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Introduction

Differential beamforming is a particular fixed beamforming.

Differential beamformers present two great features:

1 Frequency invariance, which is extremely important when
dealing with broadband signals.

2 Highest gains in diffuse noise.

However, the main drawback is white noise amplification.

In this talk, we derive and study differential beamformers of different
orders.

We explain the advantages as well as the main problem of this
method, and show how to deal with the white noise amplification
problem.
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Signal Model and Problem Formulation

We consider a plane wave, in the farfield that propagates in an
anechoic acoustic environment at the speed of sound, i.e.,
c = 340 m/s, and impinges on a uniform linear sensor array consisting
of M omnidirectional microphones (see Fig. 1).
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Figure 1: A uniform linear array with M sensors.
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The observation vector is then [1]

y(f) =
[

Y1(f) Y2(f) · · · YM (f)
]T

= x(f) + v(f)

= d (f, cos θd)X(f) + v(f), (1)

where Ym(f) is the mth sensor signal, x(f) = d (f, cos θd)X(f),

d (f, cos θd) =
[

1 e−2πfδ cos θd/c · · · e−(M−1)2πfδ cos θd/c
]T

(2)

is the steering vector, X(f) is the desired source signal, and v(f) is
the additive noise signal vector of length M .
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To ensure that differential beamforming takes place, the following two
assumptions are made [2], [3], [4], [5].

(i) The sensor spacing, δ, is much smaller than the
wavelength, λ = c/f , i.e., δ ≪ λ (this implies that
fδ ≪ c).

(ii) The desired source signal propagates from the angle
θd = 0 (endfire direction).

Assumption (i) is required so that the true acoustic pressure
differentials can be approximated by finite differences of the sensors’
outputs.

It also implies that we can well approximate the exponential function
in the steering vector with the first few elements of its series
expansion; so that frequency-invariant beamforming may be possible.
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From Assumption (ii), (1) becomes

y(f) = d (f, 1)X(f) + v(f), (3)

and, at the endfire, the value of the beamformer beampattern should
always be equal to 1 (or maximal).

With the linear approach, the beamformer output is simply [1]

Z(f) =

M
∑

m=1

H∗
m(f)Ym(f) (4)

= hH(f)y(f)

= hH(f)d (f, 1)X(f) + hH(f)v(f),

where Z(f) is, in general, the estimate of the desired signal, X(f),
and h(f) is the beamformer of length M .
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In our context, the distortionless constraint is desired, i.e.,

hH(f)d (f, 1) = 1. (5)

This means that the value of the beamformer beampattern is equal to
1 at θ = 0 and smaller than 1 at θ 6= 0.

In this talk, we study differential sensor arrays (DSAs) of different
orders.
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Beampatterns

The beampattern or directivity pattern, which describes the sensitivity
of the beamformer to a plane wave impinging on the array from the
direction θ, is defined as

B [h(f), cos θ] = dH (f, cos θ)h(f) (6)

=

M
∑

m=1

Hm(f)e(m−1)2πfδ cos θ/c.

The beampattern of a theoretical N th-order DSA is defined as [3]

B (aN , cos θ) =

N
∑

n=0

aN,n cos
n θ = aTNp (cos θ) , (7)

where aN,n, n = 0, 1, . . . , N are real coefficients and

aN =
[

aN,0 aN,1 · · · aN,N
]T
,

p (cos θ) =
[

1 cos θ · · · cosN θ
]T
.
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The different values of the coefficients aN,n, n = 0, 1, . . . , N
determine the different directivity patterns of the N th-order DSA.

It may be convenient to use a normalization convention for the
coefficients.

For that, in the direction of the desired signal, i.e., for θ = 0, we would
like the beampattern to be equal to 1, i.e., B (aN , 1) = 1.

Therefore, we have

N
∑

n=0

aN,n = 1. (8)

As a result, we may choose the first coefficient as

aN,0 = 1−
N
∑

n=1

aN,n. (9)
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Since cos θ is an even function, so is B (aN , cos θ).

Therefore, on a polar plot, B (aN , cos θ) is symmetric about the axis
0− π and any DSA beampattern design can be restricted to this
range.

All interesting beampatterns have at least one null in some direction.

It follows from (7) that an N th-order directivity pattern has at most N
(distinct) nulls in this range.
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Front-to-Back Ratios

The front-to-back ratio (FBR) is defined as the ratio of the power of
the output of the array to signals propagating from the front-half plane
to the output power for signals arriving from the rear-half plane [6].

This ratio, for the spherically isotropic (diffuse) noise field, is
mathematically defined as [6]

F [h(f)] =

∫ π/2

0

|B [h(f), cos θ]|2 sin θdθ
∫ π

π/2

|B [h(f), cos θ]|2 sin θdθ
(10)

=
hH(f)Γ0,π/2(f)h(f)

hH(f)Γπ/2,π(f)h(f)
,
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where

Γ0,π/2(f) =

∫ π/2

0

d (f, cos θ)dH (f, cos θ) sin θdθ, (11)

Γπ/2,π(f) =

∫ π

π/2

d (f, cos θ)dH (f, cos θ) sin θdθ. (12)

Now, let us compute the entries of the matrix:

Γψ1,ψ2(f) = Nψ1,ψ2

∫ ψ2

ψ1

d (f, cos θ)dH (f, cos θ) sin θdθ, (13)
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where 0 ≤ ψ1 ≤ ψ2 ≤ π and

Nψ1,ψ2 =
1

∫ ψ2

ψ1

sin θdθ

(14)

=
1

cosψ1 − cosψ2

is a normalization term.
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The (i, j)th element (with i, j = 1, 2, . . . ,M ) of Γψ1,ψ2(f) can be
written as

[Γψ1,ψ2(f)]ij = Nψ1,ψ2

∫ ψ2

ψ1

e−2πf(i−1)τ0 cos θe2πf(j−1)τ0 cos θ sin θdθ

= Nψ1,ψ2

∫ ψ2

ψ1

e2πf(j−i)τ0 cos θ sin θdθ

= −Nψ1,ψ2

∫ cosψ2

cosψ1

e2πf(j−i)τ0udu

= Nψ1,ψ2

∫ cosψ1

cosψ2

e2πf(j−i)τ0udu, (15)

where τ0 = δ/c.
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Therefore, we deduce that

[Γψ1,ψ2(f)]ij = Nψ1,ψ2

e2πf(j−i)τ0 cosψ1 − e2πf(j−i)τ0 cosψ2

2πf(j − i)τ0
, (16)

with [Γψ1,ψ2(f)]mm = 1, m = 1, 2, . . . ,M .

As a result, the elements of the M ×M matrices Γ0,π/2(f) and
Γπ/2,π(f) are, respectively,

[

Γ0,π/2(f)
]

ij
= e2πf(j−i)τ0−1

2πf(j−i)τ0
(17)

[

Γπ/2,π(f)
]

ij
= 1−e−2πf(j−i)τ0

2πf(j−i)τ0
, (18)

with
[

Γ0,π/2(f)
]

mm
=

[

Γπ/2,π(f)
]

mm
= 1, m = 1, 2, . . . ,M .
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For the spherically isotropic noise field, the frequency-independent
FBR of a theoretical N th-order DSA is defined as [3]

F (aN ) =

∫ π/2

0

B2 (aN , cos θ) sin θdθ

∫ π

π/2

B2 (aN , cos θ) sin θdθ

. (19)
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Array Gains

The array gain is given by

G [h(f)] =

∣

∣hH(f)d (f, 1)
∣

∣

2

hH(f)Γv(f)h(f)
, (20)

where Γv(f) is the pseudo-coherence matrix of v(f).

The WNG is directly deduced from (20) by taking Γv(f) = IM .

We obtain

W [h(f)] =

∣

∣hH(f)d (f, 1)
∣

∣

2

hH(f)h(f)
(21)

and we can easily show that the maximum WNG is

Wmax =M. (22)
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The DF, which is the array gain in the diffuse (spherically isotropic)
noise field, is given by

D [h(f)] =

∣

∣hH(f)d (f, 1)
∣

∣

2

hH(f)Γ0,π(f)h(f)
(23)

and the maximum DF is

Dmax(f) = dH (f, 1)Γ−1
0,π(f)d (f, 1) . (24)

We also have

lim
δ→0

Dmax(f) =M2. (25)
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For the spherically isotropic noise field, the frequency-independent
DF of a theoretical N th-order DSA is defined as [3]

D (aN ) =
B2 (aN , 1)

1

2

∫ π

0

B2 (aN , cos θ) sin θdθ

. (26)
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Differential Beamformers
N th-Order Differential Beamformers

The most well-known and studied N th-order DSA beampatterns are
the dipole, the cardioid, the hypercardioid, and the supercardioid.

In the following, we show how they are obtained.

The N th-order dipole has a unique null with multiplicity N in the
direction π/2.

Its beampattern is then given by

BN,Dp (cos θ) = cosN θ, (27)

implying that aN,N = 1 and aN,N−1 = aN,N−2 = · · · = aN,0 = 0.
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The N th-order cardioid has a unique null with multiplicity N in the
direction π.

Its beampattern is then given by

BN,Cd (cos θ) =
1

2N
(1 + cos θ)

N (28)

=

N
∑

n=0

N !

2Nn!(N − n)!
cosn θ,

implying that

aN,n =
N !

2Nn!(N − n)!
, n = 0, 1, . . . , N. (29)
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The coefficients of the N th-order hypercardioid can be obtained by
maximizing the DF, D (aN ), given in (26).

It can be shown that [3]

D (aN ) =
aTN11TaN

aTNHNaN
, (30)

where 1 =
[

1 1 · · · 1
]T

is a vector of length N + 1 and HN is a
Hankel matrix [of size (N +1)× (N +1)] whose elements are given by

[HN ]ij =







1

1 + i+ j
, if i+ j even

0, otherwise
, (31)

with i, j = 0, 1, . . . , N .
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In (30), we notice the generalized Rayleigh quotient.

Therefore, the vector aN that maximizes D (aN ) is the eigenvector
corresponding to the maximum eigenvalue of the matrix H−1

N 11T , i.e.,

aN,max =
H−1
N 1

1TH−1
N 1

. (32)

As a result, the beampattern of the N th-order hypercardioid is

BN,Hd (cos θ) =
1TH−1

N p (cos θ)

1TH−1
N 1

. (33)
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The coefficients of the N th-order supercardioid can be obtained by
maximizing the FBR, F (aN ), defined in (19).

It can be shown that [3]

F (aN ) =
aTNH′′

NaN

aTNH′
NaN

, (34)

where H′
N and H′′

N are two Hankel matrices [of size
(N + 1)× (N + 1)] whose elements are given by, respectively,

[H′
N ]ij =

(−1)
i+j

1 + i+ j
(35)

and

[H′′
N ]ij =

1

1 + i+ j
, (36)
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with i, j = 0, 1, . . . , N .

Let us denote by a′N,max the eigenvector corresponding to the
maximum eigenvalue of H′−1

N H′′
N .

Then, a′N,max maximizes the FBR and the beampattern of the
N th-order supercardioid is

BN,Sd (cos θ) =
a′TN,maxp (cos θ)

a′TN,maxp (1)
. (37)
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The most well-known first-order directivity patterns are expressed as

B1,Dp (cos θ) = cos θ, (38)

B1,Cd (cos θ) =
1

2
+

1

2
cos θ, (39)

B1,Hd (cos θ) =
1

4
+

3

4
cos θ, (40)

B1,Sd (cos θ) =

√
3− 1

2
+

3−
√
3

2
cos θ. (41)

Figure 2 shows these different polar beampatterns.

What is exactly shown are the values of the magnitude squared
beampattern in dB, i.e., 10 log10 B2 (aN , cos θ).
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Figure 2: First-order directivity patterns: (a) dipole, (b) cardioid, (c) hypercardioid, and
(d) supercardioid.
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The most interesting second-order directivity patterns are given by

B2,Dp (cos θ) = cos2 θ, (42)

B2,Cd (cos θ) =
1

4
+

1

2
cos θ +

1

4
cos2 θ, (43)

B2,Hd (cos θ) = −1

6
+

1

3
cos θ +

5

6
cos2 θ, (44)

B2,Sd (cos θ) =
1

2
(

3 +
√
7
) +

√
7

3 +
√
7
cos θ +

5

2
(

3 +
√
7
) cos2 θ. (45)

Figure 3 depicts the different second-order directivity patterns given
above.
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Figure 3: Second-order directivity patterns: (a) dipole, (b) cardioid, (c) hypercardioid,
and (d) supercardioid.

Benesty, Cohen, and Chen Differential Beamforming 30\96



Introduction
Signal Model and Problem Formulation

Beampatterns
Front-to-Back Ratios

Array Gains
Differential Beamformers

N th-Order Differential Beamformers
First-Order Design
Second-Order Design
Third-Order Design
Minimum-Norm Beamformers

The most important third-order directivity patterns are expressed as

B3,Dp (cos θ) = cos3 θ, (46)

B3,Cd (cos θ) =
1

8
+

3

8
cos θ +

3

8
cos2 θ +

1

8
cos3 θ, (47)

B3,Hd (cos θ) = − 3

32
− 15

32
cos θ +

15

32
cos2 θ +

35

32
cos3 θ, (48)

B3,Sd (cos θ) ≈ 0.0184 + 0.2004 cosθ + 0.4750 cos2 θ + 0.3061 cos3 θ.
(49)

Figure 4 depicts the different third-order directivity patterns given
above.
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Figure 4: Third-order directivity patterns: (a) dipole, (b) cardioid, (c) hypercardioid,
and (d) supercardioid.
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The proposed approach to design DSAs is based, mostly, on the
obvious observation that any interesting theoretical
frequency-independent DSA beampattern has a one at the angle
θ = 0 and a number of nulls in some specific directions (with θ ≫ 0).

In the most obvious design, which is also the conventional way to do
differential beamforming, the number of sensors is equal to the order
plus one, i.e., M = N + 1.
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First-Order Design

First-order DSAs are designed with two sensors.

In this case, we have exactly two constraints to fulfill.

The first constraint is the distortionless response (a one at the angle
θ = 0) and the second constraint is a null in the interval 0 < θ ≤ π.

Thus, these two constraints can be written as

dH (f, 1)h(f) = 1, (50)

dH (f, α1,1)h(f) = 0, (51)

where α1,1 = cos θ1,1 is given by design (a null at the angle θ1,1) with
−1 ≤ α1,1 < 1.
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We can express (50)–(51) as
[

dH (f, 1)
dH (f, α1,1)

]

h(f) =

[

1 e2πfτ0

1 e2πfτ0α1,1

]

h(f)

=

[

1
0

]

. (52)

The previous expression is a linear system of two equations and two
unknowns for which the solution is

h1(f) =
1

1− e2πfτ0(1−α1,1)

[

1
−e−2πfτ0α1,1

]

. (53)

Substituting (53) into (6), we find that the beampattern is

B [h1(f), cos θ] =
1− e2πfτ0(cos θ−α1,1)

1− e2πfτ0(1−α1,1)
. (54)
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Using Assumption (i) and the approximation:

ex ≈ 1 + x, (55)

we can approximate (54) as

B [h1(f), cos θ] ≈
1

1− α1,1
cos θ − α1,1

1− α1,1
, (56)

which resembles the theoretical first-order DSA.

Most importantly, the beampattern is frequency invariant, which is
important in applications dealing with broadband signals such as
speech.

It is not hard to find that the DF is

D [h1(f)] =
1− cos [2πfτ0 (1− α1,1)]

1− sinc (2πfτ0) cos (2πfτ0α1,1)
. (57)
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Using the approximations:

cosx ≈ 1− x2

2
, sinc x ≈ 1− x2

6
, (58)

the DF becomes

D [h1(f)] ≈
(1− α1,1)

2

α2
1,1 +

1

3

. (59)

We observe that the DF is almost frequency independent as long as δ
is small.

Also, the value of α1,1 that maximizes (59) is equal to −1/3, which
corresponds to the hypercardioid and leads to a DF of 4; this is the
maximum possible DF for M = 2.
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The WNG is

W [h1(f)] =
1

2

∣

∣

∣
1− e2πfτ0(1−α1,1)

∣

∣

∣

2

(60)

= 1− cos [2πfτ0 (1− α1,1)] ,

which we can approximate as

W [h1(f)] ≈
1

2
[2πfτ0 (1− α1,1)]

2 . (61)

Observations regarding the WNG:

very much frequency dependent,

much larger at high than at low frequencies,

can be smaller than 1, especially at low frequencies, implying
white noise amplification,

maximized for α1,1 = −1, which corresponds to the cardioid.

Benesty, Cohen, and Chen Differential Beamforming 38\96



Introduction
Signal Model and Problem Formulation

Beampatterns
Front-to-Back Ratios

Array Gains
Differential Beamformers

N th-Order Differential Beamformers
First-Order Design
Second-Order Design
Third-Order Design
Minimum-Norm Beamformers

Design Examples

In this section, important particular cases of first-order DSAs with two
sensors are numerically studied.

Depending on the value of α1,1 we find four interesting first-order
DSAs.

Dipole: α1,1 = 0.

Cardioid: α1,1 = −1.

Hypercardioid: α1,1 = − 1
3 .

Supercardioid: α1,1 = 1−
√
3

3−
√
3
.
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Figure 5 displays the patterns [with h1(f) defined in (53)] of the
first-order dipole, cardioid, hypercardioid, and supercardioid for a low
frequency (f = 0.5 kHz) and a small value of δ (δ = 1 cm).

Figure 6 shows the patterns for a high frequency (f = 7 kHz) and a
small value of δ (δ = 1 cm).

As long as the sensor spacing is small, the beampatterns of the
first-order DSAs are frequency independent.
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Figure 5: Beampatterns of the first-order DSAs for f = 0.5 kHz and δ = 1 cm:
(a) dipole, (b) cardioid, (c) hypercardioid, and (d) supercardioid.
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Figure 6: Beampatterns of the first-order DSAs for f = 7 kHz and δ = 1 cm:
(a) dipole, (b) cardioid, (c) hypercardioid, and (d) supercardioid.
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Figures 7 and 8 display the patterns of the first-order dipole, cardioid,
hypercardioid, and supercardioid for a value of δ equal to 4 cm.

In this case, the sensor spacing is too large, which causes
deterioration of the beampatterns at high frequencies.
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Figure 7: Beampatterns of the first-order DSAs for f = 0.5 kHz and δ = 4 cm:
(a) dipole, (b) cardioid, (c) hypercardioid, and (d) supercardioid.
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Figure 8: Beampatterns of the first-order DSAs for f = 7 kHz and δ = 4 cm:
(a) dipole, (b) cardioid, (c) hypercardioid, and (d) supercardioid.

Benesty, Cohen, and Chen Differential Beamforming 45\96



Introduction
Signal Model and Problem Formulation

Beampatterns
Front-to-Back Ratios

Array Gains
Differential Beamformers

N th-Order Differential Beamformers
First-Order Design
Second-Order Design
Third-Order Design
Minimum-Norm Beamformers

Figure 9 shows plots of the DF, D [h1(f)], for the dipole, cardioid,
hypercardioid, and supercardioid and several values of δ.

Corresponding plots of the WNG, W [h1(f)] are depicted in Fig. 10.

We observe that increasing δ enables to increase the WNG,
especially at low frequencies.

However, a large δ is in contradiction with the DSA assumption.

Therefore, δ should be selected according to the compromise
between white noise amplification at low frequencies, and
frequency-independent directivity pattern at high frequencies.
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Figure 9: DF of the first-order DSAs as a function of frequency, for several values of δ:
δ = 1 cm (solid line with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm
(dotted line with squares), and δ = 4 cm (dash-dot line with triangles). (a) Dipole,
(b) cardioid, (c) hypercardioid, and (d) supercardioid.
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Figure 10: WNG of the first-order DSAs as a function of frequency, for several values
of δ: δ = 1 cm (solid line with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm
(dotted line with squares), and δ = 4 cm (dash-dot line with triangles). (a) Dipole,
(b) cardioid, (c) hypercardioid, and (d) supercardioid.
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Second-Order Design

Any second-order DSA can be realized with three sensors.

Therefore, we assume that we have exactly three sensors.

As a result, we have three constraints to fulfill with the first one being,
as usual, a one at the angle θ = 0.

We deduce that the general linear system of equations to design any
second-order differential array is





dH (f, 1)
dH (f, α2,1)
dH (f, α2,2)



h(f) =





1
β2,1
β2,2



 , (62)

where −1 ≤ α2,1 = cos θ2,1 < 1, −1 ≤ α2,2 = cos θ2,2 < 1, α2,1 6= α2,2,
−1 ≤ β2,1 ≤ 1, and −1 ≤ β2,2 ≤ 1.
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The parameter α2,i is a chosen direction and β2,i is its corresponding
value on the given desired beampattern.

We should always privilege the zeroes of the beampattern.

Let us denote by

V(f) =





dH (f, 1)
dH (f, α2,1)
dH (f, α2,2)





=





1 v1(f) v21(f)
1 v2(f) v22(f)
1 v3(f) v23(f)



 (63)

the 3× 3 Vandermonde matrix that appears in (62), where
v1(f) = e2πfτ0, v2(f) = e2πfτ0α2,1 , and v3(f) = e2πfτ0α2,2 .
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From the decomposition V−1(f) = U(f)L(f) [4], where

U(f) =





1 −v1(f) v1(f)v2(f)
0 1 − [v1(f) + v2(f)]
0 0 1



 (64)

and (note that in some matrices, we drop the dependency on f to
simplify the presentation)

L(f) =











1 0 0
1

v1 − v2

1

v2 − v1
0

1

(v1 − v2) (v1 − v3)

1

(v2 − v1) (v2 − v3)

1

(v3 − v1) (v3 − v2)











,

(65)
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we find that the inverse of V(f) is

V−1(f) =












v2v3
(v2 − v1) (v3 − v1)

− v1v3
(v2 − v1) (v3 − v2)

v1v2
(v3 − v1) (v3 − v2)

− v2 + v3
(v2 − v1) (v3 − v1)

v1 + v3
(v2 − v1) (v3 − v2)

− v1 + v2
(v3 − v1) (v3 − v2)

1

(v2 − v1) (v3 − v1)
− 1

(v2 − v1) (v3 − v2)

1

(v3 − v1) (v3 − v2)













.

(66)

This inverse can help to study and design second-order DSAs.

We deduce that the beamformer is

h2(f) = U(f)L(f)





1
β2,1
β2,2



 . (67)
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While the previous approach is very general, it is not concerned by
beampatterns that have a zero with multiplicity greater than 1.

Let us show how to design a beampattern that has a zero, α2,1, with
multiplicity 2.

The theoretical DSA beampattern of such a case is

B (α2,1, α) =
1

(1− α2,1)
2 (α− α2,1)

2
, (68)

where α = cos θ.

It is clear that the derivative of B (α2,1, α) with respect to α at α2,1 is

dB (α2,1, α)

dα

∣

∣

∣

∣

α=α2,1

= 0. (69)
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Applying this property to the beamformer beampattern, we get

dB [h(f), α]

dα

∣

∣

∣

∣

α=α2,1

= 2πfτ0 [Σd (f, α2,1)]
H
h(f) = 0, (70)

where Σ = diag (0, 1, 2) is a diagonal matrix.

From (70), we deduce the constraint equation:

[Σd (f, α2,1)]
H
h(f) = 0. (71)

Combining the distortionless constraint, the null constraint in the
direction α2,1, i.e., d (f, α2,1)h(f) = 0, and (71), we obtain





dH (f, 1)
dH (f, α2,1)

[Σd (f, α2,1)]
H



h(f) =





1
0
0



 . (72)
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It is straightforward to see that the solution is

h2,0(f) =
1

[

1− e2πfτ0(1−α2,1)
]2





1
−2e−2πfτ0α2,1

e−4πfτ0α2,1



 . (73)

Because of the different particular constraints, it is obvious that the
beampattern has the form:

B [h2,0(f), cos θ] =

[

1− e2πfτ0(cos θ−α2,1)
]2

[

1− e2πfτ0(1−α2,1)
]2 . (74)

With Assumption (i) and the approximation in (55), we have

B [h2,0(f), cos θ] ≈
1

(1− α2,1)
2 (cos θ − α2,1)

2 . (75)
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We find that the WNG is

W [h2,0(f)] =
1

6

∣

∣

∣
1− e2πfτ0(1−α2,1)

∣

∣

∣

4

(76)

=
2

3
{1− cos [2πfτ0 (1− α2,1)]}2 ,

which can be approximated as

W [h2,0(f)] ≈
1

6
[2πfτ0 (1− α2,1)]

4
. (77)

The WNG of the beamformer with the second-order design is much
worse than the WNG of the beamformer with the first-order design.
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Design Examples

In this section, we design and compare two second-order DSAs.

The first is a second-order cardioid with h2,0(f) and α2,1 = −1, that
has a unique multiple null at θ = π.

The second DSA is a second-order cardioid with h2(f),
α2,1 = −1, β2,1 = 0, α2,2 = 0, β2,2 = 0, that has two distinct nulls at
θ = π

2 and π.

Figures 11 and 12 display the patterns of the two second-order
cardioids for low and high frequencies and two values of δ.

As long as δ is small, the beampatterns of the second-order DSAs
are frequency independent.

When δ is too large, the beampatterns at high frequencies deteriorate.
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Figure 11: Beampatterns of the second-order cardioid, h2,0(f), with a unique multiple
null at θ = π, for low and high frequencies, and two values of δ: (a) f = 0.5 kHz,
δ = 1 cm, (b) f = 7 kHz, δ = 1 cm, (c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz,
δ = 4 cm.
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Figure 12: Beampatterns of the second-order cardioid, h2(f), with two distinct nulls at
θ = π

2
and π, for low and high frequencies, and two values of δ: (a) f = 0.5 kHz,

δ = 1 cm, (b) f = 7 kHz, δ = 1 cm, (c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz,
δ = 4 cm.
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Figure 13 shows plots of the DFs of the two second-order cardioids,
D [h2,0(f)] and D [h2(f)] for several values of δ.

Corresponding plots of the WNG are depicted in Fig. 14.

We observe that D [h2(f)] is higher than D [h2,0(f)], but at the
expense of lower WNG.

Furthermore, similar to the first-order DSAs, increasing δ enables to
increase the WNG, especially at low frequencies.

However, a large δ is in contradiction with the DSA assumption.

Therefore, δ should be selected according to the compromise
between white noise amplification at low frequencies and
frequency-independent directivity pattern at high frequencies.
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Figure 13: DF of second-order DSAs as a function of frequency, for several values of
δ: δ = 1 cm (solid line with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm
(dotted line with squares), and δ = 4 cm (dash-dot line with triangles). (a)
Second-order cardioid, h2,0(f), with a unique multiple null at θ = π, and (b)
second-order cardioid, h2(f), with two distinct nulls at θ = π

2
and π.
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Figure 14: WNG of second-order DSAs as a function of frequency, for several values
of δ: δ = 1 cm (solid line with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm
(dotted line with squares), and δ = 4 cm (dash-dot line with triangles). (a)
Second-order cardioid, h2,0(f), with a unique multiple null at θ = π, and (b)
second-order cardioid, h2(f), with two distinct nulls at θ = π

2
and π.
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Third-Order Design

We start this part by deriving an important family of third-order
differential beamformers whose beampatterns have three distinct
nulls.

This can be done with exactly four omnidirectional sensors.

It is clear that the linear system of four equations tailored for the
derivation of such beamformers is









dH (f, 1)
dH (f, α3,1)
dH (f, α3,2)
dH (f, α3,3)









h(f) =









1
0
0
0









, (78)

where −1 ≤ α3,1 = cos θ3,1 < 1, −1 ≤ α3,2 = cos θ3,2 < 1,
−1 ≤ α3,3 = cos θ3,3 < 1, and α3,1 6= α3,2 6= α3,3.
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We denote by

V(f) =









dH (f, 1)
dH (f, α3,1)
dH (f, α3,2)
dH (f, α3,3)









=









1 v1(f) v21(f) v31(f)
1 v2(f) v22(f) v32(f)
1 v3(f) v23(f) v33(f)
1 v4(f) v24(f) v34(f)









(79)

the 4× 4 Vandermonde matrix that appears in (78), where
v1(f) = e2πfτ0, v2(f) = e2πfτ0α3,1 , v3(f) = e2πfτ0α3,2 , and
v4(f) = e2πfτ0α3,3 .

Because of the structure of the vector on the right-hand side of (78),
we only need to compute the first column of V−1(f) to find h(f).
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Using the decomposition V−1(f) = U(f)L(f) [4], the matrix U(f),
and the first column of L(f), we find that the first column of V−1(f) is

V−1 (f ; :, 1) =





















v2v3v4
(v2 − v1) (v3 − v1) (v4 − v1)

− v2v3 + v3v4 + v2v4
(v2 − v1) (v3 − v1) (v4 − v1)

v2 + v3 + v4
(v2 − v1) (v3 − v1) (v4 − v1)

− 1

(v2 − v1) (v3 − v1) (v4 − v1)





















. (80)
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From the previous expression, we easily find that the solution is

h3(f) =
1

[

1− e2πfτ0(1−α3,1)
] [

1− e2πfτ0(1−α3,2)
] [

1− e2πfτ0(1−α3,3)
]×









1
−e−2πfτ0α3,1 − e−2πfτ0α3,2 − e−2πfτ0α3,3

e−2πfτ0(α3,1+α3,2) + e−2πfτ0(α3,2+α3,3) + e−2πfτ0(α3,1+α3,3)

−e−2πfτ0(α3,1+α3,2+α3,3)









.

(81)

Now, let us derive differential beamformers whose beampatterns
have a unique null in the direction α3,1 with multiplicity 3.
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Using the facts that

dB [h(f), α]

dα

∣

∣

∣

∣

α=α3,1

= 2πfτ0 [Σd (f, α3,1)]
H
h(f) = 0 (82)

and

d2B [h(f), α]

dα2

∣

∣

∣

∣

α=α3,1

= (2πfτ0)
2 [

Σ2d (f, α3,1)
]H

h(f) = 0, (83)

where

Σ = diag (0, 1, 2, 3) (84)

is a diagonal matrix, we easily find that the linear system to solve is








dH (f, 1)
dH (f, α3,1)

[Σd (f, α3,1)]
H

[

Σ2d (f, α3,1)
]H









h(f) =









1
0
0
0









. (85)
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We deduce that the solution is

h3,0(f) =
1

[

1− e2πfτ0(1−α3,1)
]3









1
−3e−2πfτ0α3,1

3e−4πfτ0α2,1

−e−6πfτ0α2,1









. (86)

The beampattern corresponding to the beamformer h3,0(f) is

B [h3,0(f), cos θ] =

[

1− e2πfτ0(cos θ−α3,1)
]3

[

1− e2πfτ0(1−α3,1)
]3 (87)

and can be approximated as

B [h3,0(f), cos θ] ≈
1

(1− α3,1)
3 (cos θ − α3,1)

3
, (88)
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which is identical to the theoretical third-order DSA beampattern with
a unique null with multiplicity 3.

The WNG is

W [h3,0(f)] =
1

20

∣

∣

∣
1− e2πfτ0(1−α3,1)

∣

∣

∣

6

(89)

=
2

5
{1− cos [2πfτ0 (1− α3,1)]}3 ,

which we can approximate as

W [h3,0(f)] ≈
1

20
[2πfτ0 (1− α3,1)]

6
. (90)

The generalization of the beamformers h3(f) and h3,0(f) to any order
is straightforward.
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It is also possible to derive differential beamformers directly from
some of the performance measures.

There are two possibilities.

The first beamformer is obtained by maximizing the DF as defined in
(23).

Considering the distortionless constraint, we easily get the
hypercardioid of order M − 1:

hHd(f) =
Γ−1
0,π(f)d (f, 1)

dH (f, 1)Γ−1
0,π(f)d (f, 1)

, (91)

which is, actually, the superdirective beamformer.

The second differential beamformer is obtained by maximizing the
FBR as defined in (10).
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If we denote by t1(f) the eigenvector corresponding to the maximum
eigenvalue of the matrix Γ−1

π/2,π(f)Γ0,π/2(f) and taking into account
the distortionless constraint, we get the supercardioid of order M − 1:

hSd(f) =
t1(f)

dH (f, 1) t1(f)
. (92)

Design Examples

In this section, we design and compare four third-order DSAs.

The first is a third-order cardioid with h3,0(f) and α3,1 = −1, that has
a unique multiple null at θ = π.

The second DSA is a third-order DSA with h3(f), α3,1 = 0, α3,2 = − 1
2 ,

and α3,3 = −1, that has three distinct nulls at θ = π
2 , 2π

3 and π.

Benesty, Cohen, and Chen Differential Beamforming 71\96



Introduction
Signal Model and Problem Formulation

Beampatterns
Front-to-Back Ratios

Array Gains
Differential Beamformers

N th-Order Differential Beamformers
First-Order Design
Second-Order Design
Third-Order Design
Minimum-Norm Beamformers

The third and fourth DSAs are, respectively, the third-order
hypercardioid with hHd(f) and the third-order supercardioid with
hSd(f).

Figures 15–18 display the patterns of the four third-order DSAs for
low and high frequencies and two values of δ.

As long as δ is small, the beampatterns of the third-order DSAs are
frequency independent.

When δ is too large, the beampatterns at high frequencies deteriorate.
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Figure 15: Beampatterns of the third-order cardioid, h3,0(f), with a unique multiple
null at θ = π, for low and high frequencies, and two values of δ: (a) f = 0.5 kHz,
δ = 1 cm, (b) f = 7 kHz, δ = 1 cm, (c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz,
δ = 4 cm.
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Figure 16: Beampatterns of the third-order DSA, h3(f), with three distinct nulls at
θ = π

2
, 2π

3
, and π, for low and high frequencies, and two values of δ: (a) f = 0.5 kHz,

δ = 1 cm, (b) f = 7 kHz, δ = 1 cm, (c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz,
δ = 4 cm.
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Figure 17: Beampatterns of the third-order hypercardioid, hHd(f), for low and high
frequencies, and two values of δ: (a) f = 0.5 kHz, δ = 1 cm, (b) f = 7 kHz, δ = 1 cm,
(c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz, δ = 4 cm.
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Figure 18: Beampatterns of the third-order supercardioid, hSd(f), for low and high
frequencies, and two values of δ: (a) f = 0.5 kHz, δ = 1 cm, (b) f = 7 kHz, δ = 1 cm,
(c) f = 0.5 kHz, δ = 4 cm, and (d) f = 7 kHz, δ = 4 cm.
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Figure 19 shows plots of the DFs of the four third-order DSAs,
D [h3,0(f)], D [h3(f)], D [hHd(f)], and D [hSd(f)], as a function of
frequency for several values of δ.

Corresponding plots of the WNG are depicted in Fig. 20.

We observe that the highest DF is obtained with the third-order
hypercardioid, but at the cost of the lowest WNG.

The highest WNG is obtained with the third-order cardioid that has a
unique multiple null, but at the cost of the lowest DF.

The DF of the third-order cardioid with three distinct nulls is higher
than that of the third-order cardioid with a unique multiple null, but at
the expense of lower WNG.
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Furthermore, similar to the first- and second-order DSAs, increasing δ
enables to increase the WNG, especially at low frequencies.

However, a large value of δ is in contradiction with the DSA
assumption, which results in deterioration of the beampatterns at high
frequencies.

Therefore, the value of δ should be selected according to the
compromise between white noise amplification at low frequencies
and frequency-independent directivity pattern at high frequencies.
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Figure 19: DF of third-order DSAs as a function of frequency for δ = 1 cm (solid line
with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm (dotted line with squares),
and δ = 4 cm (dash-dot line with triangles). (a) h3,0(f), with a multiple null at θ = π,
(b) h3(f), with nulls at θ = π
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Figure 20: WNG of third-order DSAs as a function of frequency for δ = 1 cm (solid
line with circles), δ = 2 cm (dashed line with asterisks), δ = 3 cm (dotted line with
squares), and δ = 4 cm (dash-dot line with triangles). (a) h3,0(f), with a multiple null
at θ = π, (b) h3(f), with nulls at θ = π
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Minimum-Norm Beamformers

In the three previous sections, we could observe that the major
drawback of DSAs is white noise amplification.

As the order increases, the amplification of white noise worsens.

The best way to deal with this fundamental problem is to unconnect
the order of the DSAs from the number of sensors and increase this
latter for a fixed order.

Consequently, we could use this degree of freedom to maximize the
WNG [4].
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We know from the previous sections that any DSA of order N can be
designed by solving the linear system of N + 1 equations:

D (f,α)h(f) = β, (93)

where

D (f,α) =











dH (f, 1)
dH (f, αN,1)

...
dH (f, αN,N)











(94)

is the constraint matrix of size (N + 1)×M ,
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d (f, αN,n) =
[

1 e−2πfτ0αN,n · · · e−(M−1)2πfτ0αN,n
]T
,

n = 1, 2, . . . , N (95)

is a steering vector of length M ,

h(f) =
[

H1(f) H2(f) · · · HM (f)
]T

(96)

is a filter of length M , and

α =
[

1 αN,1 · · · αN,N
]T
, (97)

β =
[

1 βN,1 · · · βN,N
]T
, (98)

are vectors of length N + 1 containing the design coefficients of the
directivity pattern.
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In previous sections, only the case M = N + 1 was considered.

This is also the case in all known approaches in the literature [3].

But, obviously from (93), nothing prevents us from taking M > N + 1.

Now, assume that M ≥ N + 1, then we can maximize the WNG
subject to (93), i.e.,

min
h(f)

hH(f)h(f) subject to D (f,α)h(f) = β. (99)

Obviously, the solution of the above problem is

hMN (f,α,β) = DH (f,α)
[

D (f,α)DH (f,α)
]−1

β, (100)

which is the minimum-norm solution of (93).
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The vectors α and β of length N + 1 determine the beampattern and
the order of the DSA.

Basically, the length of these vectors determine (roughly) the order of
the DSA while their values determine the beampattern.

Meanwhile, the length, M , of the minimum-norm beamformer,
hMN (f,α,β), can be much larger than N + 1, which will help make it
robust against white noise amplification.

In this case, the WNG should approach M and the order of the DSA
may not be equal to N anymore but the N th-order DSA fundamental
constraints will always be fulfilled.

As a result, the resulting shape of the directivity pattern may slightly
be different than the one obtained with M = N + 1.
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It is easy to see that the beampattern, the WNG, and the DF of the
minimum-norm beamformer are, respectively,

B [hMN (f,α,β) , cos θ] = dH (f, cos θ)hMN (f,α,β) (101)

= dH (f, cos θ)DH (f,α)
[

D (f,α)DH (f,α)
]−1

β,

W [hMN (f,α,β)] =
1

βT [D (f,α)DH (f,α)]
−1

β
, (102)

and

D [hMN (f,α,β)] =
1

hHMN (f,α,β)Γ0,π(f)hMN (f,α,β)
. (103)
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In the same way, we can design a robust DSA whose beampattern
has a null in the direction αN,1 with multiplicity N .

The constraint equation is

D0 (f, αN,1)h(f) = i1, (104)

where

D0 (f, αN,1) =















dH (f, 1)
dH (f, αN,1)

[Σd (f, αN,1)]
H

...
[

ΣN−1d (f, αN,1)
]H















(105)

is a matrix of size (N + 1)×M , Σ = diag (0, 1, . . . ,M − 1) is a
diagonal matrix, and i1 is the first column of the (N + 1)× (N + 1)
identity matrix, IN+1.
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Assuming that M ≥ N + 1, the maximization of the WNG subject to
(104) leads to the minimum-norm beamformer:

hMN,0 (f, αN,1) = DH
0 (f, αN,1)

[

D0 (f, αN,1)D
H
0 (f, αN,1)

]−1
i1. (106)

Design Examples

In this section, we demonstrate the effectiveness of the
minimum-norm filter in the design of robust DSAs.

Fundamentally, we exploit the fact that we have many more sensors
than the order of the DSA.

We design and compare two third-order DSAs with different δ.

The first is a a third-order DSA with three distinct nulls with
hMN (f,α,β).
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In this scenario, we have

α =

[

1 0 −1

2
−1

]T

, β =
[

1 0 0 0
]T
. (107)

The second DSA is a third-order cardioid with hMN,0 (f, α3,1) and
α3,1 = −1.

In both cases, the interelement spacing is δ = 5 mm.

Figures 21 and 22 display the patterns of the two minimum-norm
third-order DSAs for low and high frequencies, and two values of M .

At low frequencies, the patterns for M = 8 look similar to the patterns
for M = 4.

At high frequencies, the patterns for M = 8 look less directional than
the patterns for M = 4.
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Figure 21: Beampatterns of a third-order DSA with three distinct nulls, hMN (f,α,β),
for low and high frequencies, and two values of M : (a) f = 0.5 kHz, M = 4, (b)
f = 7 kHz, M = 4, (c) f = 0.5 kHz, M = 8, and (d) f = 7 kHz, M = 8.
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Figure 22: Beampatterns of a third-order cardioid, hMN,0 (f, α3,1), with α3,1 = −1,
for low and high frequencies, and two values of M : (a) f = 0.5 kHz, M = 4, (b)
f = 7 kHz, M = 4, (c) f = 0.5 kHz, M = 8, and (d) f = 7 kHz, M = 8.
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Figure 23 shows plots of the DFs of the two third-order DSAs,
D [hMN (f,α,β)] and D [hMN,0 (f, α3,1)] for several values of M .

Corresponding plots of the WNG are depicted in Fig. 24.

For M = 4, the DF is almost constant up to 8 kHz.

As M increases, the frequency range for which the DF is constant
decreases, but at high frequencies, we can get much higher WNG
than at low frequencies.

Increasing M enables to increase the WNG, but the DF at high
frequencies decreases.

Furthermore, for a M , the DF D [hMN (f,α,β)] is higher than
D [hMN,0 (f, α3,1)], but at the expense of lower WNG.
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Figure 23: DF of third-order DSAs with minimum-norm filters as a function of
frequency, for different values of M : M = 4 (solid line with circles), M = 6 (dashed
line with asterisks), M = 8 (dotted line with squares), and M = 10 (dash-dot line with
triangles). (a) Third-order DSA with three distinct nulls, hMN (f,α,β), and
(b) third-order cardioid, hMN,0 (f, α3,1), with α3,1 = −1.
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Figure 24: WNG of third-order DSAs with minimum-norm filters as a function of
frequency, for different values of M : M = 4 (solid line with circles), M = 6 (dashed
line with asterisks), M = 8 (dotted line with squares), and M = 10 (dash-dot line with
triangles). (a) Third-order DSA with three distinct nulls, hMN (f,α,β), and
(b) third-order cardioid, hMN,0 (f, α3,1), with α3,1 = −1.
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Table 1: Differential beamformers.

First-Order: h1(f) =
1

1 − e
2πfτ0

(

1−α1,1

)





1

−e
−2πfτ0α1,1





Second-Order: h2(f) = U(f)L(f)









1

β2,1

β2,2









h2,0(f) =
1

[

1 − e
2πfτ0

(

1−α2,1

)

]2









1

−2e
−2πfτ0α2,1

e
−4πfτ0α2,1









Third-Order: Equation (81)

h3,0(f) =
1

[

1 − e
2πfτ0

(

1−α3,1

)

]3















1

−3e
−2πfτ0α3,1

3e
−4πfτ0α2,1

−e
−6πfτ0α2,1















Hypercardioid: hHd(f) =
Γ
−1
0,π(f)d (f, 1)

dH (f, 1) Γ
−1
0,π

(f)d (f, 1)

Supercardioid: hSd(f) =
t1(f)

dH (f, 1) t1(f)

Minimum-Norm: hMN (f, α,β) = D
H

(f,α)
[

D (f,α) D
H

(f, α)
]−1

β

hMN,0

(

f, αN,1

)

= D
H
0

(

f, αN,1

) [

D0

(

f, αN,1

)

D
H
0

(

f, αN,1

)]−1
i1

Benesty, Cohen, and Chen Differential Beamforming 95\96



Introduction
Signal Model and Problem Formulation

Beampatterns
Front-to-Back Ratios

Array Gains
Differential Beamformers

N th-Order Differential Beamformers
First-Order Design
Second-Order Design
Third-Order Design
Minimum-Norm Beamformers

[1] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing. Berlin,
Germany: Springer-Verlag, 2008.

[2] G. W. Elko and J. Meyer, “Microphone arrays,” in Springer Handbook of Speech
Processing, J. Benesty, M. M. Sondhi, and Y. Huang, Eds., Berlin, Germany:
Springer-Verlag, 2008, Chapter 50, pp. 1021–1041.

[3] G. W. Elko, “Superdirectional microphone arrays,” in Acoustic Signal Processing
for Telecommunication, S. L. Gay and J. Benesty, Eds. Boston, MA: Kluwer
Academic Publishers, 2000, Chapter 10, pp. 181–237.

[4] J. Benesty and J. Chen, Study and Design of Differential Microphone Arrays.
Berlin, Germany: Springer-Verlag, 2012.

[5] J. Chen, J. Benesty, and C. Pan “On the design and implementation of linear
differential microphone arrays,” J. Acoust. Soc. Am., vol. 136, pp. 3097–3113,
Dec. 2014.

[6] R. N. Marshall and W. R. Harry, “A new microphone providing uniform directivity
over an extended frequency range,” J. Acoust. Soc. Am., vol. 12, pp. 481–497,
1941.

Benesty, Cohen, and Chen Differential Beamforming 96\96


	Introduction
	Signal Model and Problem Formulation
	Beampatterns
	Front-to-Back Ratios
	Array Gains
	Differential Beamformers
	Nth-Order Differential Beamformers
	First-Order Design
	Second-Order Design
	Third-Order Design
	Minimum-Norm Beamformers


