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Introduction

The signal enhancement problems in the time or frequency domain,
with one sensor or multiple sensors, are similar.

Within a unified framework, we derive a large class of optimal linear
filters as well as filters whose output signal-to-interference-plus-noise
ratios (SINRs) are between the conventional maximum SINR and
Wiener filters.

We present filters that compromise between interference-plus-noise
reduction and desired-signal distortion.

This talk also serves as a bridge between the problem of noise
reduction and beamforming.
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Signal Model and Problem Formulation

We consider the very general signal model of an observations’ signal
vector of length M :

y =
[
y1 y2 · · · yM

]T

= x+ v0 +

N∑

n=1

vn

= x+ v0 + v, (1)

where x is the desired-signal vector, v0 is the additive white noise
signal vector, vn, n = 1, 2, . . . , N are N interferences, and
v =

∑N
n=1

vn.

All vectors on the right-hand side of (1) are defined similarly to the
noisy signal vector, y.
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The entries of y can be, for example, the signals picked up by M
sensors.

All signals are considered to be random, complex, circular, zero
mean, and stationary.

Furthermore, the vectors x, v0, and vn, n = 1, 2, . . . , N are assumed
to be mutually uncorrelated, i.e., E

(
xvH

0

)
= E

(
xvH

n

)
= E

(
v0v

H
n

)
=

E
(
viv

H
j

)
= 0, ∀i 6= j, i, j = 1, 2, . . . , N .
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In this context, the correlation matrix (of size M ×M ) of the
observations can be written as

Φy = E
(
yyH

)
(2)

= Φx +Φv0
+

N∑

n=1

Φvn

= Φx +Φv0
+Φv

= Φx +Φin,

where Φx = E
(
xxH

)
, Φv0

= E
(
v0v

H
0

)
, and Φvn

= E
(
vnv

H
n

)
are

the correlation matrices of x, v0, and vn, respectively,
Φv =

∑N

n=1
Φvn

, and Φin = Φv0
+Φv is the interference-plus-noise

correlation matrix.
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Since v0 is assumed to be white, its correlation matrix simplifies to

Φv0
= φv0IM , where φv0 = E

(
|v0|

2
)

is the variance of v0, the first

component of v0.

In the rest, the desired-signal and interference correlation matrices
are assumed to have the following ranks: rank (Φx) = Rx ≤ M and
rank (Φvn

) = Rvn < M .

Let Rv = min
(∑N

n=1
Rvn ,M

)
, we deduce that rank (Φv) = Rv and,

obviously, rank (Φin) = M .

Then, the objective of signal enhancement (or noise reduction) is to
estimate the first element of x, i.e., x1 (the desired signal sample),
from the different second-order statistics available from (2) in the best
possible way in some sense.
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This should be done in such a way that the noise and the
interferences are reduced as much as possible with little or no
distortion of the desired signal.

The matrix Φy can be easily estimated from the observations but Φv0

and Φv are more tricky to estimate.

However, in many applications, it is still possible to get reliable
estimates of these matrices [1], [2], which will be assumed here.

A very important particular case of the model described above is the
conventional beamforming problem, which can be formulated as [3],
[4]

y = dx1 + v0 + v, (3)

where d is the steering vector of length M , whose first entry is equal
to 1.

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 8\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

This vector can be deterministic or random. In the former case, the
desired-signal correlation matrix is Φx = φx1

ddH , whose rank is,

indeed, equal to 1, where φx1
= E

(
|x1|

2
)

is the variance of x1.

When the steering vector is random, the rank of Φx is no longer 1 [5].

Some decompositions of the different matrices are necessary in order
to fully exploit the structure of the signals.

Using the well-known eigenvalue decomposition [6], the
desired-signal correlation matrix can be diagonalized as

QH
x ΦxQx = Λx, (4)

where

Qx =
[
qx,1 qx,2 · · · qx,M

]
(5)
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is a unitary matrix, i.e., QH
x Qx = QxQ

H
x = IM and

Λx = diag (λx,1, λx,2, . . . , λx,M ) (6)

is a diagonal matrix.

The orthonormal vectors qx,1,qx,2, . . . ,qx,M are the eigenvectors
corresponding, respectively, to the eigenvalues λx,1, λx,2, . . . , λx,M of
the matrix Φx, where λx,1 ≥ λx,2 ≥ · · · ≥ λx,Rx

> 0 and
λx,Rx+1 = λx,Rx+2 = · · · = λx,M = 0.

In the same way, the nth interference correlation matrix can be
diagonalized as

QH
vn

Φvn
Qvn

= Λvn
, (7)

where the unitary and diagonal matrices Qvn
and Λvn

are defined in
a similar way to Qx and Λx, respectively, with
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λvn,1 ≥ λvn,2 ≥ · · · ≥ λvn,Rvn
> 0 and

λvn,Rvn+1 = λvn,Rvn+2 = · · · = λvn,M = 0.

It may also be useful to diagonalize the matrix Φv as well, i.e.,

QH
v ΦvQv = Λv, (8)

where Qv and Λv are similarly defined to Qx and Λx, respectively,
with λv,1 ≥ λv,2 ≥ · · · ≥ λv,Rv

> 0 and
λv,Rv+1 = λv,Rv+2 = · · · = λv,M = 0.
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Linear Filtering for Signal Enhancement

By far, the most convenient and practical way to perform signal
enhancement, i.e., to estimate the desired-signal, x1, is by applying a
linear filter to the observation signal vector, y, as illustrated in Fig. 1.

+

v

v0

hHx
y

z

Figure 1: Block diagram of linear filtering.
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That is,

z = hHy (9)

= hH (x+ v0 + v)

= xfd + vrn + vri,

where z is the estimate of x1 or the filter output signal,

h =
[
h1 h2 · · · hM

]T
(10)

is a complex-valued filter of length M ,

xfd = hHx (11)

is the filtered desired signal,
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vrn = hHv0 (12)

is the residual noise, and

vri = hHv (13)

is the residual interference.

We deduce that the variance of z is

φz = E
(
|z|

2
)
= φxfd

+ φvrn + φvri ,

where

φxfd
= hHΦxh, (14)

φvrn = φv0h
Hh, (15)

φvri = hHΦvh. (16)
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Performance Measures
Signal-to-Interference-Plus-Noise Ratio

Performance measures are not only useful for the derivation of
different kind of optimal filters in some sense but also for their
evaluations.

These measures can be divided into two distinct but related
categories.

The first category evaluates the noise reduction performance while
the second one evaluates the desired-signal distortion.

One of the most fundamental measures in our context is the
signal-to-interference-plus-noise ratio (SINR).
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The input SINR is a second-order measure, which quantifies the level
of the interference-plus-noise present relative to the level of the
desired signal.

By taking the first element of y as the reference, this measure is
defined as

iSINR =
φx1

φv0 + φv

, (17)

where φv is the variance of v =
∑N

n=1
vn1, with vn1 being the first

entry of vn.

Another interesting measure is the input signal-to-interference ratio
(SIR):

iSIR =
φx1

φv

. (18)
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The output SINR helps quantify the level of the
interference-plus-noise remaining at the filter output signal.

The output SINR is obtained from (14):

oSINR (h) =
φxfd

φvrn + φvri

(19)

=
hHΦxh

hHΦinh
.

Basically, (19) is the variance of the first signal (filtered desired) from
the right-hand side of (14) over the variance of the two other signals
(residual interference-plus-noise).

Since the matrix Φin in the denominator of (19) is full rank, the output
SINR is upper bounded.
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The objective of the signal enhancement filter is to make the output
SINR greater than the input SINR.

Consequently, the quality of the filter output signal may be enhanced
as compared to the noisy signal.

It is straightforward to see that the output SIR is

oSIR (h) =
hHΦxh

hHΦvh
. (20)

Since the matrix Φv in the denominator of (20) may not be full rank,
the output SIR may not be upper bounded.

For the particular filter of length M :

ii =
[
1 0 · · · 0

]T
, (21)

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 18\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Signal-to-Interference-Plus-Noise Ratio
Desired-Signal Distortion Index
Mean-Squared Error

we have

oSINR (ii) = iSINR, (22)

oSIR (ii) = iSIR. (23)

With the identity filter, ii, neither the SINR nor the SIR can be
improved.
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Desired-Signal Distortion Index

Since the noise and interferences are reduced by the filtering
operation, so is, in general, the desired-signal.

This implies distortion that we can measure with the desired-signal
distortion index, which is defined as the MSE between the desired
signal and the filtered desired signal, normalized by the variance of
the desired signal, i.e.,

υ (h) =
E
(
|xfd − x1|

2
)

E
(
|x1|

2
) (24)

=
(h− ii)

H
Φx (h− ii)

φx1

.

The desired-signal distortion index is close to 0 if there is little
distortion and expected to be greater than 0 when distortion occurs.

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 20\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Signal-to-Interference-Plus-Noise Ratio
Desired-Signal Distortion Index
Mean-Squared Error

Mean-Squared Error

Error criteria play a critical role in deriving optimal filters.

The MSE [7] as we already know is, by far, the most practical one.

We define the error signal between the estimated and desired signals
as

e = z − x1 (25)

= xfd + vrn + vri − x1,

which can be written as the sum of three mutually uncorrelated error
signals:

e = ed + en + ei, (26)
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where

ed = xfd − x1 (27)

= (h− ii)
H
x

is the desired-signal distortion due to the filter,

en = vrn = hHv0 (28)

is the residual noise, and

ei = vri = hHv (29)

is the residual interference.
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Therefore, the MSE criterion is

J (h) = E
(
|e|

2
)

(30)

= φx1
+ hHΦyh− hHΦxii − iTi Φxh

= Jd (h) + Jn (h) + Ji (h) ,

where

Jd (h) = E
(
|ed|

2
)

(31)

= (h− ii)
H
Φx (h− ii) = φx1

υ (h) ,

Jn (h) = E
(
|en|

2
)
= φv0h

Hh, (32)

Ji (h) = E
(
|ei|

2
)
= hHΦvh. (33)
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Optimal Filters
Wiener

In this section, we derive a large class of well-known optimal linear
filters by fully exploiting the structure of the signals, which was not
really done before.

For that, performance measures of the previous section are of great
help as well as the appropriate subspace, depending on what we
desire.

The Wiener filter is derived by taking the gradient of the MSE, J (h)
[eq. (30)], with respect to h and equating the result to zero:

hW = Φ−1
y Φxii. (34)
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This optimal filter can also be expressed as

hW =
(
IM −Φ−1

y Φin

)
ii. (35)

The above formulation is more interesting in practice since it depends
on the second-order statistics of the observation and
interference-plus-noise signals.

The correlation matrix Φy can be immediately estimated from the
observation signal while the other correlation matrix, Φin, is often
known or can be indirectly estimated.

In speech applications, for example, this matrix can be estimated
during silences.
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Let

Qx =
[
Q′

x Q′′
x

]
, (36)

where the M ×Rx matrix Q′
x contains the eigenvectors

corresponding to the nonzero eigenvalues of Φx and the
M × (M −Rx) matrix Q′′

x contains the eigenvectors corresponding to
the null eigenvalues of Φx.

It can be verified that

IM = Q′
xQ

′H
x +Q′′

xQ
′′H
x . (37)

Notice that Q′
xQ

′H
x and Q′′

xQ
′′H
x are two orthogonal projection

matrices of rank Rx and M −Rx, respectively.

Hence, Q′
xQ

′H
x is the orthogonal projector onto the desired-signal

subspace (where all the energy of the desired signal is concentrated)
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or the range of Φx and Q′′
xQ

′′H
x is the orthogonal projector onto the

null subspace of Φx.

With the eigenvalue decomposition of Φx, the correlation matrix of
the observations’ signal vector can be written as

Φy = Q′
xΛ

′
xQ

′H
x +Φin, (38)

where

Λ′
x = diag (λx,1, λx,2, . . . , λx,Rx

) (39)

is a diagonal matrix of size Rx ×Rx.

Determining the inverse of Φy from (38) with the Woodbury’s identity,
we get

Φ−1
y = Φ−1

in
−Φ−1

in
Q′

x

(
Λ′−1

x +Q′H
x Φ−1

in
Q′

x

)−1
Q′H

x Φ−1
in

. (40)
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Substituting (40) into (34), leads to another interesting formulation of
the Wiener filter:

hW = Φ−1
in

Q′
x

(
Λ′−1

x +Q′H
x Φ−1

in
Q′

x

)−1
Q′H

x ii. (41)

It can be shown that with the optimal Wiener filter given in (34), the
output SINR is always greater than or equal to the input SINR, i.e.,
oSINR (hW) ≥ iSINR [8].
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Example 1

Consider a ULA of M sensors. Suppose that a desired signal
impinges on the ULA from the direction θx and that an interference
impinges on the ULA from the direction θv.

Assume that the desired signal received at the first sensor is a
complex harmonic random process:

x1(t) = A exp (2πf0t+ ϕ) ,

with fixed amplitude A and frequency f0, and random phase ϕ,
uniformly distributed on the interval from 0 to 2π.

Assume that the interference received at the first sensor, v1(t), is a
random process with the autocorrelation sequence:

E [v1(t)v1(t
′)] = α|t−t′|, −1 < α < 1.
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In addition, the sensors contain thermal white Gaussian noise, whose
correlation matrix is Φv0

= φv0IM .

The desired signal needs to be recovered from the noisy observation,
y(t) = dx1(t) + v0 + v, where d is the steering vector of the desired
signal.

Since the desired source impinges on the ULA from the direction θx,
we have for m = 2, . . . ,M :

xm(t) = x1 (t− τx,m) = e−2πf0τx,mx1 (t) ,

where

τx,m =
(m− 1)d cos θx

cTs
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is the relative time delay in samples between the desired signals
xm(t) and x1(t) received at the mth sensor and the first one, and Ts is
the sampling interval.

Hence, x(t) = dx1(t), where

d =
[
1 e− 2πf0τx,2 e− 2πf0τx,3 · · · e− 2πf0τx,M

]T
.

Similarly,

um(t) = u1 (t− τv,m) ,

where

τv,m =
(m− 1)d cos θv

cTs

is the relative time delay in samples between the interferences
received at the mth sensor and the first one.
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Assuming that the sampling interval satisfies Ts =
d
c
, we have

τx,m = (m− 1) cos θx and τv,m = (m− 1) cos θv.

The desired-signal correlation matrix is Φx = φx1
ddH , where

φx1
= A2.

The elements of the M ×M correlation matrix of the interference are
[Φv]i,j = α|τv,i−τv,j |.

The input SINR is

iSINR = 10 log
A2

φv0 + 1
(dB).

The optimal filter hW is obtained from (34).

To demonstrate the performance of the Wiener filter, we choose
f0 = 0.1, θx = 90◦, θv = 0◦, α = 0.9, and φv0 = 0.1.
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Figure 2 shows plots of the gain in SINR,
G (hW) = oSINR(hW) /iSINR, the MSE, J (hW), and the
desired-signal distortion index, υ (hW), as a function of the input
SINR for different numbers of sensors, M . The gain in SINR is
always positive.

For a given input SINR, as the number of sensors increases, the gain
in SINR increases, while the MMSE and the desired-signal distortion
index decrease.

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 33\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Wiener
MVDR
Tradeoff
LCMV
Maximum SINR
Maximum SIR

−5 0 5 10 15
1

2

3

4

5

6

7

8

9

−5 0 5 10 15
−30

−25

−20

−15

−10

−5

−5 0 5 10 15
−50

−40

−30

−20

−10

0

iSINR (dB) iSINR (dB)

iSINR (dB)

(a) (b)

(c)

G
(h

W
)

(d
B

)

J
(h

W
)

(d
B

)

υ
(h

W
)

(d
B

)

Figure 2: (a) The gain in SINR, (b) the MSE, and (c) the desired-signal distortion
index of the Wiener filter for different numbers of sensors, M : M = 10 (solid line with
circles), M = 20 (dashed line with asterisks), M = 50 (dotted line with squares), and
M = 100 (dash-dot line with triangles).
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MVDR

In this subsection, we derive a distortionless filter, which is able to
reduce the interference-plus-noise, by exploiting the nullspace of Φx.

Using (37), we can write the desired-signal vector as

x = QxQ
H
x x (42)

= Q′
xQ

′H
x x.

We deduce from (42) that the distortionless constraint is

hHQ′
x = iTi Q

′
x, (43)

since, in this case,

hHx = hHQ′
xQ

′H
x x (44)

= iTi Q
′
xQ

′H
x x

= x1.
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Now, from the minimization of the criterion:

min
h

[Jn (h) + Ji (h)] subject to hHQ′
x = iTi Q

′
x, (45)

that is the minimization of the residual interference-plus-noise subject
to the distortionless constraint, we find the MVDR filter:

hMVDR = Φ−1
in

Q′
x

(
Q′H

x Φ−1
in

Q′
x

)−1
Q′H

x ii. (46)

It is interesting to compare this filter with the form of the Wiener filter
given in (41).

It can be shown that (46) can also be expressed as

hMVDR = Φ−1
y Q′

x

(
Q′H

x Φ−1
y Q′

x

)−1
Q′H

x ii. (47)

It can be verified that, indeed, Jd (hMVDR) = 0.
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Of course, for Rx = M , the MVDR filter simplifies to the identity filter,
i.e., hMVDR = ii.

As a consequence, we can state that the higher is the dimension of
the nullspace of Φx, the more the MVDR filter is efficient in terms of
noise reduction. The best scenario corresponds to Rx = 1, which is
the form of the MVDR filter that is well known in the literature.

The case Rx > 1 was discovered only recently [9], [10].

It can be shown that with the MVDR filter given in (46), the output
SINR is always greater than or equal to the input SINR, i.e.,
oSINR(hMVDR) ≥ iSINR [11].
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Example 2

Returning to Example 1, we now employ the MVDR filter, hMVDR,
given in (46).

Figure 3 shows plots of the gain in SINR, G (hMVDR), and the MSE,
J (hMVDR), as a function of the input SINR for different numbers of
sensors, M .

The desired-signal distortion index, υ (hMVDR), is zero.

The gain in SINR is always positive. For a given input SINR, as the
number of sensors increases, the gain in SINR increases, while the
MSE decreases.
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Figure 3: (a) The gain in SINR and (b) the MSE of the MVDR filter for different
numbers of sensors, M : M = 10 (solid line with circles), M = 20 (dashed line with
asterisks), M = 50 (dotted line with squares), and M = 100 (dash-dot line with
triangles).

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 39\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Wiener
MVDR
Tradeoff
LCMV
Maximum SINR
Maximum SIR

Tradeoff

We are now going to derive a filter that can compromise between
interference-plus-noise reduction and desired-signal distortion.

For that, we need to minimize the distortion-based MSE subject to the
constraint that the interference-plus-noise reduction-based MSE is
equal to some desired value.

Mathematically, this is equivalent to

min
h

Jd (h) subject to Jn (h) + Ji (h) = ℵ (φv0 + φv) , (48)

where 0 < ℵ < 1 to ensure that we have some noise reduction.
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If we use a Lagrange multiplier, µ, to adjoin the constraint to the cost
function, (48) can be rewritten as

hT,µ = argmin
h

L(h, µ), (49)

with

L(h, µ) = Jd (h) + µ [Jn (h) + Ji (h)− ℵ (φv0 + φv)] (50)

and µ > 0.

From (49), we easily derive the tradeoff filter:

hT,µ = (Φx + µΦin)
−1

Φxii (51)

= [Φy + (µ− 1)Φin]
−1 (Φy −Φin) ii,

where the Lagrange multiplier, µ, satisfies
Jn (hT,µ) + Ji (hT,µ) = ℵ (φv0 + φv).
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In practice it is not easy to determine the optimal µ.

Therefore, when this parameter is chosen in a heuristic way, we can
see that for

µ = 1, hT,1 = hW, which is the Wiener filter;

µ = 0 [if rank (Φx) = M ], hT,0 = ii, which is the identity filter;

µ > 1, results in a filter with low residual interference-plus-noise
at the expense of high desired-signal distortion; and

µ < 1, results in a filter with low desired-signal distortion and
small amount of interference-plus-noise reduction.
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It can be shown that with the tradeoff filter given in (51), the output
SINR is always greater than or equal to the input SINR, i.e.,
oSINR(hT,µ) ≥ iSINR, ∀µ ≥ 0 [1].

With the eigenvalue decomposition of Φx and the Woodbury’s
identity, we can express the tradeoff filter as

hT,µ = Φ−1
in

Q′
x

(
µΛ′−1

x +Q′H
x Φ−1

in
Q′

x

)−1
Q′H

x ii. (52)

This filter is strictly equivalent to the tradeoff filter given in (51), except
for µ = 0; indeed, the one in (51) is not defined while the one in (52)
leads to the MVDR filter.
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Example 3

Returning to Example 1, we now employ the tradeoff filter, hT,µ, given
in (51).

Figures 4 and 5 show plots of the gain in SINR, G (hT,µ), the MSE,
J (hT,µ), and the desired-signal distortion index, υ (hT,µ), as a
function of the input SINR for different numbers of sensors, M , for
µ = 0.5 and µ = 5, respectively.

The gain in SINR is always positive.

For a given input SINR, as the number of sensors increases, the gain
in SINR increases, while the MSE and the desired-signal distortion
index decrease.
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Figure 4: (a) The gain in SINR, (b) the MSE, and (c) the desired-signal distortion
index of the tradeoff filter for different numbers of sensors, M , and µ = 0.5: M = 10
(solid line with circles), M = 20 (dashed line with asterisks), M = 50 (dotted line with
squares), and M = 100 (dash-dot line with triangles).
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Figure 5: (a) The gain in SINR, (b) the MSE, and (c) the desired-signal distortion
index of the tradeoff filter for different numbers of sensors, M , and µ = 5: M = 10
(solid line with circles), M = 20 (dashed line with asterisks), M = 50 (dotted line with
squares), and M = 100 (dash-dot line with triangles).
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LCMV

In this approach, we would like to find a filter that completely cancels
one interference, let’s say v1, without any distortion to the desired
signal, and attenuates as much as possible the rest of the
interference-plus-noise signal.

Let

Qv1
=

[
Q′

v1
Q′′

v1

]
, (53)

where the M ×Rv1 matrix Q′
v1

contains the eigenvectors
corresponding to the nonzero eigenvalues of Φv1

and the
M × (M −Rv1) matrix Q′′

v1
contains the eigenvectors corresponding

to the null eigenvalues of Φv1
.
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We can write the interference v1 as

v1 = Qv1
QH

v1
v1 (54)

= Q′
v1
Q′H

v1
v1.

We deduce that the constraint to cancel this interference is

hHQ′
v1

= 0T , (55)

where 0 is the zero vector of length Rv1 .

Combining this constraint with the distortionless one, we get

hHCxv1
=

[
iTi Q

′
x 0T

]
(56)

= iHc ,
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where

Cxv1
=

[
Q′

x Q′
v1

]
(57)

is the constraint matrix of size M × (Rx +Rv1) and ic is a vector of
length Rx +Rv1 .

Now, the criterion to optimize is

min
h

[Jn (h) + Ji (h)] subject to hHCxv1
= iHc , (58)

which leads to the celebrated LCMV filter:

hLCMV = Φ−1
in Cxv1

(
CH

xv1
Φ−1

in Cxv1

)−1
ic. (59)

It is clear from (59) that for this filter to exist, we must have
M ≥ Rx +Rv1 .
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An equivalent way to express (59) is

hLCMV = Φ−1
y Cxv1

(
CH

xv1
Φ−1

y Cxv1

)−1
ic. (60)

While with this filter, we can completely cancel the interference v1,
there is no guarantee that the rest of the interference-plus-noise can
be attenuated; in fact, it can even be amplified.

This depends on how M is larger than Rx +Rv1 . As the difference of
these two integers increases, so is the attenuation of the rest of the
interference-plus-noise signal.
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Example 4

Returning to Example 1, we now assume two uncorrelated complex
harmonic random processes as interferences, v1 and v2, impinging
on the ULA from the directions θv1 = 0◦ and θv2 = 45◦, respectively.

We employ the LCMV filter, hLCMV, given in (59).

Figure 6 shows plots of the gain in SINR, G (hLCMV), the MSE,
J (hLCMV), and the desired-signal distortion index, υ (hLCMV), as a
function of the input SINR for different numbers of sensors, M .

The desired-signal distortion index, υ (hLCMV), is zero.

The gain in SINR is always positive. For a given input SINR, as the
number of sensors increases, the gain in SINR increases, while the
MSE decreases.
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Figure 6: (a) The gain in SINR, (b) the MSE, and (c) the desired-signal distortion
index of the LCMV filter for different numbers of sensors, M : M = 10 (solid line with
circles), M = 20 (dashed line with asterisks), M = 50 (dotted line with squares), and
M = 100 (dash-dot line with triangles).
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The generalization of this approach to the cancellation of more than
one interference is straightforward.

Let’s say that we want to cancel the two interferences v1 and v2.

First, we take the correlation matrix of the signal v1 + v2.

We perform the eigenvalue decomposition of this matrix as we did for
Φv1

.

Then, the derivation of the corresponding LCMV filter is the same as
described above.

The only thing that changes is the condition of the filter to exist, which
is now M ≥ Rx +Rv1 +Rv2 .
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Another interesting way to derive the LCMV filter is the following. Let
us consider the filters that have the form:

h = Q′′
v1
a, (61)

where a 6= 0 is a shorter filter of length M −Rv1 . It is easy to observe
that

hHv1 = aHQ′′H
v1

v1 = 0, (62)

since Q′′H
v1

Q′
v1

= 0. By its nature, the filter h in (61) cancels the
interference.
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Substituting (61) into Jn (h) + Ji (h), we obtain

Jn (h) + Ji (h) = φv0a
Ha+ aHQ′′H

v1
ΦvQ

′′
v1
a (63)

= aHΦ′
ina

= Jn (a) + Ji (a) ,

where

Φ′
in = φv0IM−Rv1

+Q′′H
v1

ΦvQ
′′
v1
, (64)

with IM−Rv1
being the (M −Rv1)× (M −Rv1) identity matrix.
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Then, from the criterion:

min
a

[Jn (a) + Ji (a)] subject to aHQ′′H
v1

Q′
x = iTi Q

′
x, (65)

We find that

aLCMV = Φ′−1
in Q′′H

v1
Q′

x

(
Q′H

x Q′′
v1
Φ′−1

in Q′′H
v1

Q′
x

)−1
Q′H

x ii. (66)

As a result, another formulation of the LCMV filter is

hLCMV = Q′′
v1
Φ′−1

in
Q′′H

v1
Q′

x

(
Q′H

x Q′′
v1
Φ′−1

in
Q′′H

v1
Q′

x

)−1
Q′H

x ii. (67)
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Maximum SINR

The maximum SINR filter is obtained by maximizing the output SINR
as given in (19) from which, we recognize the generalized Rayleigh
quotient [6].

Since Φin is full rank, it is well known that this quotient is maximized
with the eigenvector corresponding to the maximum eigenvalue of
Φ−1

in Φx.

Let us denote by λ1 the maximum eigenvalue of this matrix and by t1
the corresponding eigenvector.

Therefore, We have

hmSINR = ςt1, (68)

where ς 6= 0 is an arbitrary complex number.
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We deduce that

oSINR(hmSINR) = λ1. (69)

Clearly, we always have

oSINR (hmSINR) ≥ iSINR (70)

and

oSINR (hmSINR) ≥ oSINR (h) , ∀h. (71)

Now, we need to determine ς . One possible good way to find this
parameter is by minimizing distortion.
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Substituting (68) into Jd (h), we get

Jd (hmSINR) = φx1
+ λ1 |ς |

2 − ς∗tH1 Φxii − ςiTi Φxt1. (72)

The minimization of the previous expression with respect to ς∗ gives

ς =
tH1 Φxii

λ1

. (73)

We deduce that the maximum SINR filter with minimum distortion is

hmSINR =
t1t

H
1 Φxii

λ1

(74)

= t1t
H
1 Φinii.
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Example 5

Returning to Example 1, we now employ the maximum SINR filter,
hmSINR, given in (74).

Figure 7 shows plots of the gain in SINR, G (hmSINR), and the MSE,
J (hmSINR), as a function of the input SINR for different numbers of
sensors, M .

The desired-signal distortion index, υ (hmSINR), is zero.

The gain in SINR is always positive.

For a given input SINR, as the number of sensors increases, the gain
in SINR increases, while the MSE decreases.
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Figure 7: (a) The gain in SINR and (b) the MSE of the maximum SINR filter for
different numbers of sensors, M : M = 10 (solid line with circles), M = 20 (dashed line
with asterisks), M = 50 (dotted line with squares), and M = 100 (dash-dot line with
triangles).
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Maximum SIR

In the denominator of the output SIR appears the matrix Φv, which
can be either full rank or rank deficient.

In the first case, it is easy to derive the maximum SIR filter, which is
the eigenvector corresponding to the maximum eigenvalue of Φ−1

v Φx.

Fundamentally, this scenario is equivalent to what was done in the
previous subsection for the maximization of the SINR.

Therefore, we are only interested in the second case, where we
assume that rank (Φv) = Rv < M .
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Let

Qv =
[
Q′

v Q′′
v

]
, (75)

where the M ×Rv matrix Q′
v contains the eigenvectors

corresponding to the nonzero eigenvalues of Φv and the
M × (M −Rv) matrix Q′′

v contains the eigenvectors corresponding to
the null eigenvalues of Φv.

We are interested in the linear filters of the form:

h = Q′′
va, (76)

where a is a vector of length M −Rv.
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Since ΦvQ
′′
v = 0 and assuming that ΦxQ

′′
v 6= 0, which is reasonable

since Φx and Φv cannot be diagonalized by the same orthogonal
matrix unless at least one of the two signals x1 and v is white, we
have

oSIR (h) = oSIR (Q′′
va) = ∞. (77)

As a consequence, the estimate of x1 is

x̂1 = hHy (78)

= aHQ′′H
v x+ aHQ′′H

v v0 + aHQ′′H
v v

= aHQ′′H
v x+ aHQ′′H

v v0.

We observe from the previous expression that this approach
completely cancels the interference.
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Now, we need to find a. The best way to find this vector is by
minimizing the MSE criterion.

Substituting (76) into (30), we get

J (a) = φx1
+ aHQ′′H

v ΦyQ
′′
va− aHQ′′H

v Φxii − iTi ΦxQ
′′
va. (79)

The minimization of the previous expression leads to

amSIR =
(
Q′′H

v ΦyQ
′′
v

)−1
Q′′H

v Φxii. (80)

As a result, the maximum SIR filter with minimum MSE is

hmSIR = Q′′
v

(
Q′′H

v ΦyQ
′′
v

)−1
Q′′H

v Φxii. (81)
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Example 6

Returning to Example 4, we now employ the maximum SIR filter,
hmSIR, given in (81).

Figure 8 shows plots of the gain in SINR, G (hmSIR), the MSE,
J (hmSIR), and the desired-signal distortion index, υ (hmSIR), as a
function of the input SINR for different numbers of sensors, M .

The gain in SINR is always positive.

For a given input SINR, as the number of sensors increases, the gain
in SINR increases, while the MSE and the desired-signal distortion
index decrease.
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Figure 8: (a) The gain in SINR, (b) the MSE, and (c) the desired-signal distortion
index of the maximum SIR filter for different numbers of sensors, M : M = 10 (solid
line with circles), M = 20 (dashed line with asterisks), M = 50 (dotted line with
squares), and M = 100 (dash-dot line with triangles).
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All the optimal filters derived in this section are summarized in
Table 1.

Table 1: Optimal linear filters for signal enhancement.

Wiener: hW = Φ−1

in
Q′

x

(
Λ′−1

x +Q′H
x Φ−1

in
Q′

x

)−1
Q′H

x ii

MVDR: hMVDR = Φ−1

in
Q′

x

(
Q′H

x Φ−1

in
Q′

x

)−1
Q′H

x ii

Tradeoff: hT,µ = Φ−1
in Q′

x

(
µΛ′−1

x +Q′H
x Φ−1

in Q′
x

)−1
Q′H

x ii

LCMV: hLCMV = Q′′
v1
Φ′−1

in
Q′′H

v1
Q′

x×(
Q′H

x Q′′
v1
Φ′−1

in
Q′′H

v1
Q′

x

)−1
Q′H

x ii

Maximum SINR: hmSINR = t1t
H
1 Φinii

Maximum SIR: hmSIR = Q′′
v

(
Q′′H

v ΦyQ
′′
v

)−1
Q′′H

v Φxii

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 68\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Wiener
MVDR
Tradeoff
LCMV
Maximum SINR
Maximum SIR

[1] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Noise Reduction in Speech
Processing. Berlin, Germany: Springer-Verlag, 2009.

[2] J. Benesty and J. Chen, Optimal Time-domain Noise Reduction Filters–A
Theoretical Study. Springer Briefs in Electrical and Computer Engineering, 2011.

[3] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

[4] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial
filtering,” IEEE Acoust., Speech, Signal Process. Mag., vol. 5, pp. 4–24, Apr. 1988.

[5] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, and K. M. Wong, “Robust
adaptive beamforming for general-rank signal models,” IEEE Trans. Signal
Process., vol. 51, pp. 2257–2269, Sept. 2003.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations. Third Edition. Baltimore,
Maryland: The Johns Hopkins University Press, 1996.

[7] S. Haykin, Adaptive Filter Theory. Fourth Edition, Upper Saddle River, NJ:
Prentice-Hall, 2002.

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 69\70



Introduction
Signal Model and Problem Formulation

Linear Filtering for Signal Enhancement
Performance Measures

Optimal Filters

Wiener
MVDR
Tradeoff
LCMV
Maximum SINR
Maximum SIR

[8] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise
reduction Wiener filter,” IEEE Trans. Audio, Speech, Language Process., vol. 14,
pp. 1218–1234, July 2006.

[9] J. R. Jensen, J. Benesty, M. G. Christensen, and J. Chen, “A class of optimal
rectangular filtering matrices for single-channel signal enhancement in the time
domain,” IEEE Trans. Audio, Speech, Language Process., vol. 11, pp. 2595–2606,
Dec. 2013.

[10] J. Benesty, J. R. Jensen, M. G. Christensen, and J. Chen, Speech
Enhancement–A Signal Subspace Perspective. Oxford, England: Academic
Press, 2014.

[11] S. M. Nørholm, J. Benesty, J. R. Jensen, and M. G. Christensen, “Single-channel
noise reduction using unified joint diagonalization and optimal filtering,” EURASIP
J. Advances Signal Process., 2014, 2014:37 (11 pages).

[12] J. N. Franklin, Matrix Theory. Englewood Cliffs, NJ: Prentice-Hall, 1968.

[13] Y. Rong, Y. C. Eldar, and A. B. Gershman, “Performance tradeoffs among
adaptive beamforming criteria,” IEEE J. Selected Topics Signal Process., vol. 1,
pp. 651–659, Dec. 2007.

Benesty, Cohen, and Chen An Exhaustive Class of Linear Filters 70\70


	Introduction
	Signal Model and Problem Formulation
	Linear Filtering for Signal Enhancement
	Performance Measures
	Signal-to-Interference-Plus-Noise Ratio
	Desired-Signal Distortion Index
	Mean-Squared Error

	Optimal Filters
	Wiener
	MVDR
	Tradeoff
	LCMV
	Maximum SINR
	Maximum SIR


