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Introduction

This talk is concerned with beamforming in the time domain, which
has the advantage to be more intuitive than beamforming in the
frequency domain.

Furthermore, the approach depicted here is broadband in nature.

We describe the time-domain signal model that we adopt and explain
how broadband beamforming works.

Then, we define many performance measures, which are essential for
the derivation and analysis of broadband beamformers.

We show how to derive fixed and adaptive time-domain beamformers.

Benesty, Cohen, and Chen Beamforming in the Time Domain 3\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Signal Model and Problem Formulation

We consider a desired broadband source signal, x(t), in the far-field
that propagates in an anechoic acoustic environment, and impinges
on a ULA consisting of M omnidirectional sensors, where the
distance between two successive sensors is equal to δ (see Fig. 1).

δ

12M

X
(f
)

Y1(f)Y2(f)YM (f)

θd

VM (f) V1(f)

P
lane

w
avefront(M

–1)δ
cos

θd

Figure 1: A uniform linear array with M sensors.
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In the rest, sensor 1 is chosen as the reference.

In this scenario, the signal measured at the mth sensor is given by [1]

ym(t) = x [t−∆− fsτm (cos θd)] + vm(t) (1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where ∆ is the propagation time from the position of the source
(desired signal), x(t), to sensor 1, fs is the sampling frequency,

τm (cos θd) = (m− 1)
δ cos θd

c
(2)

is the delay between the first and mth sensors, θd is the direction of
the desired signal, c is the speed of the waves in the medium, and
vm(t) is the noise picked up by the mth sensor.
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For the sake of simplicity, we assume that

0 ≤
fsδ cos θd

c
∈ Z. (3)

This clearly restricts θd, but simplifies the signal model.

In the sequel, we generalize the signal model when assumption (3) is
not satisfied. Under this assumption, we can express (1) as

ym(t) = gT
m (cos θd)x

′ (t−∆) + vm(t), (4)

where

gm (cos θd) =
[

0 · · · 0 1 0 · · · 0
]T

(5)
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is a vector of length Lg ≥ fsτm (cos θd) + 1 whose [fsτm (cos θd) + 1]th
component is equal to 1 and

x′ (t−∆) =
[

x (t−∆) x (t−∆− 1) · · ·

x [t−∆− fsτm (cos θd)] · · · x (t−∆− Lg + 1)
]T

.
(6)

The vector gm (cos θd) is a 1-sparse vector and the position of the 1
depends on both θd and m, with

g1 (cos θd) =
[

1 0 · · · 0
]T

. (7)

By considering Lh successive time samples of the mth sensor signal,
(4) becomes a vector of length Lh:

ym(t) = Gm (cos θd)x (t−∆) + vm(t), (8)
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where

Gm (cos θd) =











gT
m (cos θd) 0 0 · · · 0

0 gT
m (cos θd) 0 · · · 0

...
...

. . .
...

0 0 0 · · · gT
m (cos θd)











(9)

is a Sylvester matrix of size Lh × L, with L = Lg + Lh − 1,

x (t−∆) =
[

x (t−∆) x (t−∆− 1) · · · x (t−∆− L+ 1)
]T

(10)

is a vector of length L, and

vm(t) =
[

vm(t) vm(t− 1) · · · vm(t− Lh + 1)
]T

. (11)
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Figure 2 illustrates the multichannel signal model in the time domain.

+

v1(t)

+

vM (t)

G1 (cos θd)

GM (cos θd)

vector stack
... ...x (t−∆) y(t)

x1(t)

xM (t)

y1(t)

yM (t)

•

Figure 2: Multichannel signal model in the time domain.
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By concatenating the observations from the M sensors, we get the
vector of length MLh:

y(t) =
[

yT
1 (t) yT

2 (t) · · · yT
M (t)

]T

= G (cos θd)x (t−∆) + v(t) (12)

= x(t) + v(t),

where

G (cos θd) =











G1 (cos θd)
G2 (cos θd)

...
GM (cos θd)











(13)

is a matrix of size MLh × L,

v(t) =
[

vT
1 (t) vT

2 (t) · · · vT
M (t)

]T
(14)
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is a vector of length MLh, and

x(t) =
[

xT
1 (t) xT

2 (t) · · · xT
M (t)

]T

= G (cos θd)x (t−∆) , (15)

with xm(t) = Gm (cos θd)x (t−∆).

From (12), we deduce that the correlation matrix (of size
MLh ×MLh) of y(t) is

Ry = E
[

y(t)yT (t)
]

(16)

= Rx +Rv

= G (cos θd)RxG
T (cos θd) +Rv,

where Rx, Rv, and Rx are the correlation matrices of x(t), v(t), and
x (t−∆), respectively.
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We always assume that Rv has full rank.

But, to fully exploit the spatial information like in the frequency
domain, the matrix Rx = G (cos θd)RxG

T (cos θd) must be rank
deficient.

Since the size of G (cos θd) is MLh × L and the size of Rx is L× L,
the condition for that is

MLh > L (17)

or, equivalently,

Lh >
Lg − 1

M − 1
. (18)

We see that as M is increased, the minimal value of Lh is decreased.
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Then, our objective is to design all kind of time-domain or broadband
beamformers with a real-valued spatiotemporal filter of length MLh:

h =
[

hT
1 hT

2 · · · hT
M

]T
, (19)

where hm, m = 1, 2, . . . ,M are temporal filters of length Lh.

To generalize the signal model when assumption (3) is not satisfied,
we resort to Shannon’s sampling theorem [2], [3], which implies that

xm(t) = x [t−∆− fsτm (cos θd)] (20)

=

∞
∑

n=−∞

x (t−∆− n) sinc [n− fsτm (cos θd)] (21)
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and for P ≫ fsτm (cos θd) we have

xm(t) ≈
P
∑

n=−P−Lh+1

x (t−∆− n) sinc [n− fsτm (cos θd)]. (22)

Hence, we can simply redefine x (t−∆) as a vector of length
L = 2P + Lh with

x (t−∆) =
[

x (t−∆+ P + Lh − 1) x (t−∆+ P + Lh − 2)

· · · x (t−∆− P )
]T

(23)

and redefine Gm (cos θd) as a Toeplitz matrix of size Lh × L with:

[Gm (cos θd)]i,j = sinc [−P − Lh + 1− i+ j − fsτm (cos θd)] , (24)

where i = 1, . . . , Lh, j = 1, . . . , L.
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Broadband Beamforming

By applying the spatiotemporal filter, h, to the observation signal
vector, y(t), we obtain the output of the broadband beamformer, as
illustrated in Fig. 3:

z(t) =

M
∑

m=1

hT
mym(t) (25)

= hTy(t)

= xfd(t) + vrn(t).

+

v(t)

hTG (cos θd)x (t−∆)
x(t) y(t)

z(t)

Figure 3: Block diagram of broadband beamforming in the time domain.
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The filtered desired signal is given by

xfd(t) =

M
∑

m=1

hT
mGm (cos θd)x (t−∆) (26)

= hTG (cos θd)x (t−∆)

is and

vrn(t) =

M
∑

m=1

hT
mvm(t) (27)

= hTv(t)

is the residual noise.
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We deduce that the variance of z(t) is

σ2
z = hTRyh (28)

= σ2
xfd

+ σ2
vrn ,

where

σ2
xfd

= hTG (cos θd)RxG
T (cos θd)h (29)

= hTRxh

is the variance of xfd(t) and

σ2
vrn = hTRvh (30)

is the variance of vrn(t).
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In principle, any element of the vector x (t−∆) can be considered as
the desired signal.

Therefore, from (26), we see that the distortionless constraint is

h
T
G (cos θd) = iTl , (31)

where il is the lth column of the L× L identity matrix, IL.
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Performance Measures
Signal-to-Noise Ratio

In this section, we define all relevant performance measures for the
derivation and analysis of fixed and adaptive beamformers in the time
domain.

For fixed beamforming only, since we are concerned with broadband
signals, we assume for convenience that the source signal, x(t), is
white; this way, the whole spectrum is taken into account.

Since sensor 1 is the reference, the input SNR is computed from the
first Lh components of y(t) as defined in (12), i.e.,
y1(t) = x1(t) + v1(t).
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We easily find that

iSNR =
tr (Rx1

)

tr (Rv1
)

(32)

=
σ2
x

σ2
v1

,

where Rx1
and Rv1

are the correlation matrices of x1(t) and v1(t),
respectively, and σ2

x and σ2
v1 are the variances of x(t) and v1(t),

respectively.

The output SNR is obtained from (28).
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It is given by

oSNR (h) =
σ2
xfd

σ2
vrn

(33)

=
hTG (cos θd)RxG

T (cos θd)h

hTRvh

=
σ2
x

σ2
v1

×
hTG (cos θd)G

T (cos θd)h

hTΓvh
,

where

Γv =
Rv

σ2
v1

(34)

is the pseudo-correlation matrix of v(t).

The third line of (33) is valid for fixed beamforming only.
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White Noise Gain

We see from (33) that the array gain is

G (h) =
oSNR (h)

iSNR
(35)

=
hTG (cos θd)G

T (cos θd)h

hTΓvh
.

The white noise gain (WNG) is obtained by taking Γv = IMLh
in (35),

where IMLh
is the MLh ×MLh identity matrix, i.e.,

W (h) =
hTG (cos θd)G

T (cos θd)h

hTh
. (36)
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Directivity Factor

We define the broadband beampattern or broadband directivity
pattern as

|B (h, cos θ)|2 = h
T
G (cos θ)GT (cos θ)h. (37)

In the time domain, the definition of the directivity factor (DF) is

D (h) =
|B (h, cos θd)|

2

1

2

∫ π

0

|B (h, cos θ)|2 sin θdθ

(38)

=
hTG (cos θd)G

T (cos θd)h

hTΓT,0,πh
,
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where

ΓT,0,π =
1

2

∫ π

0

G (cos θ)GT (cos θ) sin θdθ (39)

is a matrix of size MLh ×MLh, which is the equivalent form of
Γ0,π(f) in the time domain.

Note that an explicit expression for ΓT,0,π is not available.

In practice, we compute the DF in the time domain directly from the
first line of (38) with numerical integration.
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Front-to-Back Ratio

In the same manner, we define the broadband front-to-back ratio
(FBR) as

F (h) =

1

2

∫ π/2

0

|B (h, cos θ)|2 sin θdθ

1

2

∫ π

π/2

|B (h, cos θ)|2 sin θdθ

(40)

=
hTΓT,0,π/2h

hTΓT,π/2,πh
,

where

ΓT,0,π/2 =
1

2

∫ π/2

0

G (cos θ)GT (cos θ) sin θdθ, (41)

ΓT,π/2,π =
1

2

∫ π

π/2

G (cos θ)GT (cos θ) sin θdθ. (42)
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Mean-Squared Error

Now, let us define the error signal between the estimated and desired
signals:

e(t) = z(t)− iTl x (t−∆) (43)

= xfd(t) + vrn(t)− iTl x (t−∆) .

This error can be rewritten as

e(t) = ed(t) + en(t), (44)

where

ed(t) = xfd(t)− iTl x (t−∆) (45)

=
[

GT (cos θd)h− il

]T

x (t−∆)
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and

en(t) = vrn(t) (46)

= hTv(t)

are, respectively, the desired-signal distortion due to the beamformer
and the residual noise.

Therefore, the MSE criterion is

J (h) = E
[

e2(t)
]

(47)

= σ2
x − 2hTG (cos θd)Rxil + hTRyh

= Jd (h) + Jn (h) ,
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where

Jd (h) = E
[

e2d(t)
]

(48)

=
[

GT (cosd θ)h− il

]T

Rx

[

GT (cosd θ)h− il

]

= σ2
xυd (h)

and

Jn (h) = E
[

e2n(t)
]

(49)

= hTRvh

=
σ2
v1

ξn (h)
,

Benesty, Cohen, and Chen Beamforming in the Time Domain 28\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Signal-to-Noise Ratio
White Noise Gain
Directivity Factor
Front-to-Back Ratio
Mean-Squared Error

with

υd (h) =
E
{

[

xfd(t)− iTl x (t−∆)
]2
}

σ2
x

(50)

=

[

GT (cosd θ)h− il

]T

Rx

[

GT (cosd θ)h− il

]

σ2
x

being the desired-signal distortion index and

ξn (h) =
σ2
v1

hTRvh
(51)

being the noise reduction factor.
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We deduce that

Jd (h)

Jn (h)
= iSNR× ξn (h)× υd (h) (52)

= oSNR (h)× ξd (h)× υd (h) ,

where

ξd (h) =
σ2
x

hTRxh
(53)

is the desired-signal reduction factor.
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Fixed Beamformers
Delay-and-Sum

In this section, we show how to derive the most conventional
time-domain fixed beamformers from the WNG and the DF.

The classical delay-and-sum (DS) beamformer in the time domain is
derived by maximizing the WNG subject to the distortionless
constraint.

This is equivalent to

min
h

hTh subject to hTG (cos θd) = iTl . (54)

We easily obtain

hDS (cos θd) = G (cos θd)
[

GT (cos θd)G (cos θd)
]−1

il. (55)
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Therefore, the WNG is

W [hDS (cos θd)] =
1

iTl

[

GT (cos θd)G (cos θd)
]−1

il

. (56)

It can be checked that the matrix product GT
m (cos θd)Gm (cos θd) is a

diagonal matrix whose elements are 0 or 1.

As a result, the matrix
GT (cos θd)G (cos θd) =

∑M
m=1 G

T
m (cos θd)Gm (cos θd) is also a

diagonal matrix whose main elements are between 0 and M .

We conclude that the position of the 1 in il must coincide with the
position of the maximum element of the diagonal of
GT (cos θd)G (cos θd).
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In this case, we have

W [hDS (cos θd)] = M (57)

and

hDS (cos θd) = G (cos θd)
il

M
. (58)

In the rest, it is always assumed that the position of the 1 in il is

chosen such that iTl
[

GT (cos θd)G (cos θd)
]−1

il = 1/M .
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Example 1

Consider a ULA of M sensors.

Suppose that a desired signal impinges on the ULA from the direction
θd.

Assume that fs = 8 kHz, P = 25, and Lh = 30.

Figures 4–6 show broadband beampatterns, |B [hDS (cos θd) , cos θ]|,
for different source directions θd and several values of M and δ.

The main beam is in the direction of the desired signal, i.e., θd.

As the number of sensors, M , increases, or as the intersensor
spacing, δ, increases, the width of the main beam decreases, and the
values obtained for θ 6= θd become lower.
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Figure 4: Broadband beampatterns of the DS beamformer for θd = 90◦, and several
values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30, δ = 1 cm, (c) M = 10,
δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 5: Broadband beampatterns of the DS beamformer for θd = 45◦, and several
values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30, δ = 1 cm, (c) M = 10,
δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 6: Broadband beampatterns of the DS beamformer for θd = 0◦, and several
values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30, δ = 1 cm, (c) M = 10,
δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 7 shows plots of the DF, D [hDS (cos θd)], and the WNG,
W [hDS (cos θd)], as a function of δ for θd = 90◦ and several values of
M .

As the number of sensors increases, both the DF and the WNG of the
DS beamformer increase.

For a given M , the DF of the DS beamformer increases as a function
of δ.
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Figure 7: (a) DF and (b) WNG of the DS beamformer as a function of δ for θd = 90◦

and several values of M : M = 10 (solid line with circles), M = 20 (dashed line with
asterisks), M = 30 (dotted line with squares), and M = 40 (dash-dot line with
triangles).
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Maximum DF

Let t1 (cos θd) be the eigenvector corresponding to the maximum
eigenvalue, λ1 (cos θd), of the matrix Γ−1

T,0,πG (cos θd)G
T (cos θd).

It is obvious that the maximum DF beamformer is

hmax (cos θd) = ςt1 (cos θd) , (59)

where ς 6= 0 is an arbitrary real number, and the maximum DF is

Dmax (cos θd) = λ1 (cos θd) . (60)

Therefore,

Dmax (cos θd) ≥ D (h) , ∀h. (61)

While hmax (cos θd) maximizes the DF, it cannot be distortionless.
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Distortionless Maximum DF

To find the distortionless maximum DF beamformer, we need to
minimize the denominator of the DF subject to the distortionless
constraint in the numerator of the DF, i.e.,

min
h

hTΓT,0,πh subject to hTG (cos θd) = iTl . (62)

Then, it is clear that the distortionless maximum DF beamformer is

hmDF (cos θd) = Γ−1
T,0,πG (cos θd)

[

GT (cos θd)Γ
−1
T,0,πG (cos θd)

]−1

il.

(63)

We deduce that the corresponding DF is

D [hmDF (cos θd)] =
1

iTl

[

GT (cos θd)Γ
−1
T,0,πG (cos θd)

]−1

il

. (64)

Benesty, Cohen, and Chen Beamforming in the Time Domain 41\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Delay-and-Sum
Maximum DF
Distortionless Maximum DF
Superdirective
Null Steering

Example 2

Returning to Example 1, we now employ the distortionless maximum
DF beamformer, hmDF (cos θd), given in (63).

Figures 8–10 show broadband beampatterns,
|B [hmDF (cos θd) , cos θ]|, for different source directions θd and several
values of M and δ.

The main beam is in the direction of the desired signal, i.e., θd.

As the number of sensors, M , increases, or as the intersensor
spacing, δ, increases, the width of the main beam decreases, and the
values obtained for θ 6= θd generally become lower.
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Figure 8: Broadband beampatterns of the distortionless maximum DF beamformer for
θd = 90◦, and several values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30,
δ = 1 cm, (c) M = 10, δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 9: Broadband beampatterns of the distortionless maximum DF beamformer for
θd = 45◦, and several values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30,
δ = 1 cm, (c) M = 10, δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 10: Broadband beampatterns of the distortionless maximum DF beamformer
for θd = 0◦, and several values of M and δ: (a) M = 10, δ = 1 cm, (b) M = 30,
δ = 1 cm, (c) M = 10, δ = 3 cm, and (d) M = 30, δ = 3 cm.
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Figure 11 shows plots of the DF, D [hmDF (cos θd)], and the WNG,
W [hmDF (cos θd)], as a function of δ for θd = 0◦ and several values of
M .

Compared to the DS beamformer, the distortionless maximum DF
beamformer obtains higher DF, but lower WNG (cf. Figs. 7 and 11).

For a sufficiently small δ, as the number of sensors increases, both
the DF and the WNG of the DS beamformer increase.

For a given M and a sufficiently small δ, the DF of the distortionless
maximum DF beamformer increases as a function of δ.

The WNG of the distortionless maximum DF beamformer is
significantly lower than 0 dB, which implies that the distortionless
maximum DF beamformer amplifies the white noise.

Benesty, Cohen, and Chen Beamforming in the Time Domain 46\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Delay-and-Sum
Maximum DF
Distortionless Maximum DF
Superdirective
Null Steering

0.5 1 1.5 2 2.5 3 3.5 4
10

15

20

25

30

0.5 1 1.5 2 2.5 3 3.5 4
−95

−90

−85

−80

−75

−70

−65

−60

δ (cm) δ (cm)
(a) (b)

D
[

h
m

D
F
(c
o
s
θ
d
)]

(d
B

)

W
[

h
m

D
F
(c
o
s
θ
d
)]

(d
B

)

Figure 11: (a) DF and (b) WNG of the distortionless maximum DF beamformer as a
function of δ for θd = 0◦ and several values of M : M = 10 (solid line with circles),
M = 20 (dashed line with asterisks), M = 30 (dotted line with squares), and M = 40
(dash-dot line with triangles).

Benesty, Cohen, and Chen Beamforming in the Time Domain 47\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Delay-and-Sum
Maximum DF
Distortionless Maximum DF
Superdirective
Null Steering

Superdirective

The time-domain superdirective beamformer is simply a particular
case of the distortionless maximum DF beamformer, where θd = 0
and δ is small.

We get

hSD = Γ−1
T,0,πG

(

GTΓ−1
T,0,πG

)−1

il, (65)

where G = G (cos 0).

The corresponding DF is

D (hSD) =
1

iTl

(

GTΓ−1
T,0,πG

)−1

il

. (66)

This gain should approach M2 for a small value of δ.
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Following the ideas in [4], [5], we can easily derive the time-domain
robust superdirective beamformer:

hR,ǫ = Γ−1
T,0,π,ǫG

(

GTΓ−1
T,0,π,ǫG

)−1

il, (67)

where

ΓT,0,π,ǫ = ΓT,0,π + ǫIMLh
, (68)

with ǫ ≥ 0.

We see that hR,0 = hSD and hR,∞ = hDS (1).
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Example 3

Returning to Example 1, we now employ the robust superdirective
beamformer, hR,ǫ, given in (67).

Figure 12 shows broadband beampatterns,
∣

∣B
(

hR,ǫ, cos θ
)∣

∣, for
M = 10, δ = 1 cm, and several values of ǫ.

The main beam is in the direction of the desired signal, i.e., θd = 0.

As the value of ǫ increases, the width of the main beam increases,
and the sidelobe level also increases (lower DF).
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Figure 12: Broadband beampatterns of the robust superdirective beamformer for
M = 10, δ = 1 cm, and several values of ǫ: (a) ǫ = 10−5, (b) ǫ = 10−3, (c) ǫ = 0.1,
and (d) ǫ = 1.
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Figure 13 shows plots of the DF, D
(

hR,ǫ

)

, and the WNG, W
(

hR,ǫ

)

,
as a function of δ for several values of ǫ.

For a given δ, as the value of ǫ increases, the WNG of the robust
superdirective beamformer increases at the expense of a lower DF.

For a given ǫ and a sufficiently small δ, both the DF and the WNG of
the robust superdirective beamformer increase as a function of δ.
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Figure 13: (a) DF and (b) WNG of the robust superdirective beamformer as a function
of δ for M = 10 and several values of ǫ: ǫ = 10−5 (solid line with circles), ǫ = 10−3

(dashed line with asterisks), ǫ = 0.1 (dotted line with squares), and ǫ = 1 (dash-dot line
with triangles).
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Null Steering

We assume that we have an undesired source impinging on the array
from the direction θn 6= θd.

The objective is to completely cancel this source while recovering the
desired source impinging on the array from the direction θd.

Then, it is obvious that the constraint equation is

CT (θd, θn)h =

[

il
0

]

, (69)

where

C (θd, θn) =
[

G (cos θd) G (cos θn)
]

(70)

is the constraint matrix of size MLh × 2L and 0 is the zero vector of
length L.
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Depending on what we desire, there are different ways to achieve the
goal explained above.

Next, we present two methods.

The first obvious beamformer is obtained by maximizing the WNG
and by taking (69) into account, i.e.,

min
h

hTh subject to CT (θd, θn)h =

[

il
0

]

. (71)

From this criterion, we find the minimum-norm (MN) beamformer:

hMN (cos θd) = C (θd, θn)
[

CT (θd, θn)C (θd, θn)
]−1

[

il
0

]

, (72)

which is also the minimum-norm solution of (69).
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The other beamformer is obtained by maximizing the DF and by
taking (69) into account, i.e.,

min
h

hTΓT,0,πh subject to CT (θd, θn)h =

[

il
0

]

. (73)

We easily find the null steering (NS) beamformer:

hNS (cos θd) = Γ−1
T,0,πC (θd, θn)×
[

CT (θd, θn)Γ
−1
T,0,πC (θd, θn)

]−1
[

il
0

]

. (74)

Benesty, Cohen, and Chen Beamforming in the Time Domain 56\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Delay-and-Sum
Maximum DF
Distortionless Maximum DF
Superdirective
Null Steering

Example 4

Consider a ULA of M sensors.

Suppose that a desired signal impinges on the ULA from the direction
θd = 0◦, and an undesired interference impinges on the ULA from the
direction θn = 90◦.

Assume that fs = 8 kHz, P = 25, and Lh = 30.

Figure 14 shows broadband beampatterns, |B [hMN (cos θd) , cos θ]|,
for several values of M and δ.

Clearly, the beam is in the direction of the desired signal, i.e., θd, and
the null is in the direction of the interfering signal, i.e., θn.

As the number of sensors, M , increases, or as the intersensor
spacing, δ, increases, the width of the main beam and the level of the
sidelobe decrease.

Benesty, Cohen, and Chen Beamforming in the Time Domain 57\101



Introduction
Signal Model and Problem Formulation

Broadband Beamforming
Performance Measures

Fixed Beamformers
Adaptive Beamformers

Delay-and-Sum
Maximum DF
Distortionless Maximum DF
Superdirective
Null Steering

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

θ (deg) θ (deg)

θ (deg) θ (deg)

(a) (b)

(c) (d)

∣ ∣

B
[

h
M

N
(c
o
s
θ
d
)
,
co
s
θ
]
∣ ∣

(d
B

)

∣ ∣

B
[

h
M

N
(c
o
s
θ
d
)
,
co
s
θ
]
∣ ∣

(d
B

)

∣ ∣

B
[

h
M

N
(c
o
s
θ
d
)
,
co
s
θ
]
∣ ∣

(d
B

)

∣ ∣

B
[

h
M

N
(c
o
s
θ
d
)
,
co
s
θ
]
∣ ∣

(d
B

)

Figure 14: Broadband beampatterns of the MN beamformer for θd = 0◦, θn = 90◦,
and several values of M and δ: (a) M = 20, δ = 2 cm, (b) M = 40, δ = 2 cm,
(c) M = 20, δ = 4 cm, and (d) M = 40, δ = 4 cm.
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Figure 15 shows plots of the DF, D [hMN (cos θd)], and the WNG,
W [hMN (cos θd)], as a function of δ for several values of M .

For a small δ, both the DF and the WNG increase as M increases.

However, for a large δ, the DF and the WNG of the MN beamformer
are less sensitive to M , if M is sufficiently large.

For a given M and small δ, both the DF and the WNG of the MN
beamformer increase as a function of δ.
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Figure 15: (a) DF and (b) WNG of the MN beamformer as a function of δ, for θd = 0◦,
θn = 90◦, and several values of M : M = 10 (solid line with circles), M = 20 (dashed
line with asterisks), M = 30 (dotted line with squares), and M = 40 (dash-dot line with
triangles).
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Figure 16 shows broadband beampatterns, |B [hNS (cos θd) , cos θ]|, for
several values of M and δ.

Here again, the beam is in the direction of the desired signal, and the
null is in the direction of the interfering signal.

As the number of sensors, M , increases, or as the intersensor
spacing, δ, increases, the width of the main beam and the level of the
sidelobe decrease.
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Figure 16: Broadband beampatterns of the NS beamformer for θd = 0◦, θn = 90◦,
and several values of M and δ: (a) M = 20, δ = 2 cm, (b) M = 40, δ = 2 cm,
(c) M = 20, δ = 4 cm, and (d) M = 40, δ = 4 cm.
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Figure 17 shows plots of the DF, D [hNS (cos θd)], and the WNG,
W [hNS (cos θd)], as a function of δ for several values of M .

For a small δ, both the DF and the WNG of the NS beamformer
increase as M increases.

For a given M and small δ, the DF of the NS beamformer increases
as a function of δ.

Compared with the MN beamformer, the NS beamformer obtains
higher DF, but lower WNG.

The WNG of the NS beamformer is significantly lower than 0 dB,
which implies that the NS beamformer amplifies the white noise.
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Figure 17: (a) DF and (b) WNG of the NS beamformer as a function of δ, for θd = 0◦,
θn = 90◦, and several values of M : M = 10 (solid line with circles), M = 20 (dashed
line with asterisks), M = 30 (dotted line with squares), and M = 40 (dash-dot line with
triangles).
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In Table 1, we summarize all the time-domain fixed beamformers
derived in this section.

Table 1: Fixed beamformers in the time domain.

DS: h
DS

(cos θd) = G (cos θd)
il

M
Max. DF: h

max
(cos θd) = ςt

1
(cos θd) , ς 6= 0

Dist. Max. DF: h
mDF

(cos θd) = Γ
−1

T,0,π
G (cos θd)×

[

GT (cos θd)Γ
−1

T,0,π
G (cos θd)

]−1

il

Superdirective: h
SD

= Γ
−1

T,0,π
G

(

GTΓ
−1

T,0,π
G

)−1

il

Robust SD: h
R,ǫ = Γ

−1

T,0,π,ǫ
G

(

GTΓ
−1

T,0,π,ǫ
G

)−1

il

Minimum Norm: h
MN

(cos θd) =

C (θd, θn)
[

CT (θd, θn)C (θd, θn)
]−1

[

il

0

]

Null Steering: h
NS

(cos θd) = Γ
−1

T,0,π
C (θd, θn)×

[

CT (θd, θn)Γ
−1

T,0,π
C (θd, θn)

]−1

[

il

0

]
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Adaptive Beamformers
Wiener

Most of the adaptive beamformers are easily derived from the
time-domain MSE criterion defined in (47).

Below, we give some important examples.

From the minimization of the MSE criterion, J (h), we find the Wiener
beamformer:

hW (cos θd) = R−1
y G (cos θd)Rxil (75)

= R−1
y G (cos θd)RxG

T (cos θd) i

= R−1
y Rxi,

where i is a vector of length MLh whose all elements are 0 except for
one entry which is equal to 1 in the appropriate position.
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This Wiener beamformer can be rewritten as

hW (cos θd) =
(

IMLh
−R−1

y Rv

)

i. (76)

The previous expression depends on the statistics of the
observations and noise.

Determining the inverse of Ry from (16) with the Woodbury’s identity,
we get

R−1
y = R−1

v −R−1
v G (cos θd)×

[

R−1
x +GT (cos θd)R

−1
v G (cos θd)

]−1

GT (cos θd)R
−1
v . (77)
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Substituting (77) into (75), leads to another interesting formulation of
the Wiener beamformer:

hW (cos θd) = R−1
v G (cos θd)×

[

R−1
x +GT (cos θd)R

−1
v G (cos θd)

]−1

il. (78)

The output SNR with the Wiener beamformer is greater than the input
SNR but the estimated desired signal is distorted.

This distortion is supposed to decrease when the number of sensors
increases.
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Example 5

Consider a ULA of M sensors.

Suppose that a desired signal, x(t), with the autocorrelation
sequence:

E [x(t)x(t′)] = α|t−t′|, −1 < α < 1

impinges on the ULA from the direction θd = 0◦.

Assume that an undesired white Gaussian noise interference, u(t),
impinges on the ULA from the direction θn = 90◦, i.e.,
u(t) ∼ N

(

0, σ2
u

)

, uncorrelated with x(t).

In addition, the sensors contain thermal white Gaussian noise,
wm(t) ∼ N

(

0, σ2
w

)

, that are mutually uncorrelated.
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The noisy received signals are given by
ym(t) = xm(t) + vm(t), m = 1, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, . . . ,M are the interference-plus-noise
signals.

The elements of the L× L matrix Rx are

[Rx]i,j = α|i−j|, i, j = 1, . . . , L.

The MLh ×MLh correlation matrix of x(t) is

Rx = G (cos θd)RxG
T (cos θd) .

Since the interference is at the broadside direction, the MLh ×MLh

correlation matrix of v(t) is

Rv = 1M ⊗ σ2
uILh

+ σ2
wIMLh

,
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where ⊗ is the Kronecker product and 1M is an M ×M matrix of all
ones.

To demonstrate the performance of the Wiener beamformer, we
choose fs = 8 kHz, δ = 3 cm, α = 0.8, σ2

w = 0.1σ2
u, P = 20, and

Lh = 30.

Figure 18 shows plots of the array gain, G [hW (cos θd)], the noise
reduction factor, ξn [hW (cos θd)], the desired-signal reduction factor,
ξd [hW (cos θd)], and the desired-signal distortion index,
υd [hW (cos θd)], as a function of the input SNR, for different numbers
of sensors, M .

For a given input SNR, as the number of sensors increases, the array
gain and the noise reduction factor increase, while the desired-signal
reduction factor and the desired-signal distortion index decrease.
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Figure 18: (a) The array gain, (b) the noise reduction factor, (c) the desired-signal
reduction factor, and (d) the desired-signal distortion index of the Wiener beamformer
for: M = 4 (solid line with circles), M = 6 (dashed line with asterisks), M = 10 (dotted
line with squares), and M = 15 (dash-dot line with triangles).
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Figure 19 shows broadband beampatterns, |B [hW (cos θd) , cos θ]|, for
different numbers of sensors, M .

The main beam is in the direction of the desired signal, i.e., θd, and
there is a null in the direction of the interference, i.e., θn.

As the number of sensors increases, the width of the main beam
decreases, and the null in the direction of the interference becomes
deeper.
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Figure 19: Broadband beampatterns of the Wiener beamformer for different numbers
of sensors, M : (a) M = 4, (b) M = 6, (c) M = 10, and (d) M = 15.
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MVDR

From the optimization of the criterion:

min
h

hTRvh subject to hTG (cos θd) = iTl , (79)

we find the MVDR beamformer:

hMVDR (cos θd) = R−1
v G (cos θd)

[

GT (cos θd)R
−1
v G (cos θd)

]−1

il.

(80)

It can be shown that the MVDR beamformer is also

hMVDR (cos θd) = R−1
y G (cos θd)

[

GT (cos θd)R
−1
y G (cos θd)

]−1

il.

(81)

This formulation is more interesting in practice as it depends on the
statistics of the observations only.
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We always have

oSNR [hMVDR (cos θd)] ≤ oSNR [hW (cos θd)] . (82)

Also, with the signal model given in (1), the MVDR beamformer does
not distort the desired signal.

However, in practice, since this model does not include reverberation,
hMVDR (cos θd) may no longer be distortionless.
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Example 6

Returning to Example 5, we now employ the MVDR beamformer,
hMVDR (cos θd), given in (81).

Figure 20 shows plots of the array gain, G [hMVDR (cos θd)], the noise
reduction factor, ξn [hMVDR (cos θd)], the desired-signal reduction
factor, ξd [hMVDR (cos θd)], and the MSE, J [hMVDR (cos θd)], as a
function of the input SNR, for different numbers of sensors, M .

For a given input SNR, as the number of sensors increases, the array
gain and the noise reduction factor increase, while the MSE
decreases.
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Figure 20: (a) The array gain, (b) the noise reduction factor, (c) the desired-signal
reduction factor, and (d) the MSE of the MVDR beamformer for: M = 4 (solid line with
circles), M = 6 (dashed line with asterisks), M = 10 (dotted line with squares), and
M = 15 (dash-dot line with triangles).
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Figure 21 shows broadband beampatterns,
|B [hMVDR (cos θd) , cos θ]|, for different numbers of sensors, M .

The main beam is in the direction of the desired-signal, i.e., θd, and
there is a null in the direction of the interference, i.e., θn.

As the number of sensors increases, the width of the main beam
decreases, the null in the direction of the interference becomes
deeper, and the level of the sidelobe decreases.
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Figure 21: Broadband beampatterns of the MVDR beamformer for different numbers
of sensors, M : (a) M = 4, (b) M = 6, (c) M = 10, and (d) M = 15.
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Tradeoff

The easiest way to compromise between desired-signal distortion
and noise reduction is to optimize the criterion:

min
h

Jd (h) subject to Jn (h) = ℵσ2
v1 , (83)

where 0 < ℵ < 1 to insure that we get some noise reduction.

By using a Lagrange multiplier, µ > 0, to adjoin the constraint to the
cost function, we get the tradeoff beamformer:

hT,µ (cos θd) = R−1
v G (cos θd)×

[

µR−1
x +GT (cos θd)R

−1
v G (cos θd)

]−1

il. (84)
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We can see that for

µ = 1, hT,1 (cos θd) = hW (cos θd), which is the Wiener
beamformer;

µ = 0, hT,0 (cos θd) = hMVDR (cos θd), which is the MVDR
beamformer;

µ > 1, results in a beamformer with low residual noise at the
expense of high desired-signal distortion (as compared to
Wiener); and

µ < 1, results in a beamformer with high residual noise and low
desired-signal distortion (as compared to Wiener).
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Example 7

Returning to Example 5, we now employ the tradeoff beamformer,
hT,µ (cos θd), given in (84).

Figure 22 shows plots of the array gain, G
[

hT,µ (cos θd)
]

, the noise
reduction factor, ξn

[

hT,µ (cos θd)
]

, the desired-signal reduction factor,
ξd

[

hT,µ (cos θd)
]

, and the desired-signal distortion index,
υd

[

hT,µ (cos θd)
]

, as a function of the input SNR, for M = 10 and
several values of µ.

For a given input SNR, the higher is the value of µ, the higher are the
array gain and the noise reduction factor, but at the expense of higher
desired-signal reduction factor and higher desired-signal distortion
index.
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Figure 22: (a) The array gain, (b) the noise reduction factor, (c) the desired-signal
reduction factor, and (d) the desired-signal distortion index of the tradeoff beamformer
for M = 10 and for: µ = 0.5 (solid line with circles), µ = 1 (dashed line with asterisks),
µ = 2 (dotted line with squares), and µ = 5 (dash-dot line with triangles).
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Figure 23 shows broadband beampatterns,
∣

∣B
[

hT,µ (cos θd) , cos θ
]∣

∣,
for M = 10 and several values of µ.

The main beam is in the direction of the desired signal, i.e., θd, and
there is a null in the direction of the interference, i.e., θn.
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Figure 23: Broadband beampatterns of the tradeoff beamformer for M = 10 and
several values of µ: (a) µ = 0.5, (b) µ = 1, (c) µ = 2, and (d) µ = 5.
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Maximum SNR

Let us denote by t′1 (cos θd) the eigenvector corresponding to the
maximum eigenvalue, λ′

1 (cos θd), of the matrix
R−1

v G (cos θd)RxG
T (cos θd).

It is clear that the beamformer:

hmax (cos θd) = ςt′1 (cos θd) , (85)

where ς 6= 0 is an arbitrary real number, maximizes the output SNR
[defined in (33)].

With the maximum SNR beamformer, hmax (cos θd), the output SNR is

oSNR [hmax (cos θd)] = λ′
1 (cos θd) (86)

and

oSNR [hmax (cos θd)] ≥ oSNR (h) , ∀h. (87)
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The parameter ς can be found by minimizing distortion or the MSE.

Substituting (85) into (47) we obtain

J (h) = σ2
x − 2ςt′T1 (cos θd)G (cos θd)Rxil+

ς2t′T1 (cos θd)Ryt
′
1 (cos θd) . (88)

Therefore, ς that minimizes the MSE is given by

ς =
t′T1 (cos θd)G (cos θd)Rxil

t′T1 (cos θd)Ryt
′
1 (cos θd)

. (89)
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Example 8

Returning to Example 5, we now employ the maximum SNR
beamformer, hmax (cos θd), given in (85) with ς that minimizes the
MSE.

Figure 24 shows plots of the array gain, G [hmax (cos θd)], the noise
reduction factor, ξn [hmax (cos θd)], the desired-signal reduction factor,
ξd [hmax (cos θd)], and the desired-signal distortion index,
υd [hmax (cos θd)], as a function of the input SNR, for different
numbers of sensors, M .

For a given input SNR, as the number of sensors increases, the array
gain and noise reduction factor increase, while the desired-signal
reduction factor and desired-signal distortion index decrease.
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Figure 24: (a) The array gain, (b) the noise reduction factor, (c) the desired-signal
reduction factor, and (d) the desired-signal distortion index of the maximum SNR
beamformer for: M = 4 (solid line with circles), M = 6 (dashed line with asterisks),
M = 10 (dotted line with squares), and M = 15 (dash-dot line with triangles).
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Figure 25 shows broadband beampatterns, |B [hmax (cos θd) , cos θ]|,
for different numbers of sensors, M .

The main beam is in the direction of the desired signal, i.e., θd, and
there is a null in the direction of the interference, i.e., θn.

As the number of sensors increases, the null in the direction of the
interference becomes deeper.
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Figure 25: Broadband beampatterns of the maximum SNR beamformer for different
numbers of sensors, M : (a) M = 4, (b) M = 6, (c) M = 10, and (d) M = 15.
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LCMV

We assume that we have an undesired source impinging on the array
from the direction θn 6= θd.

The objective is to completely cancel this source while recovering the
desired source impinging on the array from the direction θd.

Then, it is obvious that the constraint equation is identical to the one
given in (69).

The above problem is solved by minimizing the MSE of the residual
noise, Jr (h), subject (69), i.e.,

min
h

hTRvh subject to CT (θd, θn)h =

[

il
0

]

(90)
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The solution to this optimization problem gives the well-known LCMV
beamformer [6], [7]:

hLCMV (cos θd) = R−1
v C (θd, θn)×

[

CT (θd, θn)R
−1
v C (θd, θn)

]−1
[

il
0

]

, (91)

which depends on the statistics of the noise only.

It can be shown that a more interesting formulation of the LCMV
beamformer is

hLCMV (cos θd) = R−1
y C (θd, θn)×

[

CT (θd, θn)R
−1
y C (θd, θn)

]−1
[

il
0

]

. (92)

The previous expression depends on the statistics of the
observations only, which should be easy to estimate.
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Example 9

Returning to Example 5, we now employ the LCMV beamformer,
hLCMV (cos θd), given in (92).

Figure 26 shows plots of the array gain, G [hLCMV (cos θd)], the noise
reduction factor, ξn [hLCMV (cos θd)], the desired-signal reduction
factor, ξd [hLCMV (cos θd)], and the MSE, J [hLCMV (cos θd)], as a
function of the input SNR, for different numbers of sensors, M .

For a given input SNR, as the number of sensors increases, the array
gain and the noise reduction factor slightly increase.
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Figure 26: (a) The array gain, (b) the noise reduction factor, (c) the desired-signal
reduction factor, and (d) the MSE of the LCMV beamformer for: M = 30 (solid line with
circles), M = 35 (dashed line with asterisks), M = 40 (dotted line with squares), and
M = 45 (dash-dot line with triangles).
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Figure 27 shows broadband beampatterns, |B [hLCMV (cos θd) , cos θ]|,
for different numbers of sensors, M .

The main beam is in the direction of the desired signal, i.e., θd, and
there is a null in the direction of the interference, i.e., θn. In particular,
|B [hLCMV (cos θd) , cos θ]| is 1 for θ = θd, and is identically zero for θn.
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Figure 27: Broadband beampatterns of the LCMV beamformer for different numbers
of sensors, M : (a) M = 30, (b) M = 35, (c) M = 40, and (d) M = 45.
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In Table 2, we summarize all the time-domain adaptive beamformers
derived in this section.

Table 2: Adaptive beamformers in the time domain.

Wiener: h
W

(cos θd) = R
−1
v G (cos θd)×

[

R
−1
x +G

T (cos θd)R
−1
v G (cos θd)

]

−1

il

MVDR: h
MVDR

(cos θd) = R
−1
v

G (cos θd)×
[

G
T (cos θd)R

−1
v

G (cos θd)
]

−1

il

Tradeoff: h
T,µ (cos θd) = R

−1
v G (cos θd)×

[

µR−1
x

+G
T (cos θd)R

−1
v

G (cos θd)
]

−1

il, µ ≥ 0

Max. SNR: h
max

(cos θd) = ςt′
1
(cos θd) , ς 6= 0

LCMV: h
LCMV

(cos θd) = R
−1
v C (θd, θn)×

[

C
T (θd, θn)R

−1
v C (θd, θn)

]

−1

[

il

0

]
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