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Introduction

We study the signal enhancement problem in the frequency domain
with a single sensor.

We show how to compromise between distortion of the desired signal
and reduction of the additive noise.

The advantages of the frequency-domain technique are twofold.

First, it is very flexible in the sense that the observation signal at each
frequency can be processed independently of the others.

Second, thanks to the fast Fourier transform, all algorithms can be
implemented very efficiently.
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Signal Model and Problem Formulation

We recall that the observation signal in the time domain is

y(t) = x(t) + v(t), (1)

where x(t) and v(t) are the desired and noise signals, respectively.

In the frequency domain, (1) can be written as

Y (f) = X(f) + V (f), (2)

where Y (f), X(f), and V (f) are the frequency-domain
representations of y(t), x(t), and v(t), respectively, at the frequency
index f .
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Since the zero-mean signals X(f) and V (f) are assumed to be
uncorrelated, the variance of Y (f) is

φY (f) = E
[
|Y (f)|2

]
(3)

= φX(f) + φV (f),

where φX(f) = E
[
|X(f)|2

]
and φV (f) = E

[
|V (f)|2

]
are the

variances of X(f) and V (f), respectively.

The objective of single-channel noise reduction in the frequency
domain is to find an estimate of X(f) from Y (f).
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Noise Reduction with Gains

An estimate of X(f) can be obtained by multiplying Y (f) with a
complex gain, H(f), as illustrated in Fig. 1, i.e.,

Z(f) = H(f)Y (f) (4)

= H(f) [X(f) + V (f)]

= Xfd(f) + Vrn(f).

+

V (f)

H(f)X(f)
Y (f)

Z(f)

Figure 1: Block diagram of noise reduction with gains in the frequency domain.
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The filtered desired signal is given by

Xfd(f) = H(f)X(f), (5)

and the residual noise is given by

Vrn(f) = H(f)V (f). (6)

The variance of Z(f) can be written as

φZ(f) = E
[
|Z(f)|2

]
(7)

= |H(f)|2 φY (f)

= φXfd
(f) + φVrn

(f),

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 7\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

where

φXfd
(f) = |H(f)|2 φX(f) (8)

is the variance of the filtered desired signal and

φVrn
(f) = |H(f)|2 φV (f) (9)

is the variance of the residual noise.
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Performance Measures
Signal-to-Noise Ratio

We define the narrowband input SNR as

iSNR(f) =
φX(f)

φV (f)
. (10)

The broadband input SNR is obtained by simply integrating over all
frequencies the numerator and denominator of iSNR(f).

We get

iSNR =

∫
f
φX(f)df

∫
f
φV (f)df

. (11)
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After noise reduction with the frequency-domain model given in (4),
the narrowband output SNR can be written as

oSNR [H(f)] =
φXfd

(f)

φVrn
(f)

= iSNR(f). (12)

It is important to observe that the narrowband output SNR is not
influenced by H(f).

We deduce that the broadband output SNR is

oSNR (H) =

∫
f
φXfd

(f)df
∫
f
φVrn

(f)df
=

∫
f
|H(f)|2 φX(f)df

∫
f
|H(f)|2 φV (f)df

. (13)

It is essential to find the complex gains H(f) at all frequencies in
such a way that oSNR(H) > iSNR.
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Noise Reduction Factor

We define the narrowband and broadband noise reduction factors as,
respectively,

ξn [H(f)] =
1

|H(f)|2
(14)

and

ξn (H) =

∫
f
φV (f)df

∫
f
|H(f)|2 φV (f)df

. (15)

The larger the values of the noise reduction factors are, the more
reduced the noise is.

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 11\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

Signal-to-Noise Ratio
Noise Reduction Factor
Desired-Signal Reduction Factor
Desired-Signal Distortion Index
Mean-Squared Error

Desired-Signal Reduction Factor

In the same way, we define the narrowband and broadband
desired-signal reduction factors as, respectively,

ξd [H(f)] =
1

|H(f)|2
(16)

and

ξd (H) =

∫
f
φX(f)df

∫
f
|H(f)|2 φX(f)df

. (17)

The larger the values of the desired-signal reduction factors are, the
more distorted the desired signal is.
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We always have

oSNR (H)

iSNR
=

ξn (H)

ξd (H)
. (18)

This means that the gain in SNR comes with the distortion of the
desired and noise signals.
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Desired-Signal Distortion Index

Another way to quantify distortion is via the narrowband
desired-signal distortion index:

υd [H(f)] =
E
[
|H(f)X(f)−X(f)|2

]

φX(f)
= |1−H(f)|2 (19)

and the broadband desired-signal distortion index:

υd (H) =

∫
f
E
[
|H(f)X(f)−X(f)|2

]
df

∫
f
φX(f)df

(20)

=

∫
f
|1−H(f)|2 φX(f)df

∫
f
φX(f)df

.

The desired-signal distortion index has a lower bound of 0 and an
upper bound of 1 for optimal gains.
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Mean-Squared Error

We define the error signal between the estimated and desired signals
at frequency f as

E(f) = Z(f)−X(f) (21)

= H(f)Y (f)−X(f).

This error can also be put into the form:

E(f) = Ed(f) + En(f), (22)

where

Ed(f) = [H(f)− 1]X(f) (23)

is the desired-signal distortion due to the complex gain and

En(f) = H(f)V (f) (24)

represents the residual noise.
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The narrowband MSE criterion is then

J [H(f)] = E
[
|E(f)|2

]
(25)

= |1−H(f)|2 φX(f) + |H(f)|2 φV (f).

The narrowband MSE is also

J [H(f)] = E
[
|Ed(f)|2

]
+ E

[
|En(f)|2

]
(26)

= Jd [H(f)] + Jn [H(f)] ,

where

Jd [H(f)] = φX(f)υd [H(f)] (27)
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and

Jn [H(f)] =
φV (f)

ξn [H(f)]
. (28)

We deduce that

J [H(f)] = φV (f)

{
iSNR(f)× υd [H(f)] +

1

ξn [H(f)]

}
(29)

and

Jd [H(f)]

Jn [H(f)]
= iSNR(f)× ξn [H(f)]× υd [H(f)] (30)

= oSNR [H(f)]× ξd [H(f)]× υd [H(f)] ,

showing how the narrowband MSEs are related to the different
narrowband performance measures.
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The extension of the narrowband MSE to the broadband case is
straightforward.

We define the broadband MSE criterion as

J (H) =

∫

f

J [H(f)] df (31)

=

∫

f

|1−H(f)|2 φX(f)df +

∫

f

|H(f)|2 φV (f)df

= Jd (H) + Jn (H) ,

where

Jd (H) = υd (H)
∫
f
φX(f)df (32)

Jn (H) =
∫
f
φV (f)df

ξn(H) . (33)
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Optimal Gains
Wiener Filter

Taking the gradient of J [H(f)] [eq. (25)] with respect to H∗(f) and
equating the result to 0 lead to

− E {Y ∗(f) [X(f)−HW(f)Y (f)]} = 0. (34)

Hence,

φY (f)HW(f) = φXY (f), (35)

where

φXY (f) = E [X(f)Y ∗(f)] (36)

= φX(f)

is the the cross-correlation between X(f) and Y (f), which simplifies
to the variance of X(f) in this particular model.
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Therefore, the optimal Wiener gain can be put into the following
forms:

HW(f) =
φX(f)

φY (f)
(37)

= 1− φV (f)

φY (f)

=
iSNR(f)

1 + iSNR(f)
.

This gain is always real, positive, and smaller than one.

Another way to write the Wiener gain is with the magnitude squared
coherence functions (MSCFs). Indeed, it is easy to see that

HW(f) = |ρ [X(f), Y (f)]|2 (38)

= 1− |ρ [V (f), Y (f)]|2 ,
Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 20\92
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where

|ρ [X(f), Y (f)]|2 =
|E [X(f)Y ∗(f)]|2

E
[
|X(f)|2

]
E
[
|Y (f)|2

] (39)

=
|φXY (f)|2

φX(f)φY (f)
=

iSNR(f)

1 + iSNR(f)

is the MSCF between X(f) and Y (f), and

|ρ [V (f), Y (f)]|2 =
|φV Y (f)|2

φV (f)φY (f)
(40)

=
1

1 + iSNR(f)

is the MSCF between V (f) and Y (f).
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When the level of the noise is high at frequency f ,
|ρ [V (f), Y (f)]|2 ≈ 1, then HW(f) is close to 0 since there is a large
amount of noise that needs to be removed.

When the level of the noise is low at frequency f ,
|ρ [V (f), Y (f)]|2 ≈ 0, then HW(f) is close to 1 and this gain is not
going to affect much the signals since there is little noise that needs
to be removed.

Now, let us define the complex number1:

̺ [X(f), V (f)] = ρ [X(f), Y (f)] + ρ [V (f), Y (f)] (41)

= cos θ(f) +  sin θ(f),

where  =
√
−1 is the imaginary unit and θ(f) is the phase of

̺ [X(f), V (f)] whose modulus is equal to 1.

1Notice that both ρ [X(f), Y (f)] and ρ [V (f), Y (f)] are real numbers.
Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 22\92
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On the complex plane, ̺ [X(f), V (f)] is on the unit circle.

Since 0 ≤ ρ [X(f), Y (f)] ≤ 1 and 0 ≤ ρ [V (f), Y (f)] ≤ 1, therefore
0 ≤ θ(f) ≤ π

2 .

We can then rewrite the Wiener gain as a function of the angle θ(f),
i.e.,

HW(f) = cos2 θ(f) (42)

= 1− sin2 θ(f).

Hence,

lim
θ(f)→0

HW(f) = 1, (43)

lim
θ(f)→π

2

HW(f) = 0. (44)
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The MMSE is obtained by replacing (37) in (25):

J [HW(f)] = φX(f)− φ2
X(f)

φY (f)
(45)

= φV (f)−
φ2
V (f)

φY (f)
,

which can be rewritten as

J [HW(f)] = φX(f)
{
1− |ρ [X(f), Y (f)]|2

}
(46)

= φV (f)
{
1− |ρ [V (f), Y (f)]|2

}

= HW(f)φV (f)

= [1−HW(f)]φX(f).
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We deduce all the narrowband performance measures with the
Wiener gain:

ξn [HW(f)] =
1

cos4 θ(f)
≥ 1, (47)

ξd [HW(f)] =
1

cos4 θ(f)
≥ 1, (48)

υd [HW(f)] = sin4 θ(f) ≤ 1. (49)

We recall that the narrowband output SNR is equal to the narrowband
input SNR.
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Figure 2 shows plots of the optimal Wiener gain, HW(f), the angle,
θ(f), the narrowband noise reduction factor, ξn [HW(f)], and the
narrowband desired-signal distortion index, υd [HW(f)], as a function
of the narrowband input SNR.

As the input SNR increases, the Wiener gain increases, since there is
less noise to suppress.

As a result, both the noise reduction factor and the desired-signal
distortion index decrease.
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Figure 2: (a) The optimal Wiener gain, (b) the angle, (c) the narrowband noise
reduction factor, and (d) the narrowband desired-signal distortion index as a function of
the narrowband input SNR.
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Property

With the optimal Wiener gain given in (37), the broadband output
SNR is always greater than or equal to the broadband input SNR, i.e.,
oSNR (HW) ≥ iSNR.

Proof. The broadband MSCF, which is equivalent to the SPCC,
between the two zero-mean random variables A(f) and B(f), which
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are the frequency-domain representations of the time-domain real
signals a(t) and b(t), is defined as

|ρ (A,B)|2 =

∣∣∣E
[∫

f
A(f)B∗(f)df

]∣∣∣
2

E
[∫

f
|A(f)|2 df

]
E
[∫

f
|B(f)|2 df

] (50)

=

∣∣∣
∫
f
φAB(f)df

∣∣∣
2

[∫
f
φA(f)df

] [∫
f
φB(f)df

]

=
E2 [a(t)b(t)]

σ2
aσ

2
b

= ρ2 (a, b) .
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Let us evaluate the broadband MSCF between Y (f) and
ZW(f) = HW(f)Y (f):

|ρ (Y, ZW)|2 =

[∫
f
HW(f)φY (f)df

]2

[∫
f
φY (f)df

] [∫
f
H2

W(f)φY (f)df
]

=

∫
f
φX(f)df

∫
f
φY (f)df

×
∫
f
φX(f)df

∫
f
HW(f)φX(f)df

=
|ρ (X,Y )|2

|ρ (X,ZW)|2
.

Therefore,

|ρ (X,Y )|2 = |ρ (Y, ZW)|2 × |ρ (X,ZW)|2 ≤ |ρ (X,ZW)|2 . (51)
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On the other hand, it can be shown that

|ρ (X,Y )|2 =
iSNR

1 + iSNR

and

|ρ (X,ZW)|2 ≤ oSNR (HW)

1 + oSNR (HW)
.

Substituting the two previous expressions into (51), we obtain

iSNR

1 + iSNR
≤ oSNR (HW)

1 + oSNR (HW)
.

As a result, we have oSNR (HW) ≥ iSNR.

�
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Example 1

Consider a desired signal, X(f), with the variance:

φX(f) =





α, |f | ≤ 1

4

0,
1

4
≤ |f | ≤ 1

2

,

that is corrupted with additive noise, V (f), with the variance:

φV (f) = β (1− 2 |f |) , −1

2
≤ |f | ≤ 1

2
.

The desired signal is uncorrelated with the noise, and needs to be
recovered from the noisy observation, Y (f) = X(f) + V (f).
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The narrowband input SNR is

iSNR(f) =
φX(f)

φV (f)

=





α

β
(1− 2 |f |)−1 , |f | ≤ 1

4

0,
1

4
≤ |f | ≤ 1

2

and the broadband input SNR is

iSNR =

∫
f
φX(f)df

∫
f
φV (f)df

=
α

β
.
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The optimal Wiener gain is given by

HW(f) =
iSNR(f)

1 + iSNR(f)

=





α

β

(
α

β
+ 1− 2 |f |

)−1

, |f | ≤ 1

4

0,
1

4
≤ |f | ≤ 1

2

.

The broadband output SNR, oSNR(HW), is computed using (13),
and the broadband gain in SNR is obtained by
G (HW) = oSNR(HW) /iSNR.
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Figure 3 shows plots of the broadband gain in SNR, the broadband
MSE, J (HW), the broadband noise reduction factor, ξn (HW), and the
broadband desired-signal reduction factor, ξd (HW), as a function of
the broadband input SNR.

As the input SNR increases, less noise needs to be suppressed, and
less distortion is introduced into the filtered desired signal.
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Figure 3: (a) The broadband gain in SNR, (b) the broadband MSE, (c) the broadband
noise reduction factor, and (d) the broadband desired-signal reduction factor of the
Wiener gain as a function of the broadband input SNR.
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Example 2

Suppose that the desired signal is a harmonic pulse of T samples:

x(t) =

{
A sin (2πf0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed amplitude A and frequency f0, and random phase φ,
uniformly distributed on the interval from 0 to 2π.

This signal needs to be recovered from the noisy observation,
y(t) = x(t) + v(t), where v(t) is additive white Gaussian noise, i.e.,
v(t) ∼ N

(
0, σ2

v

)
, that is uncorrelated with x(t).
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The frequency-domain representation of the desired signal is given by

X(f) =

∞∑

t=−∞

x(t)e2πft

=

T−1∑

t=0

A sin (2πf0t+ φ) e2πft

=
A

2
eφ+π(f+f0)(T−1)DT [π (f + f0)] +

A

2
e−φ+π(f−f0)(T−1)DT [π (f − f0)] ,

where the function DT (x) is the Dirichlet kernel defined as

DT (x) =
sin (Tx)

sin (x)
.
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Hence, the variance of X(f) is

φX(f) =
A2

4
D2

T [π (f + f0)] +
A2

4
D2

T [π (f − f0)] .

The frequency-domain representation of the noise signal is

V (f) =

T−1∑

t=0

v(t)e2πft.

Hence, the variance of V (f) is φV (f) = Tσ2
v. The narrowband input

SNR is

iSNR(f) =
φX(f)

φV (f)

=
A2

4Tσ2
v

D2
T [π (f + f0)] +

A2

4Tσ2
v

D2
T [π (f − f0)]
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and the broadband input SNR is

iSNR =

∫
f
φX(f)df

∫
f
φV (f)df

=

∑
t E

[
|x(t)|2

]

∑
t E

[
|v(t)|2

]

=
A2

2σ2
v

,

where we have used Parseval’s identity.

The optimal Wiener gain is obtained from (37).

To demonstrate the performance of the Wiener gain, we choose
A = 0.5, f0 = 0.1, and T = 500.
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Figure 4 shows plots of the broadband gain in SNR, the broadband
MSE, J (HW), the broadband noise reduction factor, ξn (HW), and the
broadband desired-signal reduction factor, ξd (HW), as a function of
the broadband input SNR.

Figure 5 shows a realization of the noise corrupted and filtered
sinusoidal signals for iSNR = 0 dB.
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Figure 4: (a) The broadband gain in SNR, (b) the broadband MSE, (c) the broadband
noise reduction factor, and (d) the broadband desired-signal reduction factor of the
Wiener gain as a function of the broadband input SNR.
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Figure 5: Example of noise corrupted and Wiener filtered sinusoidal signals for
iSNR = 0 dB. (a) Magnitude of frequency-domain observation signal, |Y (f)|, (b)
magnitude of frequency-domain estimated signal, |Z(f)|, (c) time-domain observation
signal, y(t), and (d) time-domain estimated signal, z(t).
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Tradeoff Gain

An important gain can be designed by minimizing the desired-signal
distortion-based MSE with the constraint that the noise
reduction-based MSE is equal to a positive number smaller than the
level of the original noise.

This optimization problem can be translated mathematically as

min
H(f)

Jd [H(f)] subject to Jn [H(f)] = ℵφV (f), (52)

where

Jd [H(f)] = |1−H(f)|2 φX(f), (53)

Jn [H(f)] = |H(f)|2 φV (f), (54)

and 0 < ℵ < 1 to ensure that we have some noise reduction at
frequency f .

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 44\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

Wiener Filter
Tradeoff Gain
Parametric Wiener Gain

If we use a Lagrange multiplier, µ(f) ≥ 0, to adjoin the constraint to
the cost function, we easily find the tradeoff gain:

HT,µ(f) =
φX(f)

φX(f) + µ(f)φV (f)
(55)

=
φY (f)− φV (f)

φY (f) + [µ(f)− 1]φV (f)

=
iSNR(f)

µ(f) + iSNR(f)
.

This gain can be seen as a Wiener gain with an adjustable input
noise level µ(f)φV (f).

Obviously, the particular case of µ(f) = 1 corresponds to the Wiener
gain.

We can also find the optimal µ(f) corresponding to a given value of ℵ.
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Substituting HT,µ(f) from (55) into the constraint in (52), we get

Jn [HT,µ(f)] = |HT,µ(f)|2 φV (f) (56)

= ℵφV (f).

From the previous expression, we easily find that

µ(f) = iSNR(f)
1−

√
ℵ√

ℵ
(57)

and the tradeoff simplifies to a constant gain:

HT,ℵ =
√
ℵ. (58)

In the rest, we assume that µ(f) is a constant, so it does not depend
on frequency and we can drop the variable f . Usually, the value of µ
is given by design.
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The MSCF between the two signals X(f) and X(f) +
√
µV (f) at

frequency f is

|ρ [X(f), X(f) +
√
µV (f)]|2 =

iSNR(f)

µ+ iSNR(f)
. (59)

The MSCF between the two signals V (f) and X(f) +
√
µV (f) at

frequency f is

|ρ [V (f), X(f) +
√
µV (f)]|2 =

µ

µ+ iSNR(f)
. (60)

Therefore, we can write the tradeoff gain as a function of these two
MSCFs:

HT,µ(f) = |ρ [X(f), X(f) +
√
µV (f)]|2 (61)

= 1− |ρ [V (f), X(f) +
√
µV (f)]|2 .
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Now, let us define the complex number:

̺µ [X(f), V (f)] = ρ [X(f), X(f) +
√
µV (f)]

+ ρ [V (f), X(f) +
√
µV (f)]

= cos θµ(f) +  sin θµ(f), (62)

where θµ(f) is the phase of ̺µ [X(f), V (f)] whose modulus is equal
to 1.

Since 0 ≤ ρ
[
X(f), X(f) +

√
µV (f)

]
≤ 1 and

0 ≤ ρ
[
V (f), X(f) +

√
µV (f)

]
≤ 1, therefore 0 ≤ θµ(f) ≤ π

2 .

We can then rewrite the tradeoff gain as a function of the angle θµ(f):

HT,µ(f) = cos2 θµ(f) (63)

= 1− sin2 θµ(f).
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We deduce all the narrowband performance measures with the
tradeoff gain:

oSNR [HT,µ(f)] = iSNR(f), (64)

ξn [HT,µ(f)] =
1

cos4 θµ(f)
≥ 1, (65)

ξd [HT,µ(f)] =
1

cos4 θµ(f)
≥ 1, (66)

υd [HT,µ(f)] = sin4 θµ(f) ≤ 1. (67)
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Figure 6 shows plots of the tradedoff gain, HT,µ(f), the angle, θµ(f),
the narrowband noise reduction factor, ξn [HT,µ(f)], and the
narrowband desired-signal distortion index, υd [HT,µ(f)], as a
function of the narrowband input SNR for different values of µ.

For a given input SNR, higher value of µ yields lower tradedoff gain.

Hence, both the noise reduction factor and the desired-signal
distortion index monotonically increase as a function of µ.
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Figure 6: (a) The tradedoff gain, (b) the angle, (c) the narrowband noise reduction
factor, and (d) the narrowband desired-signal distortion index for different values of µ:
µ = 0.5 (dashed line with asterisks), µ = 1 (solid line with circles), µ = 2 (dotted line
with squares), and µ = 5 (dash-dot line with triangles).
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Property

With the tradeoff gain given in (55), the broadband output SNR is
always greater than or equal to the broadband input SNR, i.e.,
oSNR (HT,µ) ≥ iSNR, ∀µ ≥ 0.

Proof. The broadband MSCF between the two variables X(f) and
X(f) +

√
µV (f) is

|ρ (X,X +
√
µV )|2 =

[∫
f
φX(f)df

]2

[∫
f
φX(f)df

] [∫
f
φX(f)df + µ

∫
f
φV (f)df

]

=
iSNR

µ+ iSNR
.
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The broadband MSCF between the two variables X(f) and
HT,µ(f)X(f) +

√
µHT,µ(f)V (f) is

|ρ (X,HT,µX +
√
µHT,µV )|2 =

[∫
f
HT,µ(f)φX(f)df

]2

[∫
f
φX(f)df

] [∫
f
H2

T,µ(f)φX(f)df + µ
∫
f
H2

T,µ(f)φV (f)df
]

=

∫
f
HT,µ(f)φX(f)df
∫
f
φX(f)df

.
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Another way to write the same broadband MSCF is the following:

|ρ (X,HT,µX +
√
µHT,µV )|2 =

[∫
f
HT,µ(f)φX(f)df

]2

[∫
f
φX(f)df

] [∫
f
H2

T,µ(f)φX(f)df
]×

oSNR (HT,µ)

µ+ oSNR (HT,µ)

= |ρ (X,HT,µX)|2 ×
|ρ (HT,µX,HT,µX +

√
µHT,µV )|2

≤ oSNR (HT,µ)

µ+ oSNR (HT,µ)
.
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Now, let us evaluate the broadband MSCF between the two variables
X(f) +

√
µV (f) and HT,µ(f)X(f) +

√
µHT,µ(f)V (f):

|ρ (X +
√
µV,HT,µX +

√
µHT,µV )|2 =

∫
f
φX(f)df

∫
f
φX(f)df + µ

∫
f
φV (f)df

×
∫
f
φX(f)df

∫
f
HT,µ(f)φX(f)df

=

∣∣ρ
(
X,X +

√
µV

)∣∣2
∣∣ρ

(
X,HT,µX +

√
µHT,µV

)∣∣2 .
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Therefore,

|ρ (X,X +
√
µV )|2 =

iSNR

µ+ iSNR

= |ρ (X +
√
µV,HT,µX +

√
µHT,µV )|2 ×

|ρ (X,HT,µX +
√
µHT,µV )|2

≤ |ρ (X,HT,µX +
√
µHT,µV )|2

≤ oSNR (HT,µ)

µ+ oSNR(HT,µ)
.

As a result, we have

oSNR(HT,µ) ≥ iSNR.

�
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Example 3

Returning to Example 1, Fig. 7 shows plots of the broadband gain in
SNR, G (HT,µ), the broadband MSE, J (HT,µ), the broadband noise
reduction factor, ξn (HT,µ), and the broadband desired-signal
reduction factor, ξd (HT,µ), as a function of the broadband input SNR
for different values of µ.

For a given broadband input SNR, the higher is the value of µ, the
higher are the broadband SNR gain and noise reduction, but at the
expense of higher broadband desired-signal reduction.
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Figure 7: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and (d)
desired-signal reduction factor of the tradeoff gain for different values of µ: µ = 0.5
(dashed line with asterisks), µ = 1 (solid line with circles), µ = 2 (dotted line with
squares), and µ = 5 (dash-dot line with triangles).
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Parametric Wiener Gain

Some applications may need aggressive noise reduction while others
may require little desired-signal distortion (and so less aggressive
noise reduction).

An easy way to control the compromise between noise reduction and
desired-signal distortion is via the parametric Wiener gain:

Hµ1,µ2
(f) = [1− sinµ1 θ(f)]µ2 , (68)

where µ1 and µ2 are two positive parameters that allow the control of
this compromise.

For (µ1, µ2) = (2, 1), we get the Wiener gain developed previously.

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 59\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

Wiener Filter
Tradeoff Gain
Parametric Wiener Gain

Taking (µ1, µ2) = (2, 1/2), leads to

Hpow(f) =

√
1− sin2 θ(f) (69)

= cos θ(f),

which is the power subtraction method studied in [2], [3], [4], [5], [6].

The pair (µ1, µ2) = (1, 1) gives the magnitude subtraction method [7],
[8], [9], [10], [11]:

Hmag(f) = 1− sin θ(f) (70)

= 1−
√
1− cos2 θ(f).
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We can verify that the narrowband noise reduction factors for the
power subtraction and magnitude subtraction methods are

ξn [Hpow(f)] =
1

cos2 θ(f)
, (71)

ξn [Hmag(f)] =
1

[1− sin θ(f)]2
, (72)

and the corresponding narrowband desired-signal distortion indices
are

υd [Hpow(f)] = [1− cos θ(f)]2 , (73)

υd [Hmag(f)] = sin2 θ(f). (74)
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We can also easily check that

ξn [Hmag(f)] ≥ ξn [HW(f)] ≥ ξn [Hpow(f)] , (75)

υd [Hpow(f)] ≤ υd [HW(f)] ≤ υd [Hmag(f)] . (76)

These inequalities are very important from a practical point of view.

They show that, among the three methods, the magnitude subtraction
is the most aggressive one as far as noise reduction is concerned, a
very well-known fact in the literature [12] but, at the same time, it is
the one that will likely distort most the desired signal.

The smoothest approach is the power subtraction while the Wiener
gain is between the two others in terms of desired-signal distortion
and noise reduction.
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Figure 8 shows plots of the parametric Wiener gain, Hµ1,µ2
(f), the

narrowband noise reduction factor, ξn [Hµ1,µ2
(f)], and the

narrowband desired-signal distortion index, υd [Hµ1,µ2
(f)], as a

function of the narrowband input SNR for different values of the pair
(µ1, µ2).

For a given input SNR, HW(f) is larger than Hmag(f) and smaller
than Hpow(f).

Hence, the magnitude subtraction method is associated with higher
noise reduction and desired-signal distortion than the Wiener method,
while the power subtraction method is associated with less noise
reduction and desired-signal distortion than the Wiener method.
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Figure 8: (a) The parametric Wiener gain, (b) noise reduction factor, and (c)
desired-signal distortion index for: Magnitude subtraction with (µ1, µ2) = (1, 1)
(dashed line with asterisks), Wiener gain with (µ1, µ2) = (2, 1) (solid line with circles),
and power subtraction with (µ1, µ2) = (2, 1/2) (dotted line with squares).
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Example 4

Returning to Example 1, Fig. 9 shows plots of the broadband gain in
SNR, G (Hµ1,µ2

), the broadband MSE, J (Hµ1,µ2
), the broadband

noise reduction factor, ξn (Hµ1,µ2
), and the broadband desired-signal

reduction factor, ξd (Hµ1,µ2
), as a function of the broadband input

SNR for different values of (µ1, µ2).

For a given broadband input SNR, the magnitude subtraction method
is associated with higher broadband SNR gain and noise reduction
than the Wiener method, but at the expense of higher broadband
desired-signal reduction.

On the other hand, the power subtraction method is associated with
lower broadband desired-signal reduction than the Wiener method,
but at the expense of lower broadband SNR gain and noise reduction.
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Figure 9: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and (d)
desired-signal reduction factor of the parametric Wiener gain for: Magnitude
subtraction (dashed line with asterisks), Wiener gain (solid line with circles), and power
subtraction (dotted line with squares).
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Wiener Filter
Tradeoff Gain
Parametric Wiener Gain

Table 1 summarizes the optimal gains studied in this section.

Table 1: Optimal gains for single-channel signal enhancement in the frequency
domain.

Wiener: HW(f) =
iSNR(f)

1 + iSNR(f)

Tradeoff: HT,µ(f) =
iSNR(f)

µ+ iSNR(f)
, µ ≥ 0

Param. Wiener: Hµ1,µ2
(f) = [1− sinµ1 θ(f)]

µ2 , µ1, µ2 ≥ 0

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 67\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

Implementation with the Short-Time Fourier Transform

In this section, we show how to implement the different gains in the
short-time Fourier transform (STFT) domain.

The signal model given in (1) can be put into a vector form by
considering the L most recent successive time samples, i.e.,

y(t) = x(t) + v(t), (77)

where
y(t) =

[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
(78)

is a vector of length L, and x(t) and v(t) are defined in a similar way
to y(t) from (78).
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A short-time segment of the measured signal [i.e., y(t)], is multiplied
with an analysis window of length L:

g =
[
g(0) g(1) · · · g(L− 1)

]T
(79)

and transformed into the frequency domain by using the discrete
Fourier transform (DFT). Let W denote the DFT matrix of size L× L,
with

[W]i,j = exp

(
− 2πij

L

)
, i, j = 0, . . . , L− 1. (80)

Then, the STFT representation of the measured signal is defined as
[16]

Y(t) = Wdiag (g)y(t), (81)

where
Y(t) =

[
Y (t, 0) Y (t, 1) · · · Y (t, L − 1)

]T
. (82)

Benesty, Cohen, and Chen Single-Channel Enhancement: Frequency Domain 69\92



Introduction
Signal Model and Problem Formulation

Noise Reduction with Gains
Performance Measures

Optimal Gains
Implementation with the Short-Time Fourier Transform

In practice, the STFT representation is decimated in time by a factor
R (1 ≤ R ≤ L) [17]:

Y(rR) = Y(t) |t=rR (83)

=
[
Y (rR, 0) Y (rR, 1) · · · Y (rR, L− 1)

]T
, r ∈ Z.

Figure 10 shows the STFT representation of the measured signal.

+

v(t)

diag (g) W ↓ Rx(t)
y(t) Y(t)

Y(rR)

Figure 10: STFT representation of the measured signal.
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Therefore, in the STFT domain, (1) can be written as

Y (rR, k) = X(rR, k) + V (rR, k), (84)

where k = 0, . . . , L− 1 denotes the frequency index, and X(rR, k)
and V (rR, k) are the STFT representations of x(t) and v(t),
respectively.

Since the zero-mean signals X(rR, k) and V (rR, k) are assumed to
be uncorrelated, the variance of Y (rR, k) is

φY (rR, k) = E
[
|Y (rR, k)|2

]
(85)

= φX(rR, k) + φV (rR, k),

where φX(rR, k) = E
[
|X(rR, k)|2

]
and φV (rR, k) = E

[
|V (rR, k)|2

]

are the variances of X(rR, k) and V (rR, k), respectively.
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An estimate of X(rR, k) can be obtained by multiplying Y (rR, k) with
a gain H(rR, k), as illustrated in Fig. 11

+

V (rR, k)

H(rR, k)X(rR, k)
Y (rR, k)

Z(rR, k)

Figure 11: Block diagram of noise reduction in the STFT domain.
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That is,

Z(rR, k) = H(rR, k)Y (rR, k) (86)

= H(rR, k) [X(rR, k) + V (rR, k)]

= Xfd(rR, k) + Vrn(rR, k),

where Z(rR, k) is the STFT representation of the signal z(t),

Xfd(rR, k) = H(rR, k)X(rR, k) (87)

is the filtered desired signal, and

Vrn(rR, k) = H(rR, k)V (rR, k) (88)

is the residual noise.
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A short-time segment of z(t) can be reconstructed in the time domain
by applying the inverse DFT to the vector:

Z(rR) =
[
Z(rR, 0) Z(rR, 1) · · · Z(rR, L− 1)

]T
(89)

and multiplying the result with a synthesis window of length L:

g̃ =
[
g̃(0) g̃(1) · · · g̃(L− 1)

]T
. (90)

That is,
z(rR) = diag (g̃)WHZ(rR), (91)

where the superscript H denotes conjugate-transpose of a vector or a
matrix.
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The estimate z(t) of the desired signal can be reconstructed in the
time domain by the overlap-add (OLA) method [18], i.e., summing the
values at time t of all the short-time segments that overlap at time t:

z(t) =
∑

r

iTrR−t+1z(rR), (92)

where ii (1 ≤ i ≤ L) is the ith column of IL and the summation is over
integer values of r in the range t

R
≤ r ≤ t+L−1

R
.
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The inverse STFT is illustrated in Fig. 12.

WH diag (g̃) overlap-addZ(rR)
z(rR)

z(t)

Figure 12: Block diagram of the inverse STFT.

The synthesis window g̃ must satisfy a condition for exact
reconstruction of x(t) when H(rR, k) = 1 and V (rR, k) = 0 for all
(r, k) [17].

Specifically, from (81) we have

X(rR) = W diag(g) x(rR). (93)
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For exact reconstruction of z(t) = x(t) using (91) and (92), we require

x(t) =
∑

r

iTrR−t+1 diag (g̃)W
HX(rR). (94)

Substituting (93) into (94), we get

x(t) =
∑

r

iTrR−t+1 diag (g̃) diag (g)x(rR), (95)

for all signals x(t) and for all t.

Therefore, the condition for exact reconstruction is
∑

r

g̃(ℓ + rR)g(ℓ+ rR) = 1, ∀ℓ ∈ {0, . . . , R− 1}. (96)
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Property

For a given analysis window g of length L > R, there are infinite
solutions g̃ that satisfy (96). A synthesis window of a minimal norm
that satisfies (96) is given by [17]

g̃(ℓ) =
g(ℓ)∑

r g
2(ℓ+ rR)

, ℓ = 0, . . . , L− 1. (97)

Proof. Define

gℓ =
[
· · · g(ℓ−R) g(ℓ) g(ℓ+R) · · ·

]T
,

g̃ℓ =
[
· · · g̃(ℓ−R) g̃(ℓ) g̃(ℓ+R) · · ·

]T
.

Then condition (96) can be written as

gT
ℓ g̃ℓ = 1, ∀ℓ ∈ {0, . . . , R− 1}. (98)
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The minimum-norm solution to this equation is the pseudo inverse of
gℓ:

g̃ℓ = gℓ

(
gT
ℓ gℓ

)−1
, (99)

which is equivalent to (97). �

In a similar way to the frequency-domain input SNR, we define the
narrowband input SNR as

iSNR(rR, k) =
φX(rR, k)

φV (rR, k)
. (100)

The optimal gains, summarized in Table 1, are employed in the STFT
domain by replacing iSNR(f) with iSNR(rR, k).
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The broadband input SNR is obtained by summing over all
time-frequency indices the numerator and denominator of
iSNR(rR, k).

We get

iSNR =

∑
r,k φX(rR, k)

∑
r,k φV (rR, k)

. (101)

Similarly, the broadband output SNR is

oSNR (H) =

∑
r,k φXfd

(rR, k)
∑

r,k φVrn
(rR, k)

(102)

=

∑
r,k |H(rR, k)|2 φX(rR, k)

∑
r,k |H(rR, k)|2 φV (rR, k)

,
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the broadband noise reduction and desired-signal reduction factors
are, respectively,

ξn (H) =
∑

r,k φV (rR,k)
∑

r,k
|H(rR,k)|2φV (rR,k)

, (103)

ξd (H) =
∑

r,k φX(rR,k)
∑

r,k
|H(rR,k)|2φX (rR,k)

, (104)

and the broadband MSE is defined as

J (H) =
∑

r,k

J [H(rR, k)] (105)

=
∑

r,k

|1−H(rR, k)|2 φX(rR, k) +
∑

r,k

|H(rR, k)|2 φV (rR, k).
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Example 5

Consider a speech signal, x(t), sampled at 16 kHz, that is corrupted
with uncorrelated additive white Gaussian noise, v(t) ∼ N

(
0, σ2

v

)
.

The observed signal, y(t), given by y(t) = x(t) + v(t), is transformed
into the STFT domain, multiplied at each time-frequency bin with a
spectral gain H(rR, k), and transformed back into the time domain by
using (91) and (92).

To demonstrate noise reduction in the STFT domain, we choose a
Hamming window of length L = 512 as the analysis window, a
decimation factor R = L/4 = 128, and the Wiener gain in the STFT
domain:

HW(rR, k) =
iSNR(rR, k)

1 + iSNR(rR, k)
. (106)
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An estimate for the noise variance φ̂V (rR, k) can be simply obtained
by averaging past spectral power values of the noisy measurement
during speech inactivity:

φ̂V (rR, k) =

{
αφ̂V [(r − 1)R, k] + (1− α) |Y (rR, k)|2 , X(rR, k) = 0

φ̂V [(r − 1)R, k] , X(rR, k) 6= 0
,

(107)

where α (0 < α < 1) denotes a smoothing parameter.

This method requires a voice activity detector (VAD), but there are
also alternative and more efficient methods that are based on
minimum statistics [19], [20].
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Finding an estimate for φX(rR, k) is a much more challenging
problem [21], [22].

In this example, for simplicity, we smooth |Y (rR, k)|2 in both time and
frequency axes and subtract an estimate of the noise that is multiplied
with an oversubtraction factor β (β ≥ 1), i.e.,

φ̂X(rR, k) = max
{
φ̂Y (rR, k)− βφ̂V (rR, k), 0

}
, (108)

where φ̂Y (rR, k) is obtained as a two-dimensional convolution
between |Y (rR, k)|2 and a smoothing window w(rR, k).

Here, the smoothing window is a two-dimensional Hamming window
of size 3× 11, normalized to

∑
r,k w(rR, k) = 1.
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Figure 13 shows the spectrogram (magnitude of the STFT
representation) and waveform of the clean speech signal, x(t).
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Figure 13: Speech spectrogram and waveform of a clean speech signal, x(t): “This is
particularly true in site selection.”
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Figure 14 shows plots of the broadband gain in SNR, the broadband
MSE, J (HW), the broadband noise reduction factor, ξn (HW), and the
broadband desired-signal reduction factor, ξd (HW), as a function of
the broadband input SNR for different values of the oversubtraction
factor β.

Figure 15 shows a realization of the noise corrupted and filtered
speech signals for different values of β.

For larger values of β, there is less residual musical noise, but at the
expense of larger distortion of weak speech components.

Note that more useful algorithms for enhancing noisy speech signals
in the STFT domain are presented in [1], [23], [24].
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Figure 14: The broadband (a) gain in SNR, (b) MSE, (c) noise reduction factor, and
(d) desired-signal reduction factor of the Wiener gain for different oversubtraction
factors β: β = 1 (solid line with circles), β = 2 (dashed line with asterisks), β = 3
(dotted line with squares), and β = 4 (dash-dot line with triangles).
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Figure 15: Speech spectrograms and waveforms of (a) noisy speech signal, y(t), (b)
filtered signal, z(t), using an oversubtraction factor, β = 1, (c) filtered signal, z(t),
using an oversubtraction factor, β = 2, and (d) filtered signal, z(t), using an
oversubtraction factor, β = 3.
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