cos θd) ,

Φv(f) = Tσ2
ud (f, cos θ1)d

H (f, cos θ1)+

Tσ2
ud (f, cos θ2)d

H (f, cos θ2) + Tσ2
wIM .
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The narrowband and broadband input SNRs are, respectively,

iSNR(f) =
φX(f)

φV1
(f)

=
A2

4T (2σ2
u + σ2

w)
D2

T [π (f + f0)] +

A2

4T (2σ2
u + σ2

w)
D2

T [π (f − f0)]

and

iSNR =

∫
f
φX(f)df

∫
f
φV1

(f)df
=

∑
t E

[
|x1(t)|

2
]

∑
t E

[
|v1(t)|

2
] =

A2

2 (2σ2
u + σ2

w)
,

where we have used Parseval’s identity.
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The Wiener beamformer, hW (f, cos θd), is obtained from (29).

To demonstrate the performance of the Wiener beamformer, we
choose A = 0.5, f0 = 0.1c/δ, T = 500, θd = 70◦, θ1 = 30◦, θ2 = 50◦,
and σ2

w = 0.01σ2
u.

Figure 2 shows plots of the broadband gain in SNR, G (hW), the
broadband noise reduction factor, ξn (hW), the broadband
desired-signal reduction factor, ξd (hW), and the broadband
desired-signal distortion index, υd (hW), as a function of the
broadband input SNR, for different numbers of sensors, M .

For a given input SNR, as the number of sensors increases, the gain
in SNR and the noise reduction factor increase, while the
desired-signal reduction factor and the desired-signal distortion index
decrease.
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Figure 2: The broadband (a) gain in SNR, (b) noise reduction factor, (c) desired-signal
reduction factor, and (d) desired-signal distortion index of the Wiener beamformer for:
M = 10 (solid line with circles), M = 20 (dashed line with asterisks), M = 30 (dotted
line with squares), and M = 40 (dash-dot line with triangles).
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Figure 3 shows beampatterns, |B [hW (f, cos θd) , cos θ]|, for f = f0
and different numbers of sensors, M . The main beam is in the
direction of the desired signal, i.e., θd, and there are nulls in the
directions of the interferences, i.e., θ1 and θ2.

As the number of sensors increases, the width of the main beam
decreases, and the nulls in the directions of the interferences become
deeper.
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Figure 3: Beampatterns of the Wiener beamformer for f = f0 and different numbers
of sensors, M : (a) M = 10, (b) M = 20, (c) M = 30, and (d) M = 40.
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MVDR

The MVDR beamformer proposed by Capon [2], [3] is obtained by
minimizing the narrowband MSE of the residual noise, Jr [h(f)],
subject to the distortionless constraint, i.e.,

min
h(f)

hH(f)Φv(f)h(f) subject to hH(f)d (f, cos θd) = 1. (32)

The solution to this optimization problem is

hMVDR (f, cos θd) =
Φ−1

v (f)d (f, cos θd)

dH (f, cos θd)Φ
−1
v (f)d (f, cos θd)

, (33)

which depends on the statistics of the noise only.
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Using the Woodbury’s identity, it is easy to show that the MVDR
beamformer is also

hMVDR (f, cos θd) =
Φ−1

y (f)d (f, cos θd)

dH (f, cos θd)Φ
−1
y (f)d (f, cos θd)

(34)

=
Γ−1
y (f)d (f, cos θd)

dH (f, cos θd)Γ
−1
y (f)d (f, cos θd)

.

This formulation is really important and practical, since it depends on
the statistics of the observations only, which can be easily estimated
in practice.

It is clear that the MVDR beamformer maximizes the narrowband
array gain, however, for the broadband array gain, we always have

1 ≤ G (hMVDR) ≤ G (hW) . (35)
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From a theoretical point of view, it is also clear that we have

υd [hMVDR (f, cos θd)] = 0, (36)

υd (hMVDR) = 0. (37)

However, in practice, this is not true in general because of the
reverberation, which is not taken into account in our model.
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Example 2

Returning to Example 1, we now employ the MVDR beamformer,
hMVDR (f, cos θd), given in (34).

Figure 4 shows plots of the broadband gain in SNR, G (hMVDR), the
broadband noise reduction factor, ξn (hMVDR), the broadband
desired-signal reduction factor, ξd (hMVDR), and the broadband MSE,
J (hMVDR), as a function of the broadband input SNR, for different
numbers of sensors, M .

For a given broadband input SNR, as the number of sensors
increases, the broadband gain in SNR and the broadband noise
reduction factor increase, while the broadband MSE decreases.
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Figure 4: The broadband (a) gain in SNR, (b) noise reduction factor, (c) desired-signal
reduction factor, and (d) MSE of the MVDR beamformer for different numbers of
sensors, M : M = 10 (solid line with circles), M = 20 (dashed line with asterisks),
M = 30 (dotted line with squares), and M = 40 (dash-dot line with triangles).
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Figure 5 shows beampatterns, |B [hMVDR (f, cos θd) , cos θ]|, for f = f0
and different numbers of sensors, M .

The main beam is in the direction of the desired signal, i.e., θd, and
there are nulls in the directions of the interferences, i.e., θ1 and θ2.

In particular, |B [hMVDR (f, cos θd) , cos θ]| is 1 for θ = θd.

As the number of sensors increases, the width of the main beam
decreases, and the nulls in the directions of the interferences become
deeper.
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Figure 5: Beampatterns of the MVDR beamformer for f = f0 and different numbers of
sensors, M : (a) M = 10, (b) M = 20, (c) M = 30, and (d) M = 40.
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Tradeoff

In order to better compromise between noise reduction and signal
distortion, we constrain the noise reduction factor to be equal to a
positive value that is greater than 1, i.e.,

min
h(f)

Jd [h(f)] subject to Jn [h(f)] = ℵφV1
(f), (38)

where 0 < ℵ < 1 to insure that we get some noise reduction.

By using a Lagrange multiplier, µ > 0, we get the tradeoff
beamformer:

hT,µ (f, cos θd) = φX(f) [Φx(f) + µΦv(f)]
−1

d (f, cos θd) (39)

=
φX(f)Φ−1

v (f)d (f, cos θd)

µ+ φX(f)dH (f, cos θd)Φ
−1
v (f)d (f, cos θd)

=
Φ−1

v (f)Φy(f)− IM

µ−M + tr
[
Φ−1

v (f)Φy(f)
] ii.
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We can see that for

µ = 1, hT,1 (f, cos θd) = hW (f, cos θd), which is the Wiener
beamformer;

µ = 0, hT,0 (f, cos θd) = hMVDR (f, cos θd), which is the MVDR
beamformer;

µ > 1, results in a beamformer with low residual noise at the
expense of high desired-signal distortion (as compared to
Wiener); and

µ < 1, results in a beamformer with high residual noise and low
desired-signal distortion (as compared to Wiener).
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A more interesting way to express the tradeoff beamformer is

hT,µ (f, cos θd) =
[
(1− µ)d (f, cos θd)d

H (f, cos θd) + µ
1 + iSNR(f)

iSNR(f)
Γy(f)

]
−1

×

d (f, cos θd) , (40)

or, equivalently, with the help of the Woodbury’s identity as

hT,µ (f, cos θd) =
iSNR(f)

1 + iSNR(f)
×

Γ−1
y (f)d (f, cos θd)

µ+ (1 − µ)
iSNR(f)

1 + iSNR(f)
dH (f, cos θd)Γ

−1
y (f)d (f, cos θd)

. (41)
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The previous expression depends only on the estimation of the
statistics of the observations as well as the estimation of the
narrowband input SNR.

We can simplify (41) by writing it as a function of HW(f), i.e.,

hT,µ (f, cos θd) =
HW(f)Γ−1

y (f)d (f, cos θd)

µ+ (1− µ)HW(f)dH (f, cos θd)Γ
−1
y (f)d (f, cos θd)

.

(42)

Obviously, the tradeoff beamformer also maximizes the narrowband
array gain, ∀µ ≥ 0.
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However, for the broadband array gain, we always have for µ ≥ 1,

1 ≤ G (hMVDR) ≤ G (hW) ≤ G (hT,µ) , (43)

and for 0 ≤ µ ≤ 1,

1 ≤ G (hMVDR) ≤ G (hT,µ) ≤ G (hW) . (44)

Distortion of the desired signal, on the other hand, depends quite a
lot on the values of µ.

However, the closer is the value of µ to 0, the less distorted is the
desired signal.
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Example 3

Returning to Example 1, we now employ the tradeoff beamformer,
hT,µ (f, cos θd), given in (39).

Figure 6 shows plots of the broadband gain in SNR, G (hT,µ), the
broadband noise reduction factor, ξn (hT,µ), the broadband
desired-signal reduction factor, ξd (hT,µ), and the broadband
desired-signal distortion index, υd (hT,µ), as a function of the
broadband input SNR, for M = 30 and several values of µ.

For a given broadband input SNR, the higher is the value of µ, the
higher are the broadband gain in SNR and the broadband noise
reduction factor, but at the expense of higher broadband
desired-signal reduction factor and higher broadband desired-signal
distortion index.

Benesty, Cohen, and Chen Adaptive Beamforming 42\84



Introduction
Signal Model and Problem Formulation

Performance Measures
Adaptive Beamformers

SNR Estimation
DOA Estimation

Wiener
MVDR
Tradeoff
Maximum Array Gain
LCMV

−5 0 5 10 15
25

30

35

40

45

−5 0 5 10 15
25

30

35

40

45

−5 0 5 10 15
0

0.005

0.01

0.015

0.02

−5 0 5 10 15
−55

−50

−45

−40

−35

−30

−25

iSNR (dB) iSNR (dB)

iSNR (dB) iSNR (dB)

(a) (b)

(c) (d)

G
( h

T
,µ

) (d
B

)

ξ
n

( h
T
,µ

) (d
B

)

ξ
d

( h
T
,µ

) (d
B

)

υ
d

( h
T
,µ

) (d
B

)

Figure 6: The broadband (a) gain in SNR, (b) noise reduction factor, (c) desired-signal
reduction factor, and (d) desired-signal distortion index of the tradeoff beamformer for
several values of µ: µ = 0.5 (solid line with circles), µ = 1 (dashed line with asterisks),
µ = 2 (dotted line with squares), and µ = 5 (dash-dot line with triangles).
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Figure 7 shows beampatterns, |B [hT,µ (f, cos θd) , cos θ]|, for f = f0,
M = 30 and several values of µ.

The main beam is in the direction of the desired signal, i.e., θd, and
there are nulls in the directions of the interferences, i.e., θ1 and θ2.
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Figure 7: Beampatterns of the tradeoff beamformer for f = f0, M = 30 and several
values of µ: (a) µ = 0.5, (b) µ = 1, (c) µ = 2, and (d) µ = 5.
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Maximum Array Gain

we can express the narrowband array gain as

G [h(f)] =
φV1

(f)hH(f)d (f, cos θd)d
H (f, cos θd)h(f)

hH(f)Φv(f)h(f)
. (45)

The maximum array gain beamformer, hmax (f, cos θd), is obtained by
maximizing the array gain as given above.

In (45), we recognize the generalized Rayleigh quotient [4].

It is well known that this quotient is maximized with the maximum
eigenvector of the matrix φV1

(f)Φ−1
v (f)d (f, cos θd)d

H (f, cos θd).

Let us denote by λmax (f, cos θd) the maximum eigenvalue
corresponding to this maximum eigenvector.
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Since the rank of the mentioned matrix is equal to 1, we have

λmax (f, cos θd) = tr
[
φV1

(f)Φ−1
v (f)d (f, cos θd)d

H (f, cos θd)
]

(46)

= φV1
(f)dH (f, cos θd)Φ

−1
v (f)d (f, cos θd) .

As a result,

G [hmax (f, cos θd)] = λmax (f, cos θd) (47)

= Gmax (f, cos θd) ,

which corresponds to the maximum possible narrowband array gain.

Obviously, we also have

hmax (f, cos θd) = ς(f)Γ−1
y (f)d (f, cos θd) , (48)

where ς(f) 6= 0 is an arbitrary frequency-dependent complex number.

We can observe that all beamformers derived so far are equivalent up
to a scaling factor.
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LCMV

Assume that we have N interferences, with N < M , impinging on the
array from the directions θ1 6= θ2 6= · · · 6= θN 6= θd.

We would like to place nulls in the directions θn, n = 1, 2, . . . , N , with
a beamformer h(f), and, meanwhile, recover the desired source
coming from the direction θd.

Combining all these constraints together, we get the constraint:

CH (f, θd, θ1:N)h(f) = ic, (49)

where

C (f, θd, θ1:N ) =
[
d (f, θd) d (f, θ1) · · · d (f, θN )

]
(50)

is a matrix of size M × (N + 1) whose columns are linearly
independent and ic =

[
1 0 · · · 0

]T
is a vector of length N + 1.
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The most convenient way to solve this problem is by minimizing the
narrowband MSE of the residual noise, Jr [h(f)], subject to (49), i.e.,

min
h(f)

hH(f)Φv(f)h(f) subject to CH (f, θd, θ1:N)h(f) = ic. (51)

The solution to this optimization problem gives the well-known LCMV
beamformer [5], [6]:

hLCMV (f, cos θd) = Φ−1
v (f)C (f, θd, θ1:N )×

[
CH (f, θd, θ1:N )Φ−1

v (f)C (f, θd, θ1:N)
]−1

ic,
(52)

which depends on the statistics of the noise only.
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It can be shown that a more interesting formulation of the LCMV
beamformer is

hLCMV (f, cos θd) = Γ−1
y (f)C (f, θd, θ1:N )×
[
CH (f, θd, θ1:N)Γ−1

y (f)C (f, θd, θ1:N )
]−1

ic.

(53)

The previous expression depends on the statistics of the
observations only, which should be easy to estimate.
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Example 4

Returning to Example 1, we now employ the LCMV beamformer,
hLCMV (f, cos θd), given in (53).

Figure 8 shows plots of the broadband gain in SNR, G (hLCMV), the
broadband noise reduction factor, ξn (hLCMV), the broadband
desired-signal reduction factor, ξd (hLCMV), and the broadband MSE,
J (hLCMV), as a function of the broadband input SNR, for different
numbers of sensors, M .

For a given broadband input SNR, as the number of sensors
increases, the broadband gain in SNR and the broadband noise
reduction factor increase, while the broadband MSE decreases.
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Figure 8: The broadband (a) gain in SNR, (b) noise reduction factor, (c) desired-signal
reduction factor, and (d) MSE of the LCMV beamformer for different numbers of
sensors, M : M = 10 (solid line with circles), M = 20 (dashed line with asterisks),
M = 30 (dotted line with squares), and M = 40 (dash-dot line with triangles).
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Figure 9 shows beampatterns, |B [hLCMV (f, cos θd) , cos θ]|, for f = f0
and different numbers of sensors, M .

The main beam is in the direction of the desired signal, i.e., θd, and
there are nulls in the directions of the interferences, i.e., θ1 and θ2.

In particular, |B [hLCMV (f, cos θd) , cos θ]| is 1 for θ = θd, and is
identically zero for θ = θ1 and θ = θ2.

As the number of sensors increases, the width of the main beam
decreases.
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Figure 9: Beampatterns of the LCMV beamformer for f = f0 and different numbers of
sensors, M : (a) M = 10, (b) M = 20, (c) M = 30, and (d) M = 40.
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Table 1 summarizes all the optimal adaptive beamformers studied in
this section.

Table 1: Adaptive beamformers.

Wiener: hW (f, cos θd) = HW(f)Γ−1
y (f)d (f, cos θd)

MVDR: hMVDR (f, cos θd) =
Γ
−1
y (f)d (f, cos θd)

dH (f, cos θd)Γ
−1
y (f)d (f, cos θd)

Tradeoff: hT,µ (f, cos θd) =

HW(f)Γ−1
y (f)d (f, cos θd)

µ+ (1− µ)HW(f)dH (f, cos θd)Γ
−1
y (f)d (f, cos θd)

Max. Array Gain: hmax (f, cos θd) = ς(f)Γ−1
y (f)d (f, cos θd) , ς(f) 6= 0

LCMV: hLCMV (f, cos θd) = Γ
−1
y (f)C (f, θd, θ1:N )×

[
CH (f, θd, θ1:N )Γ−1

y (f)C (f, θd, θ1:N )
]
−1

ic
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From Table 1, we observe that all the beamformers depend on the
statistics of the observations, i.e., Γy(f), while some of them depend
also on the narrowband input SNR, i.e., iSNR(f), or, equivalently, on
HW(f).

In practice, while it is easy to get an estimate for Γy(f), it is not for
iSNR(f).

In this section, we show one possible way to estimate this SNR.

In fact, it is much more natural to estimate HW(f) as explained below.
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We can express the pseudo-coherence matrix of the observations as

Γy(f) =
iSNR(f)

1 + iSNR(f)
d (f, cos θd)d

H (f, cos θd) +
1

1 + iSNR(f)
Γv(f)

(54)

= HW(f)d (f, cos θd)d
H (f, cos θd) + [1−HW(f)]Γv(f),

where

Γv(f) =
Φv(f)

φV1
(f)

. (55)

Let us assume that we are in the presence of the spherically isotropic
noise.

In this case, Γv(f) coincides with Γ0,π(f).

Since y(f) is observable, it is easy to estimate Γy(f).
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We denote this estimate by Γ̂y(f).

By following the approaches developed in [7], [8], [9], [10], we can
write the components of the matrix Γ̂y(f) as

ℜ

{[
Γ̂y(f)

]
ij

}
= ĤW(f)ℜ

[
Di (f, cos θd)D

∗

j (f, cos θd)
]
+

[
1− ĤW(f)

]
[Γ0,π(f)]ij , (56)

ℑ

{[
Γ̂y(f)

]
ij

}
= ĤW(f)ℑ

[
Di (f, cos θd)D

∗

j (f, cos θd)
]
, (57)

for i 6= j, i, j = 1, 2, . . . ,M , where ℜ[·] and ℑ[·] are the real part and
imaginary part operators, respectively, ĤW(f) is the estimate of
HW(f), and Dm (f, cos θd) is the mth element of d (f, cos θd).
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We deduce from the previous expressions that

ĤW(f) =

ℜ

{[
Γ̂y(f)

]
ij

}
− [Γ0,π(f)]ij

ℜ
[
Di (f, cos θd)D∗

j (f, cos θd)
]
− [Γ0,π(f)]ij

, i 6= j, (58)

ĤW(f) =

ℑ

{[
Γ̂y(f)

]
ij

}

ℑ
[
Di (f, cos θd)D∗

j (f, cos θd)
] , i 6= j. (59)
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To get a much more reliable estimate, it is better to average (58) and
(59) over all possible sensor combinations [7], [8], [9], [10], resulting
in the estimator:

ĤW(f) =

1

M(M − 1)

M−1∑

i=1

M∑

j=i+1

ℜ

{[
Γ̂y(f)

]
ij

}
− [Γ0,π(f)]ij

ℜ
[
Di (f, cos θd)D∗

j (f, cos θd)
]
− [Γ0,π(f)]ij

+

1

M(M − 1)

M−1∑

i=1

M∑

j=i+1

ℑ

{[
Γ̂y(f)

]
ij

}

ℑ
[
Di (f, cos θd)D∗

j (f, cos θd)
] . (60)

Obviously, in practice, it is much better to estimate HW(f) than
iSNR(f) since the former is bounded, i.e., 0 ≤ HW(f) ≤ 1, while the
latter is not.

Benesty, Cohen, and Chen Adaptive Beamforming 60\84



Introduction
Signal Model and Problem Formulation

Performance Measures
Adaptive Beamformers

SNR Estimation
DOA Estimation

If the estimate of the Wiener gain is greater than 1, then we should
force it to 1, and if it is negative, we should put it to 0.

It is possible to estimate the single-channel Wiener gain directly from
(54), in a much simpler way, by pre- and post-multiplying both sides of
(54) by dH (f, cos θd) and d (f, cos θd), respectively, and by replacing
Γy(f) and Γv(f) with Γ̂y(f) and Γ0,π(f), respectively.

We easily obtain

ĤW(f) =
dH (f, cos θd)

[
Γ̂y(f)− Γ0,π(f)

]
d (f, cos θd)

M2 − dH (f, cos θd)Γ0,π(f)d (f, cos θd)
. (61)
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Example 5

Consider a ULA of M sensors, and a desired signal that impinges on
the ULA from the direction θd = 70◦.

Assume that the desired signal is a harmonic pulse of T samples:

x(t) =

{
A sin (2πf0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed, but unknown, amplitude A and frequency f0, and random
phase φ, uniformly distributed on the interval from 0 to 2π.

Assume that the interference um(t) is a diffuse noise uncorrelated
with x(t).

In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(
0, σ2

w

)
, that are mutually uncorrelated.
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The noisy received signals are given by
ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.

The pseudo-coherence matrix of the noise can be written as

Γv(f) = (1− α)Γ0,π(f) + αIM , (62)

where α (0 ≤ α ≤ 1) is related to the ratio between the powers of the
thermal and diffuse noises.

Figures 10 and 11 show plots of the estimators ĤW(f), given by (60)
and (61), respectively, as a function of the narrowband input SNR for
several values of α and different numbers of sensors, M .
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The theoretical plot is indicated by thick solid line, and the
pseudo-coherence matrix of the observations Γy(f) is obtained by

Γy(f) =
iSNR(f)

1 + iSNR(f)
d (f, cos θd)d

H (f, cos θd)+

(1− α)Γ0,π(f) + αIM
1 + iSNR(f)

. (63)

As the number of sensors is larger and as the value of α is smaller,
the estimators (60) and (61) are closer to the theoretical values.

Generally, the estimator (61) produces better results than (60).
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Ĥ
W
(f

)
(d

B
)

Ĥ
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Figure 10: The estimator ĤW(f), given by (60) for: (a) α = 0.001, (b) α = 0.005, (c)
α = 0.01, and (d) α = 0.02. Each figure shows the theoretical plot (thick solid line),
and estimates for M = 2 (solid line with circles), M = 5 (dashed line with asterisks),
M = 10 (dotted line with squares), and M = 20 (dash-dot line with triangles).
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Figure 11: The estimator ĤW(f), given by (61) for: (a) α = 0.001, (b) α = 0.005, (c)
α = 0.01, and (d) α = 0.02. Each figure shows the theoretical plot (thick solid line),
and estimates for M = 2 (solid line with circles), M = 5 (dashed line with asterisks),
M = 10 (dotted line with squares), and M = 20 (dash-dot line with triangles).
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Now we set α to 0.001, and estimate the pseudo-coherence matrix of
the observations using K random snapshots:

Φ̂y(f) =
1

K

K∑

k=1

yk(f)y
H
k (f), (64)

Γ̂y(f) =
Φ̂y(f)

φ̂Y1
(f)

, (65)

where yk(f) is a random snapshot of y(f).
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Figures 12 and 13 show plots of the estimators ĤW(f), given by (60)
and (61), respectively, as a function of the narrowband input SNR for
different numbers of snapshots, K, and different numbers of sensors,
M .

The theoretical plot is indicated by thick solid line.

As the number of sensors is larger or as the number of snapshots is
larger, the estimators (60) and (61) are closer to the theoretical
values.

Generally, the estimator (61) produces better results than (60).
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Figure 12: The estimator ĤW(f), given by (60) for: (a) K = 103, (b) K = 104, (c)
K = 105, and (d) K = 106. Each figure shows the theoretical plot (thick solid line), and
estimates for M = 2 (solid line with circles), M = 5 (dashed line with asterisks),
M = 10 (dotted line with squares), and M = 20 (dash-dot line with triangles).
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Figure 13: The estimator ĤW(f), given by (61) for: (a) K = 103, (b) K = 104, (c)
K = 105, and (d) K = 106. Each figure shows the theoretical plot (thick solid line), and
estimates for M = 2 (solid line with circles), M = 5 (dashed line with asterisks),
M = 10 (dotted line with squares), and M = 20 (dash-dot line with triangles).
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DOA Estimation

In practice, the direction-of-arrival (DOA) of the desired signal, i.e., θd,
may not always be known.

Therefore, it is of great interest to be able to estimate this angle.

Obviously, the literature on this subject is extremely rich [11] and
many different approaches can be derived depending on several
factors.

In this section, we propose a method that naturally flows from the
perspective developed above.
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Let us assume that an estimate of the pseudo-coherence matrix of
the observations, Γy(f), is

Γ̂y(f) =
Φ̂y(f)

φ̂Y1
(f)

(66)

=
iSNR(f)

1 + iSNR(f)
d (f, cos θd)d

H (f, cos θd) +
1

1 + iSNR(f)
Γ0,π(f),

where we explicitly assume that Γ0,π(f) is an estimate of Γv(f).

The pseudo-coherence matrix corresponding to a source signal
coming from the direction θ may be written as

Γx (f, cos θ) = d (f, cos θ)dH (f, cos θ) , (67)

which is a rank-1 matrix.
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Using the joint diagonalization technique [4], the two matrices Γ̂y(f)
and Γ0,π(f) can be decomposed as

TH(f)Γ̂y(f)T(f) = Λ(f), (68)

TH(f)Γ0,π(f)T(f) = IM , (69)

where

T(f) =
[
t1(f) t2(f) · · · tM (f)

]
(70)

is a full-rank square matrix and

Λ(f) = diag [λ1(f), λ2(f), . . . , λM (f)] (71)

is a diagonal matrix with λ1(f) ≥ λ2(f) ≥ · · · ≥ λM (f) > 0.
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For θ = θd, we have

TH(f)Γ̂y(f)T(f) =
iSNR(f)

1 + iSNR(f)
TH(f)Γx (f, cos θd)T(f)+

1

1 + iSNR(f)
IM , (72)

where TH(f)Γx (f, cos θd)T(f) is a diagonal matrix whose first
diagonal element is

λx,1(f) =
[1 + iSNR(f)]λ1(f)− 1

iSNR(f)
> 0 (73)

and the other diagonal elements are zero.
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However, for θ 6= θd, the matrix TH(f)Γx (f, cos θ)T(f) is no longer
diagonal but its rank is still equal to 1.

Consequently, we can take advantage of this property to estimate the
DOA.

Indeed, it is easy to observe that

∣∣tHi (f)d (f, cos θd)
∣∣2 = 0, i = 2, 3, . . . ,M (74)

but
∣∣tHi (f)d (f, cos θ)

∣∣2 > 0, i = 2, 3, . . . ,M, θ 6= θd. (75)
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As a result, the previous equations may be combined and used as a
good criterion for the estimation of θd, i.e.,

θ̂d = argmin
θ

M∑

i=2

∣∣tHi (f)d (f, cos θ)
∣∣2 . (76)

The previous expression corresponds to a narrowband estimation of
the desired angle.

A more reliable estimator can be obtained by integrating the criterion
over a range of frequencies, i.e.,

θ̂d = argmin
θ

∫ f2

f1

M∑

i=2

∣∣tHi (f)d (f, cos θ)
∣∣2 df, (77)

which corresponds to a broadband estimation of θd.
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This approach is a generalization of the MUSIC (multiple signal
classification) algorithm [12], [13], which was originally developed for
spatially white noise, to the spherically isotropic noise field.

Obviously, this approach works for more than one desired angle, but
less than M desired angles.

A byproduct of this method is that the input SNR can be easily
estimated. Indeed, from (72), we deduce that

tHi (f)Γ̂y(f)ti(f) =
1

1 + iSNR(f)
, i = 2, 3, . . . ,M. (78)

As a result, an estimate of the input SNR is

îSNR(f) =
1

M − 1

M∑

i=2

1

tHi (f)Γ̂y(f)ti(f)
− 1. (79)
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Example 6

Returning to Example 5, we set the narrowband input SNR to
iSNR(f) = −10 dB, and compute Γy(f) using (63).

We obtain T(f) using (68) and (69), and calculate the following
function:

R(f, θ) =

M∑

i=2

∣∣tHi (f)d (f, cos θ)
∣∣2 . (80)

According to (76), the minimum of R(f, θ) is obtained for θ = θ̂d.
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Figure 14 shows plots of R(f, θ) as a function of θ for several values
of α and different numbers of sensors, M .

The value of θd is better estimated for smaller values of α and larger
number of sensors.

As the value of α is smaller, θ̂d can be obtained using a larger number
of sensors with a better accuracy than that obtained with less
sensors.
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Figure 14: The function R(f, θ), given by (80) for several values of α and M : (a)
α = 10−5, (b) α = 10−10, (c) α = 10−15, and (d) α = 10−20 . Each figure shows plots
for M = 3 (solid line with circles), M = 6 (dashed line with asterisks), M = 9 (dotted
line with squares), and M = 12 (dash-dot line with triangles).
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Now we set α to 10−20, and estimate the pseudo-coherence matrix of
the observations using (64) and (65) with K random snapshots.

Figure 15 shows plots of R(f, θ) as a function of θ for different
numbers of snapshots, K, and different numbers of sensors, M .

For a small number of snapshots, a good estimate of θd requires a
larger number of sensors.

As the number of snapshots is larger, we can estimate θd using a
smaller number of sensors, but still a better estimate is obtained
using a larger number of sensors.
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Figure 15: The function R(f, θ), given by (80) for different K and M values: (a)
K = 30, (b) K = 50, (c) K = 300, and (d) K = 1000. Each figure shows plots for
M = 3 (solid line with circles), M = 6 (dashed line with asterisks), M = 9 (dotted line
with squares), and M = 12 (dash-dot line with triangles).
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